Comparative Analysis of Volatile Compounds in the Flower Buds of Three Panax Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Flavor Components by Fast GC E-Nose
2.2. Qualitative Analysis of the VOCs by HS-GC-IMS
2.3. Qualitative VOCs via HS-SPME-GC-MS
2.4. Comprehensive Analysis
3. Materials and Methods
3.1. Sample Source and Preparation
3.2. Chemicals and Reagents
3.3. Fast GC E-Nose Analysis Conditions
3.4. HS-GC-IMS Analysis Conditions
3.5. HS-SPME-GC-MS Analysis Conditions
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) FH Chen: A review. J. Ethnopharmacol. 2016, 188, 234–258. [Google Scholar] [CrossRef]
- Li, W.; Duan, Y.; Yan, X.; Liu, X.; Fan, M.; Wang, Z.J.B. A mini-review on pharmacological effects of ginsenoside Rb3, a marked saponin from Panax genus. Biocell 2022, 46, 1417. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, W.-Z.; Yao, C.-L.; Qiu, Z.-D.; Shi, X.-J.; Zhang, J.-X.; Hou, J.-J.; Wang, Q.-R.; Wu, W.-Y.; Guo, D.-A. Nontargeted metabolomic analysis and “commercial-homophyletic” comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng. J. Chromatogr. A 2016, 1453, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-Z.; Bo, T.; Ji, S.; Qiao, X.; Guo, D.-A.; Ye, M. Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis. Food Chem. 2013, 139, 762–769. [Google Scholar] [CrossRef]
- Nakamura, S.; Sugimoto, S.; Matsuda, H.; Yoshikawa, M. Medicinal flowers. XVII. New dammarane-type triterpene glycosides from flower buds of American ginseng, Panax quinquefolium L. Chem. Pharm. Bull. 2007, 55, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Jee, H.-S.; Chang, K.-H.; Park, S.-H.; Kim, K.-T.; Paik, H.-D. Morphological characterization, chemical components, and biofunctional activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng roots: A comparative study. Food Rev. Int. 2014, 30, 91–111. [Google Scholar] [CrossRef]
- Vadivel, V.; Ravichandran, N.; Rajalakshmi, P.; Brindha, P.; Gopal, A.; Kumaravelu, C. Microscopic, phytochemical, HPTLC, GC–MS and NIRS methods to differentiate herbal adulterants: Pepper and papaya seeds. J. Herb. Med. 2018, 11, 36–45. [Google Scholar] [CrossRef]
- Zhao, Z.; Liang, Z.; Ping, G.J. Macroscopic identification of Chinese medicinal materials: Traditional experiences and modern understanding. J. Ethnopharmacol. 2011, 134, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Lee, F.; Wang, X.; Yu, W.J. A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs. J. Mass Spectrom. 2002, 37, 1013–1024. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Li, W.; Ding, H.; Yin, J.; Bie, S.; Li, F.; Tian, C.; Han, L.; Yang, W. Characterization of the key volatile organic components of different parts of fresh and dried perilla frutescens based on headspace-gas chromatography-ion mobility spectrometry and headspace solid phase microextraction-gas chromatography-mass spectrometry. Arab. J. Chem. 2023, 16, 104867. [Google Scholar] [CrossRef]
- Roy, M.; Yadav, B.K. Electronic nose for detection of food adulteration: A review. J. Food Sci. Technol. 2022, 59, 846–858. [Google Scholar] [CrossRef]
- Zanella, D.; Anderson, H.E.; Selby, T.; Magnuson, R.H., II; Liden, T.; Schug, K.A. Comparison of headspace solid-phase microextraction high capacity fiber coatings based on dual mass spectrometric and broadband vacuum ultraviolet absorption detection for untargeted analysis of beer volatiles using gas chromatography. Anal. Chim. Acta 2021, 1141, 91–99. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, D.; GholamHosseini, H.; Li, Z.; He, J. Identification of chinese herbal medicines with electronic nose technology: Applications and challenges. Sensors 2017, 17, 1073. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Ren, F.; Wang, Y.; Gao, X.; Wang, X.; Dai, X.; Song, J. Application of GC-IMS in Detection of Food Flavor Substances; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012030. [Google Scholar]
- Yin, J.; Wu, M.; Lin, R.; Li, X.; Ding, H.; Han, L.; Yang, W.; Song, X.; Li, W.; Qu, H. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem. J. 2021, 168, 106527. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, M.C.; Deng, Y.; Yuan, H.; Jiang, Y. Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC× GC-TOFMS. Food Chem. 2022, 387, 132813. [Google Scholar] [CrossRef] [PubMed]
- Heema, R.; Gnanalakshmi, K.S. An overview of applications of electronic nose and electronic tongue in food and dairy industry. Agric. Rev. 2022, 43, 327–333. [Google Scholar] [CrossRef]
- Zhang, J.-B.; Fei, C.-H.; Zhang, W.; Qin, Y.-W.; Li, Y.; Wang, B.; Jin, S.-J.; Su, L.-L.; Mao, C.-Q.; Ji, D.; et al. Rapid identification for the species discrimination of Curcumae Rhizoma using spectrophotometry and flash gas chromatography e-nose combined with chemometrics. Chin. J. Anal. Chem. 2022, 50, 100167. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, J.; Wang, J.; Wang, X.; Du, D. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. TrAC Trends Anal. Chem. 2021, 144, 116435. [Google Scholar] [CrossRef]
- Pati, S.; Tufariello, M.; Crupi, P.; Coletta, A.; Grieco, F.; Losito, I. Quantification of volatile compounds in wines by HS-SPME-GC/MS: Critical issues and use of multivariate statistics in method optimization. Processes 2021, 9, 662. [Google Scholar] [CrossRef]
- Do Nascimento, K.F.; Moreira, F.M.F.; Santos, J.A.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; do Carmo Vieira, M.; Ruiz, A.L.T.G.; Foglio, M.A.; de Carvalho, J.E. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Hasan, B.M.S.; Abdulazeez, A.M.; Mining, D. A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comput. Data Min. 2021, 2, 20–30. [Google Scholar]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Sun, L.; Wu, J.; Wang, K.; Liang, T.; Liu, Q.; Yan, J.; Yang, Y.; Qiao, K.; Ma, S.; Wang, D. Comparative Analysis of Acanthopanacis Cortex and Periplocae Cortex Using an Electronic Nose and Gas Chromatography–Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules 2022, 27, 8964. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Li, C.; Yin, J.; Wu, T.; Zhang, M.; Zhu, L.; Chen, H.; Zhang, X.; Bie, S. Discrimination and characterization of the volatile organic compounds of Acori tatarinowii rhizoma based on headspace-gas chromatography-ion mobility spectrometry and headspace solid phase microextraction-gas chromatography-mass spectrometry. Arab. J. Chem. 2022, 15, 104231. [Google Scholar] [CrossRef]
NO. | Compounds | Formula | CAS | MXT-5 | MXT-1701 | Relative Content (%) | Sensory Description | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
RT1 (s) | RI1 | RT2 (s) | RI2 | PGF | PQF | PNF | |||||
1 | chloroethane | C2H5Cl | 75-00-3 | 16.95 | 450 | 20.17 | 521 | 39.75 | 12.57 | --- | Spicy; Ether |
2 | 2-methylpentane | C6H14 | 107-83-5 | 21.49 | 544 | 21.67 | 553 | 4.56 | --- | --- | --- |
3 | 3-methylpentane | C6H14 | 96-14-0 | 23.45 | 585 | 22.30 | 566 | 3.29 | --- | --- | --- |
4 | diisopropyl ether | C6H14O | 108-20-3 | 24.16 | 599 | 25.09 | 613 | 4.90 | 4.06 | --- | --- |
5 | ethyl acetate | C4H8O2 | 141-78-6 | 25.72 | 612 | 29.49 | 665 | 3.32 | --- | --- | Sour; Pineapple |
6 | 3-methylbutanal | C5H10O | 590-86-3 | 30.43 | 650 | 37.19 | 725 | 6.57 | 7.33 | 5.57 | Cocoa; Chocolate |
7 | 2-methylbutanal | C5H10O | 96-17-3 | 31.73 | 661 | 38.22 | 731 | 4.51 | 4.74 | --- | Cocoa; Burnt |
8 | propyl acetate | C5H10O2 | 109-60-4 | 39.20 | 711 | 45.60 | 770 | 1.81 | --- | --- | Fruity; Pear |
9 | (E)-4-octene | C8H16 | 14850-23-8 | 60.12 | 802 | 61.57 | 835 | 2.61 | --- | --- | --- |
10 | pentyl acetate | C7H14O2 | 628-63-7 | 91.97 | 923 | 93.48 | 964 | 1.36 | --- | --- | Fruity; Apple |
11 | propyl nonanoate | C12H24O2 | 6513-03-7 | 153.69 | 1411 | 151.01 | 1443 | 3.14 | --- | --- | Fruity; Muskmelon |
12 | 5-methyltetradecane | C15H32 | 25117-32-2 | 157.55 | 1437 | 152.85 | 1456 | 3.11 | 6.35 | --- | --- |
13 | α-himachalene | C15H24 | 3853-83-6 | 160.79 | 1459 | 157.41 | 1490 | 19.24 | 41.32 | 3.48 | --- |
14 | decyl acrylate | C13H24O2 | 2156-96-9 | 170.14 | 1521 | 166.19 | 1551 | 1.82 | --- | --- | --- |
15 | 2-methylfuran | C5H6O | 594-20-7 | 24.21 | 600 | 26.17 | 626 | --- | 1.30 | --- | Cocoa; Burnt |
16 | 3-pentanone | C5H10O | 96-22-0 | 36.55 | 700 | 43.34 | 758 | --- | 2.02 | 3.36 | Fruity; Slight |
17 | (Z)-3-hexenal | C6H10O | 6789-80-6 | 60.05 | 802 | 73.62 | 877 | --- | 10.26 | 3.94 | Grass; Fresh |
18 | butyl octanoate | C12H24O2 | 589-75-3 | 153.73 | 1411 | 151.05 | 1443 | --- | 7.16 | 3.72 | Floral; Butter |
19 | heptyl hexanoate | C13H26O2 | 6976-72-3 | 163.15 | 1475 | 162.66 | 1527 | --- | 2.89 | 1.70 | Grass; Fresh |
20 | 1, 1-dichloroethene | C2H2Cl2 | 75-35-4 | 20.75 | 529 | 21.54 | 550 | --- | --- | 7.35 | Sweet; Mild |
21 | hexane | C6H14 | 110-54-3 | 24.03 | 597 | 23.34 | 587 | --- | --- | 7.43 | Gasoline |
22 | methane, bromochloro- | CH2BrCl | 74-97-5 | 26.71 | 620 | 31.95 | 694 | --- | --- | 2.12 | Sweet; Chloroform |
23 | isopropyl acetate | C5H10O2 | 108-21-4 | 29.74 | 645 | 36.53 | 722 | --- | --- | 7.49 | Banana; Fruity |
24 | 1-heptene-3-one | C7H12O | 2918-13-0 | 82.43 | 879 | 92.00 | 968 | --- | --- | 0.79 | Metal |
25 | leaf alcohol | C7H12O2 | 33467-73-1 | 91.90 | 923 | 94.75 | 985 | --- | --- | 1.29 | Grass; Vegetable |
26 | 3-hepten-2-one | C7H12O | 1119-44-4 | 95.12 | 946 | 103.26 | 1049 | --- | --- | 0.44 | Grass; Coriander |
27 | (E)-2-heptenal | C7H12O | 18829-55-5 | 97.93 | 966 | 104.37 | 1059 | --- | --- | 0.75 | Grass; Mushroom |
28 | 3-octanone | C8H16O | 106-68-3 | 100.54 | 984 | 105.74 | 1070 | --- | --- | 0.57 | Grass; Mushroom |
29 | leaf acetate | C8H14O2 | 3681-71-8 | 103.39 | 1005 | 107.51 | 1085 | --- | --- | 5.33 | Banana; Fruity |
30 | γ-Terpinene | C10H16 | 99-85-4 | 108.54 | 1051 | 111.21 | 1117 | --- | --- | 1.17 | Orange; Fruity |
31 | p-cymenene | C10H12 | 1195-32-0 | 113.43 | 1094 | 114.63 | 1189 | --- | --- | 0.48 | Orange; Fruity |
32 | linalool | C10H18O | 78-70-6 | 114.85 | 1107 | 120.14 | 1196 | --- | --- | 0.34 | Floral; Anise |
33 | 7-tetradecene | C14H28 | 41446-63-3 | 152.13 | 1400 | 147.50 | 1417 | --- | --- | 1.83 | Grass; Fresh |
34 | methyl undecanoate | C12H24O2 | 1731-86-8 | 157.63 | 1438 | 154.77 | 1470 | --- | --- | 1.86 | Brandy; Sweet |
35 | 3-ethyltridecane | C15H32 | 13286-73-2 | 160.82 | 1459 | 157.49 | 1490 | --- | --- | 12.07 | --- |
36 | pentadecane | C15H32 | 629-62-9 | 163.07 | 1474 | 158.29 | 1496 | --- | --- | 7.53 | Grass; Sligh |
37 | α-selinene | C15H24 | 473-13-2 | 168.05 | 1507 | 162.66 | 1527 | --- | --- | 3.80 | Fruity; Orange |
38 | n-nonylcyclohexane | C15H30 | 2883-02-5 | 173.23 | 1540 | 168.80 | 1569 | --- | --- | 3.08 | --- |
39 | tetradecanal | C14H28O | 124-25-4 | 183.71 | 1606 | 191.03 | 1723 | --- | --- | 3.34 | Fruity; Orange |
NO. | Compounds | CAS | Formula | RI | RT | DT |
---|---|---|---|---|---|---|
Terpenoids (12) | ||||||
1 | d-limonene monomer | 138-86-3 | C10H16 | 1035.4 | 719.445 | 1.22279 |
2 | d-limonene dimer | 138-86-3 | C10H16 | 1035.6 | 719.874 | 1.28562 |
3 | α-farnesene | 502-61-4 | C15H24 | 1484.8 | 1800.242 | 1.43576 |
4 | β-ocimene monomer | 13877-91-3 | C10H16 | 1044.9 | 733.618 | 1.21737 |
5 | β-ocimene dimer | 13877-91-3 | C10H16 | 1044.9 | 733.618 | 1.70485 |
6 | α-terpinene | 99-86-5 | C10H16 | 1022.9 | 701.450 | 1.22171 |
7 | myrcene monomer | 123-35-3 | C10H16 | 989.8 | 654.315 | 1.22072 |
8 | β-pinene | 127-91-3 | C10H16 | 975.0 | 626.315 | 1.21973 |
9 | camphene | 79-92-5 | C10H16 | 952.5 | 586.005 | 1.21670 |
10 | myrcene dimer | 123-35-3 | C10H16 | 989.7 | 654.067 | 1.71957 |
11 | α-pinene | 80-56-8 | C10H16 | 937.1 | 559.925 | 1.22059 |
12 | α-phellandrene | 99-83-2 | C10H16 | 1006.6 | 678.514 | 1.21871 |
Aldehydes (26) | ||||||
13 | leaf aldehyde monomer | 6728-26-3 | C6H10O | 853.6 | 417.340 | 1.18119 |
14 | leaf aldehyde dimer | 6728-26-3 | C6H10O | 853.6 | 417.340 | 1.51879 |
15 | (E)-2-heptenal monomer | 18829-55-5 | C7H12O | 961.4 | 601.567 | 1.25874 |
16 | (E)-2-heptenal dimer | 18829-55-5 | C7H12O | 962.4 | 603.316 | 1.67021 |
17 | (E)-2-octenal | 2548-87-0 | C8H14O | 1055.4 | 749.533 | 1.33296 |
18 | (E,E)-2,4-heptadienal | 4313-03-5 | C7H10O | 1011.1 | 684.657 | 1.19462 |
19 | (E,E)-2,4-octadienal | 30361-28-5 | C8H12O | 1112.2 | 841.551 | 1.26815 |
20 | 1-hexanal monomer | 66-25-1 | C6H12O | 794.9 | 325.791 | 1.25660 |
21 | 1-hexanal dimer | 66-25-1 | C6H12O | 794.9 | 325.791 | 1.56403 |
22 | nonanal | 124-19-6 | C9H18O | 1100.5 | 821.655 | 1.47236 |
23 | 2,4-hexadienal monomer | 142-83-6 | C6H8O | 914.4 | 523.595 | 1.11152 |
24 | 2,4-hexadienal dimer | 142-83-6 | C6H8O | 913.8 | 522.703 | 1.43864 |
25 | (E)-2-pentenal monomer | 1576-87-0 | C5H8O | 750.4 | 269.500 | 1.10926 |
26 | (E)-2-pentenal dimer | 1576-87-0 | C5H8O | 750.1 | 269.104 | 1.36181 |
27 | 3-methyl-2-butenal monomer | 107-86-8 | C5H8O | 781.1 | 307.234 | 1.09186 |
28 | 3-methyl-2-butenal dimer | 107-86-8 | C5H8O | 781.1 | 307.234 | 1.36333 |
29 | benzaldehyde monomer | 100-52-7 | C7H6O | 965.1 | 608.215 | 1.15227 |
30 | benzaldehyde dimer | 100-52-7 | C7H6O | 964.7 | 607.515 | 1.46975 |
31 | furfurol | 98-01-1 | C5H4O2 | 833.9 | 383.937 | 1.08606 |
32 | heptanal monomer | 111-71-7 | C7H14O | 901.7 | 504.317 | 1.33085 |
33 | heptanal dimer | 111-71-7 | C7H14O | 901.4 | 503.868 | 1.70253 |
34 | octanal | 124-13-0 | C8H16O | 1001.6 | 671.617 | 1.40190 |
35 | 2-hexenal monomer | 505-57-7 | C6H10O | 846.0 | 404.049 | 1.18141 |
36 | phenylacetaldehyde monomer | 122-78-1 | C8H8O | 1040.1 | 726.374 | 1.24860 |
37 | 2-hexenal dimer | 505-57-7 | C6H10O | 845.4 | 403.120 | 1.51587 |
38 | phenylacetaldehyde dimer | 122-78-1 | C8H8O | 1039.4 | 725.458 | 1.53261 |
Ketones (9) | ||||||
39 | methylheptenone | 110-93-0 | C8H14O | 987.2 | 649.334 | 1.17553 |
40 | 2-nonanone | 821-55-6 | C9H18O | 1089.4 | 803.252 | 1.40756 |
41 | 2-heptanone monomer | 110-43-0 | C7H14O | 889.0 | 484.585 | 1.26395 |
42 | 2-heptanone dimer | 110-43-0 | C7H14O | 889.0 | 484.585 | 1.63563 |
43 | 1-octen-3-one monomer | 4312-99-6 | C8H14O | 980.1 | 635.857 | 1.26833 |
44 | 1-octen-3-one dimer | 4312-99-6 | C8H14O | 980.9 | 637.257 | 1.68364 |
45 | methyl cyclopentenolone | 80-71-7 | C6H8O2 | 1034.7 | 718.496 | 1.16383 |
46 | geranylacetone | 3796-70-1 | C13H22O | 1454.6 | 1692.569 | 1.45301 |
47 | isomenthone | 491-07-6 | C10H18O | 1132.3 | 876.787 | 1.33585 |
Alcohols (10) | ||||||
48 | leaf alcohol | 928-96-1 | C6H12O | 861.9 | 432.186 | 1.23108 |
49 | 1-heptanol | 111-70-6 | C7H16O | 978.5 | 632.708 | 1.39685 |
50 | 2-heptanol | 543-49-7 | C7H16O | 917.0 | 527.636 | 1.37669 |
51 | n-hexanol monomer | 111-27-3 | C6H14O | 874.8 | 456.332 | 1.32838 |
52 | n-hexanol dimer | 111-27-3 | C6H14O | 873.6 | 454.090 | 1.63687 |
53 | cineole | 470-82-6 | C10H18O | 1026.9 | 707.167 | 1.29090 |
54 | 1-octen-3-ol monomer | 3391-86-4 | C8H16O | 983.2 | 641.687 | 1.15881 |
55 | 1-octen-3-ol dimer | 3391-86-4 | C8H16O | 983.6 | 642.372 | 1.59962 |
56 | 1-pentanol monomer | 71-41-0 | C5H12O | 762.5 | 283.783 | 1.25661 |
57 | 1-pentanol dimer | 71-41-0 | C5H12O | 760.5 | 281.329 | 1.51920 |
Esters (6) | ||||||
58 | γ-butyrolactone monomer | 96-48-0 | C4H6O2 | 922.2 | 535.708 | 1.08555 |
59 | γ-butyrolactone dimer | 96-48-0 | C4H6O2 | 921.3 | 534.302 | 1.30269 |
60 | isobutyl butyrate | 539-90-2 | C8H16O2 | 958.4 | 596.249 | 1.33085 |
61 | ethyl hexanoate monomer | 123-66-0 | C8H16O2 | 998.9 | 667.908 | 1.33545 |
62 | ethyl hexanoate dimer | 123-66-0 | C8H16O2 | 999.6 | 668.767 | 1.79910 |
63 | hexyl acetate | 142-92-7 | C8H16O2 | 1014.1 | 688.925 | 1.38891 |
Acids (3) | ||||||
64 | isovaleric acid | 503-74-2 | C5H10O2 | 838.0 | 390.742 | 1.22064 |
65 | pentanoic acid | 109-52-4 | C5H10O2 | 926.8 | 543.104 | 1.50554 |
66 | hexanoic acid | 142-62-1 | C6H12O2 | 1006.1 | 677.786 | 1.29537 |
Others (2) | ||||||
67 | 2-butoxyethanol | 111-76-2 | C6H14O2 | 901.7 | 504.317 | 1.20820 |
68 | guaiacol | 90-05-1 | C7H8O2 | 1074.1 | 778.631 | 1.24328 |
NO. | Compounds | RT | CAS | Formula | Relative Content (%) | Structure Type | ||
---|---|---|---|---|---|---|---|---|
(Min) | PGF | PQF | PNF | |||||
1 | 1-pentanol | 3.887 | 71-41-0 | C5H12O | 0.15 ± 0.02 | 0.07 ± 0.02 | 0.04 ± 0.01 | Alcohols |
2 | 2, 3-butanediol | 4.076 | 513-85-9 | C4H10O2 | 0.43 ± 0.06 | 0.16 ± 0.10 | 0.20 ± 0.07 | Alcohols |
3 | hexanal | 4.406 | 66-25-1 | C6H12O | 0.77 ± 0.13 | 2.16 ± 1.05 | 0.39 ± 0.06 | Aldehydes |
4 | isovaleric acid | 5.354 | 503-74-2 | C5H10O2 | 0.20 ± 0.11 | --- | --- | Acids |
5 | hex-2-enal | 5.414 | 505-57-7 | C6H10O | 0.17 ± 0.01 | 0.17 ± 0.06 | 0.10 ± 0.06 | Aldehydes |
6 | (E)-3-hexen-1-ol * | 5.474 | 928-97-2 | C6H12O | 1.39 ± 0.14 | 0.43 ± 0.14 | 0.36 ± 0.11 | Alcohols |
7 | hexyl alcohol * | 5.748 | 111-27-3 | C6H14O | 1.37 ± 0.15 | 0.51 ± 0.09 | 0.21 ± 0.04 | Alcohols |
8 | γ-butyrolactone | 6.786 | 96-48-0 | C4H6O2 | 0.54 ± 0.12 | --- | 0.21 ± 0.13 | Esters |
9 | methyl hexanoate | 7.081 | 106-70-7 | C7H14O2 | 0.13 ± 0.03 | 0.02 ± 0.01 | 0.05 ± 0.02 | Esters |
10 | α-pinene | 7.340 | 80-56-8 | C10H16 | 0.12 ± 0.02 | 0.07 ± 0.02 | 0.07 ± 0.01 | Terpenes |
11 | 2(5H)-furanone, 5, 5-dimethy | 7.834 | 20019-64-1 | C6H8O2 | 0.06 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01 | Esters |
12 | benzaldehyde | 8.034 | 100-52-7 | C7H6O | 0.28 ± 0.04 | 0.14 ± 0.03 | 0.16 ± 0.02 | Aldehydes |
13 | 1-heptanol | 8.298 | 111-70-6 | C7H16O | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.09 ± 0.02 | Alcohols |
14 | sabinene | 8.413 | 3387-41-5 | C10H16 | 0.04 ± 0.01 | 0.08 ± 0.04 | 0.02 ± 0.00 | Terpenes |
15 | 1-octen-3-ol * | 8.558 | 3391-86-4 | C8H16O | 0.43 ± 0.14 | 1.11 ± 0.49 | 0.28 ± 0.10 | Alcohols |
16 | hexanoic acid | 8.712 | 142-62-1 | C6H12O2 | 0.25 ± 0.15 | 0.07 ± 0.09 | 0.02 ± 0.06 | Acids |
17 | methyl isohexe | 8.792 | 110-93-0 | C8H14O | 0.89 ± 0.16 | 0.28 ± 0.09 | 0.22 ± 0.17 | Ketones |
18 | myrcene * | 8.917 | 123-35-3 | C10H16 | 1.05 ± 0.22 | 1.03 ± 0.15 | 0.26 ± 0.13 | Terpenes |
19 | octanal * | 9.271 | 124-13-0 | C8H16O | --- | --- | 2.10 ± 0.27 | Aldehydes |
20 | ethyl 3-hexenoate | 9.351 | 2396-83-0 | C8H14O2 | 0.04 ± 0.05 | --- | --- | Esters |
21 | hexyl acetate | 9.586 | 142-92-7 | C8H16O2 | 0.07 ± 0.02 | 0.02 ± 0.01 | --- | Esters |
22 | p-cymene | 9.925 | 99-87-6 | C10H14 | 0.11 ± 0.04 | 0.07 ± 0.02 | 0.16 ± 0.02 | Terpenes |
23 | dipentene | 10.065 | 138-86-3 | C10H16 | 0.29 ± 0.05 | 0.37 ± 0.06 | 0.22 ± 0.17 | Terpenes |
24 | benzyl alcohol | 10.185 | 100-51-6 | C7H8O | 0.12 ± 0.10 | 0.06 ± 0.08 | 0.48 ± 0.14 | Alcohols |
25 | 3-octen-2-one | 10.369 | 1669-44-9 | C8H14O | 0.04 ± 0.02 | 0.42 ± 0.27 | 0.04 ± 0.01 | Ketones |
26 | lilac lactone | 10.424 | 1073-11-6 | C7H10O2 | 0.01 ± 0.01 | --- | 0.02 ± 0.01 | Ketones |
27 | phenylacetaldehyde | 10.524 | 122-78-1 | C8H8O | 0.11 ± 0.02 | 0.07 ± 0.02 | 0.06 ± 0.01 | Aldehydes |
28 | trans-β-ocimene | 10.664 | 3779-61-1 | C10H16 | 0.06 ± 0.02 | 0.06 ± 0.02 | 0.26 ± 0.07 | Terpenes |
29 | (Z)-linalool oxide | 11.457 | 5989-33-3 | C10H18O2 | 0.23 ± 0.02 | 0.06 ± 0.02 | 0.09 ± 0.01 | Alcohols |
30 | heptanoic acid | 11.657 | 111-14-8 | C7H14O2 | --- | --- | 0.15 ± 0.06 | Acids |
31 | 2-nonanone | 12.071 | 821-55-6 | C9H18O | --- | 0.04 ± 0.01 | 0.22 ± 0.04 | Ketones |
32 | linalool | 12.320 | 78-70-6 | C10H18O | 0.07 ± 0.01 | 0.03 ± 0.00 | 0.04 ± 0.01 | Alcohols |
33 | 4-acetyl-1-methyl-1-5-cyclohexene | 13.299 | 6090-09-1 | C9H14O | 0.06 ± 0.01 | 0.05 ± 0.02 | 0.02 ± 0.00 | Terpenes |
34 | 2-isobutyl-3-methoxypyrazine | 14.252 | 24683-00-9 | C9H14N2O | 0.07 ± 0.01 | 0.04 ± 0.02 | --- | Others |
35 | ethyl caprylate | 14.521 | 106-32-1 | C10H20O2 | --- | --- | 0.08 ± 0.01 | Esters |
36 | safrana | 14.596 | 116-26-7 | C10H14O | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.00 | Aldehydes |
37 | β-cyclocitral | 14.975 | 432-25-7 | C10H16O | 0.11 ± 0.02 | 0.08 ± 0.02 | 0.17 ± 0.02 | Aldehydes |
38 | 5-butyldihydro-2(3H)-7-furanone | 15.614 | 104-50-7 | C8H14O2 | --- | --- | 0.06 ± 0.02 | Esters |
39 | bornyl acetate | 16.188 | 76-49-3 | C12H20O2 | 0.02 ± 0.00 | 0.02 ± 0.01 | 0.08 ± 0.02 | Esters |
40 | δ-elemene * | 17.341 | 20307-84-0 | C15H24 | 0.20 ± 0.04 | 0.20 ± 0.19 | 1.42 ± 0.19 | Terpenes |
41 | (−)-α-cubebene | 17.645 | 17699-14-8 | C15H24 | 0.53 ± 0.02 | 0.57 ± 0.09 | 1.51 ± 0.19 | Terpenes |
42 | longicyclene | 18.159 | 1137-12-8 | C15H24 | --- | --- | 0.12 ± 0.03 | Terpenes |
43 | α-copaene | 18.239 | 3856-25-5 | C15H24 | 0.17 ± 0.02 | 0.23 ± 0.07 | 0.87 ± 0.11 | Terpenes |
44 | (−)-isoledene | 18.364 | 95910-36-4 | C15H24 | 0.73 ± 0.04 | 1.06 ± 0.16 | 2.37 ± 0.39 | Terpenes |
45 | β-bourbonene | 18.639 | 5208-59-3 | C15H24 | --- | --- | 0.61 ± 0.50 | Terpenes |
46 | β-elemene * | 18.843 | 515-13-9 | C15H24 | 12.7 ± 0.17 | 13.78 ± 0.42 | 8.16 ± 0.17 | Terpenes |
47 | β-maaliene | 19.392 | 489-29-2 | C15H24 | 0.02 ± 0.01 | 0.03 ± 0.04 | 0.33 ± 0.05 | Terpenes |
48 | santalene | 19.682 | 512-61-8 | C15H24 | 9.51 ± 0.23 | 9.50 ± 0.80 | --- | Terpenes |
49 | β-caryophyllene * | 19.737 | 87-44-5 | C15H24 | --- | --- | 6.27 ± 0.23 | Terpenes |
50 | β-copaene | 20.011 | 18252-44-3 | C15H24 | 0.58 ± 0.03 | 0.70 ± 0.13 | 1.14 ± 0.07 | Terpenes |
51 | α-bergamotene | 20.151 | 17699-05-7 | C15H24 | 2.05 ± 0.13 | 2.08 ± 0.26 | 0.49 ± 0.22 | Terpenes |
52 | aromadendrene | 20.211 | 489-39-4 | C15H24 | --- | --- | 0.68 ± 0.05 | Terpenes |
53 | α-guaiene | 20.355 | 3691-12-1 | C15H24 | 0.06 ± 0.03 | 0.09 ± 0.12 | 1.07 ± 0.16 | Terpenes |
54 | α-himachalene | 20.460 | 3853-83-6 | C15H24 | 0.06 ± 0.08 | 0.13 ± 0.19 | 1.61 ± 0.10 | Terpenes |
55 | (+)-epi-β-santalen | 20.585 | 25532-78-9 | C15H24 | 1.37 ± 0.15 | 1.35 ± 0.21 | 0.15 ± 0.09 | Terpenes |
56 | (−)-aristolene | 20.680 | 6831-16-9 | C15H24 | 0.12 ± 0.11 | 0.19 ± 0.25 | 2.23 ± 0.16 | Terpenes |
57 | (E)-β-farnesene * | 21.004 | 18794-84-8 | C15H24 | 37.4 ± 0.98 | 35.32 ± 3.09 | 8.30 ± 1.18 | Terpenes |
58 | valerena-4, 7(11)-diene | 21.064 | 351222-66-7 | C15H24 | --- | --- | 9.59 ± 0.41 | Terpenes |
59 | β-santalene | 21.169 | 511-59-1 | C15H24 | --- | --- | 2.57 ± 0.17 | Terpenes |
60 | cis-muurola-4(14), 5-diene | 21.234 | 157477-72-0 | C15H24 | 0.38 ± 0.02 | 0.33 ± 0.09 | --- | Terpenes |
61 | germacrene D | 21.768 | 23986-74-5 | C15H24 | 1.13 ± 0.03 | 1.34 ± 0.24 | 2.09 ± 0.16 | Terpenes |
62 | bicyclosesquiphellandrene | 22.002 | 54324-03-7 | C15H24 | 13.5 ± 0.29 | 13.45 ± 3.42 | 18.87 ± 0.93 | Terpenes |
63 | β-selinene | 22.192 | 17066-67-0 | C15H24 | 1.56 ± 0.05 | 2.78 ± 0.73 | 1.63 ± 0.16 | Terpenes |
64 | eremophilene | 22.526 | 10219-75-7 | C15H24 | 2.81 ± 0.17 | 3.79 ± 0.88 | --- | Terpenes |
65 | (−)-α-muurolene | 22.614 | 10208-80-7 | C15H24 | --- | --- | 9.81 ± 1.20 | Terpenes |
66 | α-bulnesene | 22.691 | 3691-11-0 | C15H24 | 0.94 ± 0.05 | 0.89 ± 0.15 | --- | Terpenes |
67 | β-bisabolene | 22.959 | 495-61-4 | C15H24 | 0.99 ± 0.05 | 0.95 ± 0.11 | 0.82 ± 0.09 | Terpenes |
68 | (+)-δ-cadinene * | 23.634 | 483-76-1 | C15H24 | 1.31 ± 0.05 | 1.17 ± 0.37 | 2.37 ± 0.19 | Terpenes |
69 | dihydroactinidiolide | 23.889 | 17092-92-1 | C11H16O2 | 0.16 ± 0.01 | 0.09 ± 0.04 | 0.08 ± 0.03 | Esters |
70 | cubenene | 24.038 | 16728-99-7 | C15H24 | 0.19 ± 0.01 | 0.11 ± 0.04 | 0.24 ± 0.07 | Terpenes |
71 | selina-3, 7(11)-diene | 24.243 | 6813-21-4 | C15H24 | 0.16 ± 0.01 | 0.16 ± 0.06 | 0.27 ± 0.03 | Terpenes |
72 | (−)-spathulenol | 25.126 | 77171-55-2 | C15H24O | 0.25 ± 0.03 | 0.28 ± 0.19 | --- | Alcohols |
73 | spathulenol * | 25.575 | 6750-60-3 | C15H24O | 0.19 ± 0.07 | 0.34 ± 0.20 | 5.29 ± 0.72 | Alcohols |
74 | isoaromadendrene epoxide | 25.710 | --- | --- | 0.10 ± 0.05 | 0.13 ± 0.03 | 0.62 ± 0.15 | Others |
75 | mintketone | 25.940 | 73809-82-2 | C15H24O | 0.25 ± 0.04 | 0.35 ± 0.05 | 0.74 ± 0.16 | Ketones |
76 | aromadendrene oxide | 27.123 | --- | --- | 0.21 ± 0.03 | 0.28 ± 0.05 | 0.19 ± 0.09 | Others |
77 | 4(15), 5, 10(14)-germacratrien-1-ol | 27.332 | 81968-62-9 | C15H24O | 0.35 ± 0.05 | 0.48 ± 0.28 | 0.47 ± 0.46 | Alcohols |
78 | phytone | 28.710 | 502-69-2 | C18H36O | 0.07 ± 0.01 | 0.07 ± 0.05 | 0.02 ± 0.01 | Ketones |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Yin, J.; Xie, J.; Wu, S.; Ding, H.; Han, L.; Bie, S.; Song, W.; Zhang, Y.; Song, X.; et al. Comparative Analysis of Volatile Compounds in the Flower Buds of Three Panax Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules 2024, 29, 602. https://doi.org/10.3390/molecules29030602
Yue Y, Yin J, Xie J, Wu S, Ding H, Han L, Bie S, Song W, Zhang Y, Song X, et al. Comparative Analysis of Volatile Compounds in the Flower Buds of Three Panax Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules. 2024; 29(3):602. https://doi.org/10.3390/molecules29030602
Chicago/Turabian StyleYue, Yang, Jiaxin Yin, Jingyi Xie, Shufang Wu, Hui Ding, Lifeng Han, Songtao Bie, Wen Song, Ying Zhang, Xinbo Song, and et al. 2024. "Comparative Analysis of Volatile Compounds in the Flower Buds of Three Panax Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis" Molecules 29, no. 3: 602. https://doi.org/10.3390/molecules29030602
APA StyleYue, Y., Yin, J., Xie, J., Wu, S., Ding, H., Han, L., Bie, S., Song, W., Zhang, Y., Song, X., Yu, H., & Li, Z. (2024). Comparative Analysis of Volatile Compounds in the Flower Buds of Three Panax Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules, 29(3), 602. https://doi.org/10.3390/molecules29030602