Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (410)

Search Parameters:
Keywords = holistic engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2905 KiB  
Article
Towards Smarter Infrastructure Investment: A Comprehensive Data-Driven Decision Support Model for Asset Lifecycle Optimisation Using Stochastic Dynamic Programming
by Neda Gorjian Jolfaei, Leon van der Linden, Christopher W. K. Chow, Nima Gorjian, Bo Jin and Indra Gunawan
Infrastructures 2025, 10(9), 225; https://doi.org/10.3390/infrastructures10090225 (registering DOI) - 23 Aug 2025
Abstract
Equipment renewal and replacement strategy as well as smart capital investment is a vital focus in engineering asset management, particularly for water utilities aiming to improve asset reliability, water quality, service continuity and affordability. This study presents a novel decision support model that [...] Read more.
Equipment renewal and replacement strategy as well as smart capital investment is a vital focus in engineering asset management, particularly for water utilities aiming to improve asset reliability, water quality, service continuity and affordability. This study presents a novel decision support model that integrates whole-life costing principles across all asset lifecycle phases—from capital delivery and daily operations to long-term maintenance. The proposed model uniquely combines asset degradation and failure patterns, operating and maintenance costs, and the impact of technological advancements to provide a holistic and comprehensive asset management decision-making tool. These dimensions are jointly analysed using a hybrid approach that combines optimisation with stochastic dynamic programming, allowing for the determination of optimal asset renewal and replacement timing. The model’s performance was validated using historical data from eight critical wastewater pump stations within a township’s sewerage network. This was performed by comparing the model’s cost-saving results to those achieved by the water utility’s current strategy. Results revealed that the proposed model achieved an average cost saving of 12%, demonstrating its effectiveness in supporting sustainable and cost-efficient asset renewal decisions. Full article
(This article belongs to the Section Smart Infrastructures)
28 pages, 1786 KiB  
Systematic Review
Trends and Future Directions in Mitigating Silica Exposure in Construction: A Systematic Review
by Roohollah Kalatehjari, Funmilayo Ebun Rotimi, Rajitha Sachinthaka and Taofeeq Durojaye Moshood
Buildings 2025, 15(16), 2924; https://doi.org/10.3390/buildings15162924 - 18 Aug 2025
Viewed by 206
Abstract
Respirable crystalline silica is a well-established occupational hazard in construction work. Despite increased awareness, consistent exposure control remains a challenge, particularly in dynamic and resource-constrained environments. Respirable crystalline silica exposure in construction environments challenges the achievement of the United Nations Sustainable Development Goals [...] Read more.
Respirable crystalline silica is a well-established occupational hazard in construction work. Despite increased awareness, consistent exposure control remains a challenge, particularly in dynamic and resource-constrained environments. Respirable crystalline silica exposure in construction environments challenges the achievement of the United Nations Sustainable Development Goals (SDGs), particularly SDG 3 (Good Health and Well-Being) and SDG 8 (Decent Work and Economic Growth). Respirable crystalline silica particles cause severe health complications, including silicosis, lung cancer, cardiovascular diseases, and autoimmune disorders, representing a significant barrier to achieving SDG 3.9’s target of reducing deaths and illnesses from hazardous chemical exposures by 2030. This systematic review evaluates two decades of advancements (2004–2024) in respirable crystalline silica identification, characterisation, and mitigation within construction, synthesising evidence from 143 studies to assess progress toward sustainable occupational health management. This review documents a paradigmatic shift from traditional exposure assessment toward sophisticated monitoring approaches incorporating real-time detection systems, virtual reality–Computational Fluid Dynamics simulations, and wearable sensor technologies. Engineering controls, including local exhaust ventilation, wet suppression methods, and modified tool designs, have achieved exposure reductions exceeding 90%, directly supporting SDG 8.8’s commitment to safe working environments for all workers, including migrants and those in precarious employment. However, substantial barriers persist, including prohibitive costs, inadequate infrastructure, and regional regulatory disparities that particularly disadvantage lower-resourced countries, contradicting the Sustainable Development Goals’ principles of leaving no one behind. The findings advocate holistic approaches integrating technological innovation with context-specific regulations, enhanced international cooperation, and culturally adapted worker education to achieve equitable occupational health protection supporting multiple Sustainable Development Goals’ objectives by 2030 and also highlighting potential areas for future research. Full article
Show Figures

Figure 1

31 pages, 3112 KiB  
Article
Cost Calculation Model for Engineering Structures Based on a Life Cycle Perspective
by Kangcheng Jin, Weiliang Jin, Boyang Liu, Kexian Wu and Zhujun Wang
Buildings 2025, 15(16), 2923; https://doi.org/10.3390/buildings15162923 - 18 Aug 2025
Viewed by 211
Abstract
A comprehensive life cycle cost (LCC) calculation model for engineering structures is proposed, in which economic, environmental, and social cost components are systematically integrated within a unified framework. Unlike traditional LCC approaches that primarily emphasize direct economic expenditures, the model is designed to [...] Read more.
A comprehensive life cycle cost (LCC) calculation model for engineering structures is proposed, in which economic, environmental, and social cost components are systematically integrated within a unified framework. Unlike traditional LCC approaches that primarily emphasize direct economic expenditures, the model is designed to incorporate pollutant emissions and social externalities, thereby enabling a more holistic evaluation of sustainability over the entire lifespan of the structure. The effectiveness of the model has been demonstrated through application to case studies, where long-term cost implications were captured and sustainable design and maintenance decisions were supported. This integrated framework represents an advancement over existing LCC methodologies by providing a more comprehensive and practical tool for the evaluation of engineering structures. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

33 pages, 2003 KiB  
Review
Polyacrylamide-Based Solutions: A Comprehensive Review on Nanomaterial Integration, Supramolecular Design, and Sustainable Approaches for Integrated Reservoir Management
by Moamen Hassan Mohamed and Mysara Eissa Mohyaldinn Elhaj
Polymers 2025, 17(16), 2202; https://doi.org/10.3390/polym17162202 - 12 Aug 2025
Viewed by 729
Abstract
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically [...] Read more.
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically analyzes advancements in PAM-based materials for enhanced oil recovery (EOR), conformance control, and sand management. We show that nanomaterial integration (e.g., magnetic NPs, nanoclays) significantly augments PAM’s rheological control, thermal and salinity stability, interfacial properties, and wettability alteration. Furthermore, the emergence of supramolecular chemistry has endowed PAM systems with unprecedented resilience, enabling self-healing and adaptive performance under extreme subsurface conditions. The review highlights a crucial paradigm shift towards integrated reservoir management, synergizing these advanced chemical designs with mechanical strategies and leveraging sophisticated monitoring and predictive analytics. Critically, innovations in sustainable and bio-inspired PAM materials offer environmentally responsible solutions with enhanced biodegradability. This synthesis provides a holistic understanding of the state of the art. Despite persistent challenges in scalability and predictability, continually re-engineered PAM systems are positioned as an indispensable and increasingly sustainable cornerstone for future hydrocarbon recovery in the complex energy landscape. Full article
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 259
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

28 pages, 16653 KiB  
Article
Integrated Assessment Methodology for Jack-Up Stability: Centrifuge Test of Entire Four-Legged Model for WTIVs
by Mingsheng Xiahou, Zhiyuan Wei, Yilin Wang, Deqing Yang, Jian Chi and Shuxiang Liu
Appl. Sci. 2025, 15(14), 7971; https://doi.org/10.3390/app15147971 - 17 Jul 2025
Viewed by 223
Abstract
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, [...] Read more.
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, and punch-through risk, thereby filling the gap in holistic platform stability analysis. An entire four-legged centrifuge test at 150× g was integrated with coupled Eulerian–Lagrangian (CEL) numerical simulations and theoretical methods to systematically investigate spudcan penetration mechanisms and global sliding/overturning evolution in clay/sand. The key findings reveal that soil properties critically influence penetration resistance and platform stability: Sand exhibited a six-times-higher ultimate bearing capacity than clay, yet its failure zone was 42% smaller. The sliding resistance in sand was 2–5 times greater than in clay, while the overturning behavior diverged significantly. Although the horizontal loads in clay were only 50% of those in sand, the tilt angles at equivalent sliding distances reached 8–10 times higher. Field validation at Guangdong Lemen Wind Farm confirmed the method’s reliability: penetration prediction errors of <5% and soil backflow/plugging effects were identified as critical control factors for punch-through risk assessment. Notably, the overturning safety factors for crane operation at 90° outreach and storm survival were equivalent, indicating operational load combinations dominate overturning risks. These results provide a theoretical and decision-making basis for the safe operation of large WTIVs, particularly applicable to engineering practices in complex stratified seabed areas. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

37 pages, 4004 KiB  
Article
MCDM Optimization-Based Development of a Plus-Energy Microgrid Architecture for University Buildings and Smart Parking
by Mahmoud Ouria, Alexandre F. M. Correia, Pedro Moura, Paulo Coimbra and Aníbal T. de Almeida
Energies 2025, 18(14), 3641; https://doi.org/10.3390/en18143641 - 9 Jul 2025
Viewed by 475
Abstract
This paper presents a multi-criteria decision-making (MCDM) approach for optimizing a microgrid system to achieve Plus-Energy Building (PEB) performance at the University of Coimbra’s Electrical Engineering Department. Using Python 3.12.8, Rhino 7, and PVsyst 8.0.1, simulations considered architectural and visual constraints, with economic [...] Read more.
This paper presents a multi-criteria decision-making (MCDM) approach for optimizing a microgrid system to achieve Plus-Energy Building (PEB) performance at the University of Coimbra’s Electrical Engineering Department. Using Python 3.12.8, Rhino 7, and PVsyst 8.0.1, simulations considered architectural and visual constraints, with economic feasibility assessed through a TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis. The system is projected to generate approximately 1 GWh annually, with a 98% probability of exceeding 1076 MWh based on Gaussian estimation. Consumption is estimated at 460 MWh, while a 3.8 MWh battery ensures up to 72 h of autonomy. Rooftop panels and green parking arrays, fixed at 13.5° and 59°, minimize visual impact while contributing a surplus of +160% energy injection (or a net surplus of +60% energy after self-consumption). Assuming a battery cost of EUR 200/kWh, each hour of energy storage for the building requires 61 kWh of extra capacity with a cost of 12,200 (EUR/hr.storage). Recognizing environmental variability, these figures represent cross-validated probabilistic estimates derived from both PVsyst and Monte Carlo simulation using Python, reinforcing confidence in system feasibility. A holistic photovoltaic optimization strategy balances technical, economic, and architectural factors, demonstrating the potential of PEBs as a sustainable energy solution for academic institutions. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

26 pages, 793 KiB  
Article
Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data
by Nico Rosenberger, Nikolai Hoffmann, Alexander Mitscherlich and Markus Lienkamp
World Electr. Veh. J. 2025, 16(7), 384; https://doi.org/10.3390/wevj16070384 - 8 Jul 2025
Viewed by 485
Abstract
Reverse engineering of internal vehicle communication is a crucial discipline in vehicle benchmarking. The process presents a time-consuming procedure associated with high manual effort. Car manufacturers use unique signal addresses and encodings for their internal data. Accessing this data requires either expensive tools [...] Read more.
Reverse engineering of internal vehicle communication is a crucial discipline in vehicle benchmarking. The process presents a time-consuming procedure associated with high manual effort. Car manufacturers use unique signal addresses and encodings for their internal data. Accessing this data requires either expensive tools suitable for the respective vehicles or experienced engineers who have developed individual approaches to identify specific signals. Access to the internal data enables reading the vehicle’s status, and thus, reducing the need for additional test equipment. This results in vehicles closer to their production status and does not require manipulating the vehicle under study, which prevents affecting future test results. The main focus of this approach is to reduce the cost of such analysis and design a more efficient benchmarking process. In this work, we present a methodology that identifies signals without physically manipulating the vehicle. Our equipment is connected to the vehicle via the On-Board Diagnostics (OBD)-II port and uses the Unified Diagnostics Service (UDS) protocol to communicate with the vehicle. We access, capture, and analyze the vehicle’s signals for future analysis. This is a holistic approach, which, in addition to decoding the signals, also grants access to the vehicle’s data, which allows researchers to utilize state-of-the-art methodologies to analyze their vehicles under study by greatly reducing necessary experience, time, and cost. Full article
Show Figures

Figure 1

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 1176
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

20 pages, 2051 KiB  
Article
Assessing the Validity of a Green Infrastructure Conceptual Framework for Urban Transport Planning: Insights for Building Resilient Cities
by Frances Ifeoma Ukonze, Antoni Moore, Greg Leonard and Ben Daniel
Sustainability 2025, 17(13), 5697; https://doi.org/10.3390/su17135697 - 20 Jun 2025
Cited by 1 | Viewed by 475
Abstract
Green Infrastructure (GI) has increasingly been recognised as a crucial strategy for enhancing urban resilience, particularly in urban transportation systems facing the challenges of climate change. Although several conceptual frameworks for GI planning have been proposed, empirical studies examining their application in urban [...] Read more.
Green Infrastructure (GI) has increasingly been recognised as a crucial strategy for enhancing urban resilience, particularly in urban transportation systems facing the challenges of climate change. Although several conceptual frameworks for GI planning have been proposed, empirical studies examining their application in urban transport planning contexts remain limited. This study aims to validate a recently developed GI conceptual framework by evaluating its applicability in urban transportation systems. A structured questionnaire was administered to 94 participants in Aotearoa New Zealand comprising urban planners, engineers, architects, policymakers, and academics involved in transportation and sustainability planning with special focus on GI. The framework was assessed across key dimensions including the perceived benefits of GI in transportation, stakeholder and collaborative practices barriers to implementation, and indicators of perceived effectiveness. The results confirm that the stakeholders’ perceptions of GI are significantly aligned with the dimensions of the conceptual framework, reinforcing its validity in assessing GI effectiveness. Key findings highlight a disconnect between stakeholders’ general familiarity with GI and their understanding of its multifunctional benefits beyond stormwater management. Also, the prevalence of multidisciplinary collaboration suggests that additional interdisciplinary and transdisciplinary approaches are required for more holistic GI planning. This study recommends that the conceptual framework be considered for city adaptation to GI integration, and to do so effectively, these knowledge and cooperation gaps must be addressed Full article
Show Figures

Figure 1

46 pages, 5055 KiB  
Review
Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions
by Diptikar Behera, Kuang-Yen Liu, Firmansyah Rachman and Aman Mola Worku
Buildings 2025, 15(12), 2113; https://doi.org/10.3390/buildings15122113 - 18 Jun 2025
Viewed by 1911
Abstract
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while [...] Read more.
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while reducing density by up to 30% compared to conventional concrete. Fiber incorporation enhances flexural strength and fracture toughness by 20–40%, concurrently mitigating brittleness and improving ductility. The synergistic interaction between SCMs and lightweight aggregates optimizes matrix densification and interfacial transition zones, curtailing shrinkage and bolstering durability against chemical and environmental aggressors. Integration of recycled and bio-based aggregates substantially diminishes the embodied carbon footprint by approximately 40%—aligning LWC with circular economy principles. Nanomaterials such as nano-silica and carbon nanotubes augment early-age strength development by 25% and refine microstructural integrity. Thermal performance is markedly enhanced through advanced lightweight fillers, including expanded polystyrene and aerogels, achieving up to a 50% reduction in thermal conductivity, thereby facilitating energy-efficient building envelopes. Although challenges persist in cost and workability, the convergence of hybrid fiber systems, optimized mix designs, and sophisticated multi-scale modeling is expanding the applicability of LWC across demanding structural, marine, and prefabricated contexts. In essence, LWC’s holistic development embodies a paradigm shift toward resilient, low-carbon infrastructure, cementing its role as a pivotal material in the evolution of next-generation sustainable construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 3429 KiB  
Article
Unveiling Climate-Adaptive World Heritage Management Strategies: The Netherlands as a Case Study
by Kai Cheang, Nan Bai and Ana Pereira Roders
Sustainability 2025, 17(12), 5555; https://doi.org/10.3390/su17125555 - 17 Jun 2025
Viewed by 1289
Abstract
The Netherlands has established climate-adaptive strategies shaped by its long history of water-related climate events, such as the floods in 1421 and 1953. UNESCO World Heritage (WH) properties in The Netherlands reflect centuries of human intervention and natural processes to adapt and mitigate [...] Read more.
The Netherlands has established climate-adaptive strategies shaped by its long history of water-related climate events, such as the floods in 1421 and 1953. UNESCO World Heritage (WH) properties in The Netherlands reflect centuries of human intervention and natural processes to adapt and mitigate climate challenges, including spatial design and hydraulic engineering. The Dutch Climate Research Initiative also highlights cultural heritage as an integral component in preparing for the 2026 National Climate Adaptation Strategy. This article aims to unveil climate-adaptive World Heritage management strategies (CAWHMSs), using WH properties in The Netherlands as a case study. It collects textual data from Statements of Outstanding Universal Value, State of Conservation Reports by the State Parties and management plans. Through qualitative coding and keywords aggregation of the documents, the visualised results of a Sankey diagram and two semantic networks confirmed two CAWHMSs: conservation and developing WH properties as collaborative knowledge hubs. Conservation supports regulating urban climate and sustainable water management. As collaborative knowledge hubs, multidisciplinary sectors explore opportunities to align WH properties with broader sustainable development initiatives. They also deepen younger generations’ awareness of cultural and natural significance relevant to mitigating climate threats. The results emphasise WH as a contributor to climate adaptation. Cross-sectoral stakeholders can advance holistic climate adaptation efforts using CAWHMSs. Full article
Show Figures

Graphical abstract

28 pages, 1593 KiB  
Review
A Review on Marine Microbial Docosahexaenoic Acid Production Through Circular Economy, Fermentation Engineering, and Antioxidant Technology
by Fengwei Yin, Xiaolong Sun, Xi Luo, Weilong Zheng, Longfei Yin, Yingying Zhang and Yongqian Fu
Mar. Drugs 2025, 23(6), 256; https://doi.org/10.3390/md23060256 - 16 Jun 2025
Cited by 1 | Viewed by 1196
Abstract
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This [...] Read more.
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This review focuses on recent strategies aimed at achieving low-cost and high-quality marine microbial DHA production, emphasizing heterotrophic systems that dominate commercial supply. Key aspects include: Fermentation optimization using waste-derived feedstocks and bioprocess engineering to enhance DHA yields; Critical refining techniques—including degumming, neutralization, decolorization, and deodorization—are analyzed for improving DHA oil purity and quality, with emphasis on process optimization to adapt to the unique biochemical properties of microbial-derived oils. Additionally, strategies for oxidative stabilization, such as antioxidant protection, are discussed to extend the shelf life and preserve the nutritional value of marine microbial DHA oil. By integrating techno-economic and biochemical perspectives, this work outlines a holistic framework to guide the industrial optimization of marine microbial-sourced DHA oil production, addressing cost and quality challenges to facilitate its large-scale application as functional foods and nutraceuticals, thereby reducing reliance on marine resources and advancing sustainable omega-3 production. Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms, 2nd Edition)
Show Figures

Figure 1

27 pages, 1258 KiB  
Article
Risk Mitigation Model for Addressing Contractual Claims Risk in Civil Infrastructure Projects in South Africa
by Awad Saad, Lance Wentzel, Julius Ayodeji Fapohunda and Rainer Haldenwang
Buildings 2025, 15(12), 2029; https://doi.org/10.3390/buildings15122029 - 12 Jun 2025
Viewed by 555
Abstract
The risks arising from contractual claims in the civil engineering construction industry in South Africa are a concern. Currently, there are no risk mitigation models available for managers to help reduce such risks. A theoretical risk mitigation model was developed from the literature [...] Read more.
The risks arising from contractual claims in the civil engineering construction industry in South Africa are a concern. Currently, there are no risk mitigation models available for managers to help reduce such risks. A theoretical risk mitigation model was developed from the literature and validated through partial least squares structural equation modelling (PLS-SEM), using primary questionnaire data obtained from 166 respondents drawn from a pool of South African construction industry professionals, including project directors, project managers, supervisors, consultants, and contractors. The descriptive results indicate significant patterns, trends, and distributions of the variables across the three constructs in the study. The PLS-SEM results indicate that factors causing contractual claims risk in civil infrastructure projects have a significant relation to the impact of risk occurrence on these projects, influencing the strategies to be implemented to mitigate such risks. The PLS-SEM results also indicate a significant direct relation between the factors causing contractual claims risk and the strategies to be implemented to mitigate risks, thus implying that the holistic adaptation of the PLS-SEM (risk mitigation model) by construction industry professionals in South Africa should reduce contractual claims risk in civil infrastructure projects. The findings serve as a valuable guide not only to construction industry professionals but also to government agencies such as the Department of Public Works and Infrastructure. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

35 pages, 526 KiB  
Review
Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives
by Zahra S. Al-Kharousi
Foods 2025, 14(12), 2043; https://doi.org/10.3390/foods14122043 - 10 Jun 2025
Cited by 1 | Viewed by 1687
Abstract
Lactic acid bacteria (LAB) have long been recognized for their versatility and historical significance, with a remarkable capability to produce a wide range of bioactive compounds that can be used across food, pharmaceuticals, nutrition, agriculture, and sustainable industrial sectors. This review aims to [...] Read more.
Lactic acid bacteria (LAB) have long been recognized for their versatility and historical significance, with a remarkable capability to produce a wide range of bioactive compounds that can be used across food, pharmaceuticals, nutrition, agriculture, and sustainable industrial sectors. This review aims to explore the current state of knowledge regarding LAB in beverages, emphasizing their diversity across dairy, non-dairy, and hybrid beverage matrices. Key aspects discussed include fermentation processes, associated challenges, and future perspectives. By examining a wide array of studies, this review offers a holistic perspective on the role of LAB in influencing sensory characteristics (both desirable and undesirable), promoting health benefits, extending shelf life, and enhancing their safety. Furthermore, emerging trends are highlighted, such as the use of LAB for the development of novel LAB-based beverages, their use for bioremediation of toxic compounds, genetic engineering of LAB strains to optimize and tailor their fermentation outcomes, and their use in drug delivery. Full article
Show Figures

Graphical abstract

Back to TopTop