Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,676)

Search Parameters:
Keywords = historical land uses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2574 KiB  
Article
Assessing the Effect of Undirected Forest Restoration and Flooding on the Soil Quality in an Agricultural Floodplain
by Addison Wessinger, Anna Juarez and Clayton J. Williams
Soil Syst. 2025, 9(3), 88; https://doi.org/10.3390/soilsystems9030088 (registering DOI) - 7 Aug 2025
Abstract
This study investigated the impacts of land-use history and an episodic flood event on the soil quality of a riverine floodplain ecosystem, providing long-term and short-term disturbance perspectives. The study took place in the Saint Michael’s College Natural Area, which has over a [...] Read more.
This study investigated the impacts of land-use history and an episodic flood event on the soil quality of a riverine floodplain ecosystem, providing long-term and short-term disturbance perspectives. The study took place in the Saint Michael’s College Natural Area, which has over a hundred-year history of land-use change. Based on aerial orthoimagery, three zones (a recently abandoned farm field, a new-growth forest, and an old-growth forest) were selected that reflected different land-use histories. Two plots were selected per zone and pooled soil samples were collected from each before and after a major flooding event. Surface soil quality before flooding was often similar among the new- and old-growth forested areas (1.4 mg-P/g-soil, 6.8% soil organic matter (SOM), 0.79 humification index (HIX), and 13% Peak T) but differed from that found in the recently abandoned farm field, which had higher phosphorus levels (1.6 mg-P/g-soil), lower SOM content (3.9%), more microbial-like SOM (0.65 HIX and 17% Peak T), and drier soils. Flooding caused SOM to better resemble that of a forest rather than an agricultural field, and it lowered phosphorus levels. The results of our study suggest that episodic flooding events could help accelerate the restoration of soil organic matter conditions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

17 pages, 6476 KiB  
Article
Spatiotemporal Exposure to Heavy-Day Rainfall in the Western Himalaya Mapped with Remote Sensing, GIS, and Deep Learning
by Zahid Ahmad Dar, Saurabh Kumar Gupta, Shruti Kanga, Suraj Kumar Singh, Gowhar Meraj, Pankaj Kumar, Bhartendu Sajan, Bojan Đurin, Nikola Kranjčić and Dragana Dogančić
Geomatics 2025, 5(3), 37; https://doi.org/10.3390/geomatics5030037 - 7 Aug 2025
Abstract
Heavy rainfall events, characterized by extreme downpours that exceed 100 mm per day, pose an intensifying hazard to the densely settled valleys of the western Himalaya; however, their coupling with expanding urban land cover remains under-quantified. This study mapped the spatiotemporal exposure of [...] Read more.
Heavy rainfall events, characterized by extreme downpours that exceed 100 mm per day, pose an intensifying hazard to the densely settled valleys of the western Himalaya; however, their coupling with expanding urban land cover remains under-quantified. This study mapped the spatiotemporal exposure of built-up areas to heavy-day rainfall (HDR) across Jammu, Kashmir, and Ladakh and the adjoining areas by integrating daily Climate Hazards Group InfraRed Precipitation with Stations product (CHIRPS) precipitation (0.05°) with Global Human Settlement Layer (GHSL) built-up fractions within the Google Earth Engine (GEE). Given the limited sub-hourly observations, a daily threshold of ≥100 mm was adopted as a proxy for HDR, with sensitivity evaluated at alternative thresholds. The results showed that HDR is strongly clustered along the Kashmir Valley and the Pir Panjal flank, as demonstrated by the mean annual count of threshold-exceeding pixels increasing from 12 yr−1 (2000–2010) to 18 yr−1 (2011–2020), with two pixel-scale hotspots recurring southwest of Srinagar and near Baramulla regions. The cumulative high-intensity areas covered 31,555.26 km2, whereas 37,897.04 km2 of adjacent terrain registered no HDR events. Within this hazard belt, the exposed built-up area increased from 45 km2 in 2000 to 72 km2 in 2020, totaling 828 km2. The years with the most expansive rainfall footprints, 344 km2 (2010), 520 km2 (2012), and 650 km2 (2014), coincided with heavy Western Disturbances (WDs) and locally vigorous convection, producing the largest exposure increments. We also performed a forecast using a univariate long short-term memory (LSTM), outperforming Autoregressive Integrated Moving Average (ARIMA) and linear baselines on a 2017–2020 holdout (Root Mean Square Error, RMSE 0.82 km2; measure of errors, MAE 0.65 km2; R2 0.89), projecting the annual built-up area intersecting HDR to increase from ~320 km2 (2021) to ~420 km2 (2030); 95% prediction intervals widened from ±6 to ±11 km2 and remained above the historical median (~70 km2). In the absence of a long-term increase in total annual precipitation, the projected rise most likely reflects continued urban encroachment into recurrent high-intensity zones. The resulting spatial masks and exposure trajectories provide operational evidence to guide zoning, drainage design, and early warning protocols in the region. Full article
Show Figures

Figure 1

23 pages, 11564 KiB  
Article
Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE)
by Ivica Milevski, Bojana Aleksova, Aleksandar Valjarević and Pece Gorsevski
Atmosphere 2025, 16(8), 945; https://doi.org/10.3390/atmos16080945 - 7 Aug 2025
Abstract
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, [...] Read more.
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, and Google Earth Engine (GEE) were used to assess flood-prone zones across North Macedonia’s watersheds. The presented GEE-based assessment was accomplished by a custom script that automates the FFPI calculation process by integrating key factors derived from publicly available sources. These factors, which define susceptibility to torrential floods, include slope (Copernicus GLO-30 DEM), land cover (Copernicus GLO-30 DEM), soil type (SoilGrids), vegetation (ESA World Cover), and erodibility (CHIRPS). The spatial distribution of average FFPI values across 1396 small catchments (10–100 km2) revealed that a total of 45.4% of the area exhibited high to very high susceptibility, with notable spatial variability. The CHIRPS rainfall data (2000–2024) that combines satellite imagery and in situ measurements was used to estimate peak 24 h runoff and discharge. To improve the accuracy of CHIRPS, the data were adjusted by 30–50% to align with meteorological station records, along with normalized FFPI values as runoff coefficients. Validation against 328 historical river flood and flash flood records confirmed that 73.2% of events aligned with moderate to very high flash flood susceptibility catchments, underscoring the model’s reliability. Thus, the presented cloud-based scenario highlights the potential of the GEE’s efficacy in scalability and robustness for flash flood modeling and regional risk management at national scale. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

21 pages, 826 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 219
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 467
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

27 pages, 3387 KiB  
Article
Landscape Services from the Perspective of Experts and Their Use by the Local Community: A Comparative Study of Selected Landscape Types in a Region in Central Europe
by Piotr Krajewski, Marek Furmankiewicz, Marta Sylla, Iga Kołodyńska and Monika Lebiedzińska
Sustainability 2025, 17(15), 6998; https://doi.org/10.3390/su17156998 - 1 Aug 2025
Viewed by 192
Abstract
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual [...] Read more.
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual use. The study has three main objectives: (1) to assess the potential of 16 selected landscape types to provide six key LS through expert evaluation; (2) to determine actual LS usage patterns among the local community (residents); and (3) to identify agreements and discrepancies between expert assessments and resident use. The services analyzed include providing space for daily activities; regulating spatial structure through diversity and compositional richness; enhancing physical and mental health; enabling passive and active recreation; supporting personal fulfillment; and fostering social interaction. Expert-based surveys and participatory mapping with residents were used to assess the provision and use of LS. The results indicate consistent evaluations for forest and historical urban landscapes (high potential and use) and mining and transportation landscapes (low potential and use). However, significant differences emerged for mountain LS, rated highly by experts but used minimally by residents. These insights highlight the importance of aligning expert planning with community needs to promote sustainable land use policies and reduce spatial conflicts. Full article
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 - 31 Jul 2025
Viewed by 119
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 288
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 267
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 7721 KiB  
Article
From Landscape to Legacy: Developing an Integrated Hiking Route with Cultural Heritage and Environmental Appeal Through Spatial Analysis
by İsmet Sarıbal, Mesut Çoşlu and Serdar Selim
Sustainability 2025, 17(15), 6897; https://doi.org/10.3390/su17156897 - 29 Jul 2025
Viewed by 340
Abstract
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies [...] Read more.
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies were utilized, and land surveys were conducted to support the analysis and validate the existing data. Data for slope, one of the most critical factors for hiking route selection, were generated, and the optimal route between the starting and destination points was identified using least cost path analysis (LCPA). Historical, touristic, and recreational rest stops along the route were mapped with precise coordinates, and both the existing and the newly generated routes were assessed in terms of their accessibility to these points. Field validation was carried out based on the experiences of expert hikers. According to the results, the length of the existing hiking route was determined to be 15.72 km, while the newly developed trekking route measured 17.36 km. These two routes overlap for 7.75 km, with 9.78 km following separate paths in a round-trip scenario. It was concluded that the existing route is more suitable for hiking, whereas the newly developed route is better suited for trekking. Full article
Show Figures

Figure 1

26 pages, 13192 KiB  
Article
Investigating a Large-Scale Creeping Landmass Using Remote Sensing and Geophysical Techniques—The Case of Stropones, Evia, Greece
by John D. Alexopoulos, Ioannis-Konstantinos Giannopoulos, Vasileios Gkosios, Spyridon Dilalos, Nicholas Voulgaris and Serafeim E. Poulos
Geosciences 2025, 15(8), 282; https://doi.org/10.3390/geosciences15080282 - 25 Jul 2025
Viewed by 317
Abstract
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is [...] Read more.
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is usually affected by several parameters, such as its geometry, subsurface water, and shear zone. Therefore, a combined aerial and surface investigation has been conducted. The aerial investigation involves UAV’s LiDAR acquisition for the terrain model and a comparison of historical aerial photographs for land use changes. The multi-technique surface investigation included resistivity (ERT) and seismic (SRT, MASW) measurements and density determination of geological formations. This combination of methods proved to be fruitful since several aspects of the landslide were clarified, such as water flow paths, the internal geological structure of the creeping mass, and its geometrical extent. The depth of the shear zone of the creeping mass is delineated at the first five to ten meters from the surface, especially from the difference in diachronic resistivity change. Full article
Show Figures

Figure 1

19 pages, 1553 KiB  
Review
Perennial Grains in Russia: History, Status, and Perspectives
by Alexey Morgounov, Olga Shchuklina, Inna Pototskaya, Amanjol Aydarov and Vladimir Shamanin
Crops 2025, 5(4), 46; https://doi.org/10.3390/crops5040046 - 23 Jul 2025
Viewed by 293
Abstract
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after [...] Read more.
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after harvest and survive for 2–3 years. Subsequent research at the Main Botanical Garden in Moscow focused on characterizing Tsitsin’s material, selecting superior germplasm, and expanding genetic diversity through new cycles of hybridization and selection. This work led to the development of a new crop species, Trititrigia, and the release of cultivar ‘Pamyati Lyubimovoy’ in 2020, designed for dual-purpose production of high-quality grain and green biomass. Intermediate wheatgrass (Thinopyrum intermedium) is native to Russia, where several forage cultivars have been released and cultivated. Two large-grain cultivars (Sova and Filin) were developed from populations provided by the Land Institute and are now grown by farmers. Perennial rye was developed through interspecific crosses between Secale cereale and S. montanum, demonstrating persistence for 2–3 years with high biomass production and grain yields of 1.5–2.0 t/ha. Hybridization between Sorghum bicolor and S. halepense resulted in two released cultivars of perennial sorghum used primarily for forage production under arid conditions. Russia’s agroclimatic diversity in agricultural production systems provides significant opportunities for perennial crop development. The broader scientific and practical implications of perennial crops in Russia extend to climate-resilient, sustainable agriculture and international cooperation in this emerging field. Full article
Show Figures

Figure 1

34 pages, 11148 KiB  
Article
Research on Construction of Suzhou’s Historical Architectural Heritage Corridors and Cultural Relics-Themed Trails Based on Current Effective Conductance (CEC) Model
by Yao Wu, Yonglan Wu, Mingrui Miao, Muxian Wang, Xiaobin Li and Antonio Candeias
Buildings 2025, 15(15), 2605; https://doi.org/10.3390/buildings15152605 - 23 Jul 2025
Viewed by 322
Abstract
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel [...] Read more.
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel density estimation, this study identifies 15 kernel density groups, along with the Analytic Hierarchy Process (AHP), to pinpoint clusters of historical architectural heritage and assess the involved resistance factors. Current Effective Conductance (CEC) theory is further applied to model spatial flow relationships among heritage nodes, leading to the delineation of 27 heritage corridors and revealing a spatial structure characterized by one primary core, one secondary core, and multiple peripheral zones. Based on 15 source points, six cultural relics-themed routes are proposed—three land-based and three waterfront routes—connecting historical sites, towns, and ecological areas. The study further recommends a resource management strategy centered on departmental collaboration, digital integration, and community co-governance. By integrating historical architectural types, settlement forms, and ecological patterns, the research builds a multi-scale narrative and experience system that addresses fragmentation while improving coordination and sustainability. This framework delivers practical advice on heritage conservation and cultural tourism development in Suzhou and the broader Jiangnan region. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 43516 KiB  
Article
Retail Development and Corporate Environmental Disclosure: A Spatial Analysis of Land-Use Change in the Veneto Region (Italy)
by Giovanni Felici, Daniele Codato, Alberto Lanzavecchia, Massimo De Marchi and Maria Cristina Lavagnolo
Sustainability 2025, 17(15), 6669; https://doi.org/10.3390/su17156669 - 22 Jul 2025
Viewed by 325
Abstract
Corporate environmental claims often neglect the substantial ecological impact of land-use changes. This case study examines the spatial dimension of retail-driven land-use transformation by analyzing supermarket expansion in the Veneto region (northern Italy), with a focus on a large grocery retailer. We evaluated [...] Read more.
Corporate environmental claims often neglect the substantial ecological impact of land-use changes. This case study examines the spatial dimension of retail-driven land-use transformation by analyzing supermarket expansion in the Veneto region (northern Italy), with a focus on a large grocery retailer. We evaluated its corporate environmental claims by assessing land consumption patterns from 1983 to 2024 using Geographic Information Systems (GIS). The GIS-based methodology involved geocoding 113 Points of Sale (POS—individual retail outlets), performing photo-interpretation of historical aerial imagery, and classifying land-cover types prior to construction. We applied spatial metrics such as total converted surface area, land-cover class frequency across eight categories (e.g., agricultural, herbaceous, arboreal), and the average linear distance between afforestation sites and POS developed on previously rural land. Our findings reveal that 65.97% of the total land converted for Points of Sale development occurred in rural areas, primarily agricultural and herbaceous lands. These landscapes play a critical role in supporting urban biodiversity and providing essential ecosystem services, which are increasingly threatened by unchecked land conversion. While the corporate sustainability reports and marketing strategies emphasize afforestation efforts under their “We Love Nature” initiative, our spatial analysis uncovers no evidence of actual land-use conversion. Additionally, reforestation activities are located an average of 40.75 km from converted sites, undermining their role as effective compensatory measures. These findings raise concerns about selective disclosure and greenwashing, driving the need for more comprehensive and transparent corporate sustainability reporting. The study argues for stronger policy frameworks to incentivize urban regeneration over greenfield development and calls for the integration of land-use data into corporate sustainability disclosures. By combining geospatial methods with content analysis, the research offers new insights into the intersection of land use, business practices, and environmental sustainability in climate-vulnerable regions. Full article
Show Figures

Figure 1

Back to TopTop