Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,224)

Search Parameters:
Keywords = historic site

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4422 KiB  
Article
Advanced Deep Learning Methods to Generate and Discriminate Fake Images of Egyptian Monuments
by Daniyah Alaswad and Mohamed A. Zohdy
Appl. Sci. 2025, 15(15), 8670; https://doi.org/10.3390/app15158670 (registering DOI) - 5 Aug 2025
Abstract
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines [...] Read more.
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines the performance of Generative Adversarial Networks (GAN), especially Style-Based Generator Architecture (StyleGAN), as a deep learning approach for producing realistic images of Egyptian monuments. We used Sigmoid loss for Language–Image Pre-training (SigLIP) as a unique image–text alignment system to guide monument generation through semantic elements. We also studied truncation methods to regulate the generated image noise and identify the most effective parameter settings based on architectural representation versus diverse output creation. An improved discriminator design that combined noise addition with squeeze-and-excitation blocks and a modified MinibatchStdLayer produced 27.5% better Fréchet Inception Distance performance than the original discriminator models. Moreover, differential evolution for latent-space optimization reduced alignment mistakes during specific monument construction tasks by about 15%. We checked a wide range of truncation values from 0.1 to 1.0 and found that somewhere between 0.4 and 0.7 was the best range because it allowed for good accuracy while retaining many different architectural elements. Our findings indicate that specific model optimization strategies produce superior outcomes by creating better-quality and historically correct representations of diverse Egyptian monuments. Thus, the developed technology may be instrumental in generating educational and archaeological visualization assets while adding virtual tourism capabilities. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

17 pages, 3344 KiB  
Article
Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes
by Ruizhao Jia, Wenya Su, Wenjia Wang, Lulu Shi, Xinrou Zheng, Youming Zhang, Hai Xu, Xueyun Geng, Ling Li, Mingyu Wang and Xiang Li
Biology 2025, 14(8), 1000; https://doi.org/10.3390/biology14081000 - 5 Aug 2025
Abstract
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns [...] Read more.
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases. All the isolates originated from the skin site and were subjected to antimicrobial susceptibility testing, whole-genome sequencing, and co-occurrence network analysis. The analysis revealed a highly structured resistance pattern, dominated by two distinct modules: one representing a classic Staphylococcal resistance platform centered around mecA and the bla operon, and a broad-spectrum multidrug resistance module in Gram-negative bacteria centered around tet(A) and predominantly carried by IncFIB and other IncF family plasmids. Further analysis pinpointed IncFIB-type plasmids as potent vehicles driving the efficient dissemination of the latter resistance module. Moreover, numerous unexplained resistance phenotypes were observed in a subset of isolates, indicating the potential presence of emerging and uncharacterized AMR threats. These findings establish the perianal skin as a complex reservoir of multidrug resistance genes and a hub for mobile genetic element exchange, highlighting the necessity of enhanced surveillance and targeted interventions in this clinically important ecological niche. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

16 pages, 915 KiB  
Article
Armenian Architectural Legacy in Henry F. B. Lynch’s Travel Writing
by Martin Harutyunyan and Gaiane Muradian
Arts 2025, 14(4), 86; https://doi.org/10.3390/arts14040086 (registering DOI) - 4 Aug 2025
Abstract
The study of historical monuments within both architectural and literary frameworks reveals a dynamic interplay between scientific observation and artistic interpretation—a vital characteristic of travel writing/the travelogue. This approach, exemplified by British traveler and writer Henry Finnis Blosse Lynch (1862–1913), reflects how factual [...] Read more.
The study of historical monuments within both architectural and literary frameworks reveals a dynamic interplay between scientific observation and artistic interpretation—a vital characteristic of travel writing/the travelogue. This approach, exemplified by British traveler and writer Henry Finnis Blosse Lynch (1862–1913), reflects how factual detail and creative representation are seamlessly integrated in depictions of sites, landscapes, and cultural scenes. This case study highlights Lynch as a pioneering explorer who authored the first comprehensive volume on Armenian architecture and as a writer who vividly portrayed Armenian monuments through both verbal description and photographic imagery, becoming the first traveler to document such sites using photography. Additionally, this paper emphasizes the significance of Lynch’s detailed accounts of architectural monuments, churches, monasteries, cities, villages, populations, religious communities, and educational institutions in vivid language. The careful study of his work can contribute meaningfully to the investigation of the travelogue as a literary genre and to the preservation and protection of the architectural heritage of historical and contemporary Armenia, particularly in regions facing cultural or political threats. Full article
Show Figures

Figure 1

30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

25 pages, 14992 KiB  
Article
Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy
by Elisabetta Rosina and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(15), 8542; https://doi.org/10.3390/app15158542 (registering DOI) - 31 Jul 2025
Viewed by 121
Abstract
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates [...] Read more.
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates the relationship between indoor microclimate fluctuations and surface moisture dynamics across 13 historical sites in Northern Italy (Lake Como, Valtellina, Valposchiavo), encompassing diverse masonry typologies and environmental conditions. High-resolution sensors recorded temperature and relative humidity for a minimum of 13 months, and eight indicators—including dew point depression, critical temperature–humidity zones, and damp effect indices—were analyzed to assess the moisture risks. The results demonstrate that multivariate microclimate data could effectively predict humidity accumulation. The key findings reveal the impact of seasonal ventilation, thermal inertia, and localized air stagnation on moisture distribution, with unheated alpine sites showing the highest condensation risk. The study highlights the need for integrated monitoring approaches, combining dew point analysis, mixing ratio stability, and buffering performance, to enable early risk detection and targeted conservation strategies. These insights bridge the gap between environmental monitoring and surface moisture diagnostics in porous heritage materials. Full article
(This article belongs to the Special Issue Advanced Study on Diagnostics for Surfaces of Historical Buildings)
Show Figures

Figure 1

17 pages, 6625 KiB  
Article
Management Zones for Irrigated and Rainfed Grain Crops Based on Data Layer Integration
by Luiz Gustavo de Góes Sterle and José Paulo Molin
Agronomy 2025, 15(8), 1864; https://doi.org/10.3390/agronomy15081864 - 31 Jul 2025
Viewed by 208
Abstract
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and [...] Read more.
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and 1.50 m, and terrain data were analyzed using multivariate statistics to define MZs. Two clustering methods—fuzzy c-means (FCM) and hierarchical clustering—were compared for variance reduction effectiveness. Rainfed areas showed greater spatial variability (yield CV 9–12%; ECa CV 20–27%) than irrigated fields (yield CV < 7%; ECa CV ~5%). Principal component analysis (PCA) identified subsoil ECa and elevation as key variables in irrigated fields, while surface ECa and topography influenced rainfed variability. FCM produced more homogeneous zones with fewer classes, especially in irrigated fields, whereas hierarchical clustering better detected outliers but required more zones for similar variance reduction. Yield correlated strongly with slope and moisture in rainfed systems. These results emphasize aligning MZ delineation with production system characteristics—enabling variable rate irrigation in irrigated fields and promoting moisture conservation in rainfed systems. FCM is recommended for operational efficiency, while hierarchical clustering offers higher precision in complex contexts. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

40 pages, 3045 KiB  
Review
HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review
by Maria Parente, Nazarena Bruno and Federica Ottoni
Heritage 2025, 8(8), 306; https://doi.org/10.3390/heritage8080306 - 30 Jul 2025
Viewed by 163
Abstract
This paper presents a comprehensive review of research on Historic Building Information Modeling (HBIM), focusing on its role as a tool for managing knowledge and supporting conservation practices of Architectural Heritage. While previous review articles and most research works have predominantly addressed geometric [...] Read more.
This paper presents a comprehensive review of research on Historic Building Information Modeling (HBIM), focusing on its role as a tool for managing knowledge and supporting conservation practices of Architectural Heritage. While previous review articles and most research works have predominantly addressed geometric modeling—given its significant challenges in the context of historic buildings—this study places greater emphasis on the integration of non-geometric data within the BIM environment. A systematic search was conducted in the Scopus database to extract the 451 relevant publications analyzed in this review, covering the period from 2008 to mid-2024. A bibliometric analysis was first performed to identify trends in publication types, geographic distribution, research focuses, and software usage. The main body of the review then explores three core themes in the development of the information system: the definition of model entities, both semantic and geometric; the data enrichment phase, incorporating historical, diagnostic, monitoring and conservation-related information; and finally, data use and sharing, including on-site applications and interoperability. For each topic, the review highlights and discusses the principal approaches documented in the literature, critically evaluating the advantages and limitations of different information management methods with respect to the distinctive features of the building under analysis and the specific objectives of the information model. Full article
Show Figures

Figure 1

21 pages, 4324 KiB  
Article
Obsidian Technology and Transport Along the Archipelago of Southernmost South America (42–56° S)
by César Méndez, Flavia Morello, Omar Reyes, Manuel San Román, Amalia Nuevo-Delaunay and Charles R. Stern
Quaternary 2025, 8(3), 39; https://doi.org/10.3390/quat8030039 - 29 Jul 2025
Viewed by 286
Abstract
Obsidian was a key toolstone for the development of maritime lifeways in the western archipelago of southernmost South America. This area is a fragmented landscape where the major north–south movement of people along the Pacific was only possible by navigation because it is [...] Read more.
Obsidian was a key toolstone for the development of maritime lifeways in the western archipelago of southernmost South America. This area is a fragmented landscape where the major north–south movement of people along the Pacific was only possible by navigation because it is constrained by major biogeographic barriers. Two obsidian sources have been recorded, each one located on the extremes of the archipelago, and each has played a key role in the canoe-adapted societies that used them. As indicated by repeated inductively coupled plasma mass spectrometry analyses, obsidian from Chaitén Volcano to the north was distributed between 38°26′ S and 45°20′ S, and obsidian from Seno Otway to the south was distributed between 50° and 55° S, although it mainly occurred in sites close to the Strait of Magellan and within constrained time periods. This study explores the distribution of these two types of obsidians, their chronology, their frequencies in the archaeological record, the main artifact classes that are represented, and the technological processes in which they were involved. This examination indicates common aspects in the selection of high-quality toolstones for highly mobile maritime groups and discusses the different historical trajectories of two obsidians that appear decoupled across the Holocene. Full article
Show Figures

Figure 1

17 pages, 11812 KiB  
Article
Heritage GIS: Deep Mapping, Preserving, and Sustaining the Intangibility of Cultures and the Palimpsests of Landscape in the West of Ireland
by Charles Travis
Sustainability 2025, 17(15), 6870; https://doi.org/10.3390/su17156870 - 29 Jul 2025
Viewed by 359
Abstract
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s [...] Read more.
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s “Yeats Country.” Drawing on interdisciplinary dialogues from the humanities, social sciences, and geospatial sciences, it illustrates how digital spatial technologies can excavate, preserve, and sustain intangible cultural knowledge embedded within such palimpsestic landscapes. Using MAXQDA 24 software to mine and code historical, literary, folkloric, and environmental texts, the study constructed bespoke GIS attribute tables and visualizations integrated with elevation models and open-source archaeological data. The result is a richly layered cartographic method that reveals the spectral and affective dimensions of heritage landscapes through climate, memory, literature, and spatial storytelling. By engaging with “deep mapping” and theories such as “Spectral Geography,” the research offers new avenues for sustainable heritage conservation, cultural tourism, and public education that are sensitive to both ecological and cultural resilience in the West of Ireland. Full article
Show Figures

Figure 1

24 pages, 6108 KiB  
Review
Angiogenic Cell Precursors and Neural Cell Precursors in Service to the Brain–Computer Interface
by Fraser C. Henderson and Kelly Tuchman
Cells 2025, 14(15), 1163; https://doi.org/10.3390/cells14151163 - 29 Jul 2025
Viewed by 495
Abstract
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have [...] Read more.
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have moved the science forward to the extent that paralyzed people can play chess and blind people can read letters. However, the introduction of foreign bodies into deeper parts of the central nervous system results in foreign body reaction, scarring, apoptosis, and decreased signaling. Implanted electrodes activate microglia, causing the release of inflammatory factors, the recruitment of systemic inflammatory cells to the site of injury, and ultimately glial scarring and the encapsulation of the electrode. Recordings historically fail between 6 months and 1 year; the longest BCI in use has been 7 years. This article proposes a biomolecular strategy provided by angiogenic cell precursors (ACPs) and nerve cell precursors (NCPs), administered intrathecally. This combination of cells is anticipated to sustain and promote learning across the BCI. Together, through the downstream activation of neurotrophic factors, they may exert a salutary immunomodulatory suppression of inflammation, anti-apoptosis, homeostasis, angiogenesis, differentiation, synaptogenesis, neuritogenesis, and learning-associated plasticity. Full article
Show Figures

Graphical abstract

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 205
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

16 pages, 7614 KiB  
Article
Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium
by Davide Sartori, Simona Macchia, Giorgio Tranchida, Paolo Altemura, Vincenzo Tancredi, Alice Scuderi, Maria Elena Piccione, Stefano Ferrari and Andrea Gaion
Nitrogen 2025, 6(3), 62; https://doi.org/10.3390/nitrogen6030062 - 28 Jul 2025
Viewed by 291
Abstract
This study assesses sediment toxicity in the historically contaminated Orbetello Lagoon (southern Tuscany) using Paracentrotus lividus embryo development bioassays. Elutriates from 15 sites were analysed for trace metals, organic matter, and ammonium. Despite elevated mercury concentrations, toxicity did not consistently correlate with metal [...] Read more.
This study assesses sediment toxicity in the historically contaminated Orbetello Lagoon (southern Tuscany) using Paracentrotus lividus embryo development bioassays. Elutriates from 15 sites were analysed for trace metals, organic matter, and ammonium. Despite elevated mercury concentrations, toxicity did not consistently correlate with metal levels. Instead, Principal Component Analysis (PCA) identified ammonium as a key driver of developmental toxicity, suggesting that it significantly influences both biological effects and metal bioavailability. These results demonstrate that ammonium, often overlooked, can confound sediment toxicity assessments and should be integrated into risk evaluation frameworks for coastal systems affected by legacy pollution. Full article
Show Figures

Figure 1

22 pages, 3604 KiB  
Article
Succession of Weed Community on Wheat Lands in the Past 25 Years: A Case Study in Eastern China
by Guoqi Chen, Zeyue Huang, Jiahao Xue, Feng Zhu, Yang Chen and Yunfei Wu
Biology 2025, 14(8), 943; https://doi.org/10.3390/biology14080943 - 27 Jul 2025
Viewed by 233
Abstract
Weeds represent increasingly troublesome threats to modern wheat production. Jiangsu Province, China, is one of the largest wheat-planting areas, characterized by a high level of agricultural mechanization, in the country. In 2024, we surveyed weed communities of 924 wheat lands from 308 sites [...] Read more.
Weeds represent increasingly troublesome threats to modern wheat production. Jiangsu Province, China, is one of the largest wheat-planting areas, characterized by a high level of agricultural mechanization, in the country. In 2024, we surveyed weed communities of 924 wheat lands from 308 sites in Jiangsu and compared them with historical data surveyed in 1999–2000 in this province. A total of 156 weed species belonging to 103 genera and 39 families were recorded. Compositae and Poaceae showed the highest species richness, with 26 and 23 species, respectively. Poaceae weeds accounted for 54.3% of the overall weeds in dominance values. Beckmannia syzigachne showed the highest proportion of the overall weeds in dominance values (19.2%). Compared with the historical data, weed diversity increased by 33.3% in species, and by 62.5% in families; grassy weeds such as Beckmannia syzigachne, Alopecurus japonicus, and Alopecurus myosuroides became more dominant, while several low-growing grassy weeds became less dominant. The dominance of broadleaf weeds, such as Galium spp., Vicia spp., and Veronica spp., decreased greatly, and a clear trend of weed homogenization among different areas and types of wheat lands was observed. This is the first investigation of weed community succession against the background of agricultural modernization in China. Full article
Show Figures

Figure 1

18 pages, 285 KiB  
Review
The Historical Evolution of the Role of Vegetation in the Enhancement and Conservation of Archaeological Sites: A Landscape Architecture Perspective Focused Mainly on Cases from Italy and Greece
by Electra Kanellou and Maria Papafotiou
Plants 2025, 14(15), 2302; https://doi.org/10.3390/plants14152302 - 25 Jul 2025
Viewed by 204
Abstract
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of [...] Read more.
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of landscape architecture, highlighting its potential as a design and planning tool for historical interpretation and sustainable integration of heritage sites into broader contexts. From Romantic landscaping ideals to modern interdisciplinary conservation frameworks, the review draws on key milestones such as the Athens and Venice Charters, and examines case studies like Rome’s Passeggiata Archeologica, the Acropolis slopes, Ruffenhofen Park, and Campo Lameiro. These examples illustrate how landscape architectural approaches can use vegetation to reconstruct lost architectural forms, enhance visitor engagement, and provide ecosystem functions. The article also addresses challenges related to historical authenticity, species selection, and ecological performance, arguing for future strategies that integrate archaeological sites into dynamic, living heritage systems, through collaborative, ecologically informed design. Full article
(This article belongs to the Special Issue Floriculture and Landscape Architecture—2nd Edition)
29 pages, 9060 KiB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 174
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

Back to TopTop