Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium
Abstract
1. Introduction
2. Materials and Methods
2.1. Sediment Collection
2.2. Elutriates Preparation
2.3. Chemical Analyses
2.4. Organic Matter Content
2.5. Paracentrotus Lividus Embryo-Development Test
2.6. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
DOS 01 | DOS 02 | DOS 03 | DOS 04 | DOS 05 | DOS 07 | DOS 08 | DOS 09 | DOS 10 | DOS 11 | DOS 12 | DOS 13 | DOS 14 | DOS 15 | DOS 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrocarbons (C > 12) | 20 | 32 | 23 | 39 | 18 | 33 | 24 | 53 | 27 | 34 | 57 | 41 | 74 | 65 | 48 |
∑ PAH | <LOQ | 18 | 12 | 30 | <10 | 22 | 18 | 27 | 41 | 25 | 27 | 18 | 15 | <LOQ | 17 |
∑ PCBs | 1.1 ± 0.4 | 1.2 ± 0.5 | 0.86 ± 0.34 | 1.4 ± 0.57 | 0.34 ± 0.14 | 1.8 ± 0.7 | 2.0 ± 0.8 | 3.9 ± 1.6 | 3.2 ± 1.3 | 3.9 ± 1.6 | 3.4 ± 1.4 | 3.7 ± 1.5 | 6.5 ± 2.6 | 1.7 ± 0.7 | 3.5 ± 1.4 |
Sulfides | 113.3 | 64.3 | 174.8 | 92.0 | 31.9 | 157.4 | 65.3 | 29.1 | 83.3 | 92.8 | 22.9 | 15.8 | 26.5 | 16.1 | 17.2 |
Appendix A.2
Sample | Silt (<63 µm) | Sand (>63 µm; <2 mm) | Gravel (>2 mm) |
---|---|---|---|
DOS 01 | 64.19 | 35.81 | 0.00 |
DOS 02 | 73.85 | 26.15 | 0.00 |
DOS 03 | 82.86 | 17.14 | 0.00 |
DOS 04 | 67.21 | 32.79 | 0.00 |
DOS 05 | 47.77 | 52.23 | 0.00 |
DOS 07 | 71.64 | 28.36 | 0.00 |
DOS 08 | 55.01 | 44.99 | 0.00 |
DOS 09 | 60.21 | 39.79 | 0.00 |
DOS 10 | 47.68 | 52.32 | 0.00 |
DOS 11 | 76.17 | 23.83 | 0.00 |
DOS 12 | 37.21 | 62.79 | 0.00 |
DOS 13 | 73.23 | 26.77 | 0.00 |
DOS 14 | 91.17 | 8.83 | 0.00 |
DOS 15 | 100.00 | 0 | 0.00 |
DOS 16 | 95.68 | 4.32 | 0.00 |
Appendix A.3
Sample | pH | Salinity (PSU) | T (°C) |
---|---|---|---|
DOS 01 | 8.20 | 35.4 | 17.8 |
DOS 02 | 8.27 | 35.6 | 18.1 |
DOS 03 | 8.19 | 34.8 | 17.9 |
DOS 04 | 8.26 | 35.2 | 18.0 |
DOS 05 | 8.18 | 35.4 | 17.9 |
DOS 07 | 8.18 | 35.2 | 17.7 |
DOS 08 | 8.20 | 35.2 | 17.8 |
DOS 09 | 8.21 | 35.2 | 18.1 |
DOS 10 | 8.15 | 35.4 | 17.6 |
DOS 11 | 8.19 | 35.6 | 18.0 |
DOS 12 | 8.16 | 35.4 | 17.9 |
DOS 13 | 8.09 | 34.9 | 17.8 |
DOS 14 | 8.17 | 34.9 | 17.8 |
DOS 15 | 8.13 | 35.1 | 17.9 |
DOS 16 | 8.17 | 35.0 | 17.9 |
References
- Ausili, A.; Bergamin, L.; Romano, E. Environmental status of Italian coastal marine areas affected by a long history of contamination. Front. Environ. Sci. 2020, 8, 34. [Google Scholar] [CrossRef]
- ISPRA. Progetto Preliminare di Bonifica Dell’area Lagunare Antistante lo Stabilimento ex-SITOCO Inclusa All’interno Della Perimetrazione del sito di Bonifica di Interesse Nazionale di Orbetello—Area Ex Sitoco; Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2008; p. 107. [Google Scholar]
- ISPRA. Interventi per il Risanamento Delle Aree Lagunari di Orbetello–Laguna di Levante. Premesse di Progetto; Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2009; p. 105. [Google Scholar]
- Sartori, D.; Macchia, S.; Gaion, A. Did you consider ammonium? A possible confounding factor in evaluating the toxicity of marine sediments. Mar. Pollut. Bull. 2024, 199, 116021. [Google Scholar] [CrossRef]
- Bellas, J.; Granmo, K.; Beiras, R. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Mar. Pollut. Bull. 2005, 50, 1382–1385. [Google Scholar] [CrossRef]
- Morroni, L.; Gaion, A.; Broccoli, A.; Ferrari, S.; Pellegrini, D.; Sartori, D. Influence of salinity on copper toxicity in Paracentrotus lividus and Arbacia lixula embryos. Water 2023, 15, 65. [Google Scholar] [CrossRef]
- Li, L.; Zhang, B.; Shi, J.; He, J.; Zhang, W.; Yan, W.; Li, H. Concurrent vanadate and ammonium abatement in a membrane biofilm reactor. Chem. Eng. J. 2022, 442, 136285. [Google Scholar] [CrossRef]
- Samperio-Ramos, G.; Hernández-Sánchez, O.; Camacho-Ibar, V.F.; Pajares, S.; Gutiérrez, A.; Sandoval-Gil, J.M.; Reyes, M.; De Gyves, S.; Balint, S.; Oczkowski, A.; et al. Ammonium loss microbiologically mediated by Fe(III) and Mn(IV) reduction along a coastal lagoon system. Chemosphere 2023, 349, 140933. [Google Scholar] [CrossRef]
- Cloutier-Mantha, L.; Harrison, P.J. Effects of sublethal concentrations of mercuric chloride on ammonium-limited Skeletonema costatum. Mar. Biol. 1980, 56, 219–231. [Google Scholar] [CrossRef]
- Pepi, M.; Leonzio, C.; Focardi, S.; Renzi, M. Production of methyl mercury by sulphate-reducing bacteria in sediments from the Orbetello lagoon in presence of high macroalgal loads. Ecol. Quest. 2020, 31, 21–40. [Google Scholar] [CrossRef]
- Protano, G.; Bianchi, S.; De Santis, M.; Di Lella, L.A.; Nannoni, F.; Salleolini, M. New geochemical data for defining origin and distribution of mercury in groundwater of a coastal area in southern Tuscany (Italy). Environ. Sci. Pollut. Res. 2023, 30, 50920–50937. [Google Scholar] [CrossRef] [PubMed]
- Mancini, L.; Miniero, R.; Beccaloni, E.; Di Domenico, K.; Lacchetti, I.; Puccinelli, C.; Carere, M. Mercury (Hg) and methylmercury (MeHg) in sediment and biota: A case study in a lagoon in Central Italy. Mar. Pollut. Bull. 2022, 175, 113308. [Google Scholar] [CrossRef]
- US-EPA EPA 823-B-01-002; Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 2001. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/collectionmanual.pdf (accessed on 18 June 2025).
- ASTM E 1391–03; Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing. ASTM: West Conshohocken, PA, USA, 2014. Available online: https://store.astm.org/e1391-03r14.html (accessed on 6 June 2025).
- Sartori, D.; Macchia, S.; Layglon, N.; d’Onofrio, S.; Misson, B.; Piccione, M.E.; Bertolotto, R.M.; Scuderi, A.; Pilato, F.; Giuliani, S.; et al. Elutriate preparation affects embryo development test with Paracentrotus lividus: An in-depth study on the differences between two protocols and three different sediment/water mixing times. Ecotoxicol. Environ. Saf. 2021, 212, 112010. [Google Scholar] [CrossRef]
- Cicero, A.M.; Di Girolamo, I. Metodologie Analitiche di Riferimento del Programma di Monitoraggio per il Controllo dell’Ambiente Marino Costiero (Triennio 2001–2003); Ministero dell’Ambiente e della Tutela del Territorio ICRAM: Rome, Italy, 2001. Available online: https://www.isprambiente.gov.it/contentfiles/00010000/10087-metodologie.pdf/ (accessed on 17 June 2025).
- US-EPA Method 7473 (SW-846); Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. Environmental Protection Agency: Washington, DC, USA, 1989. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/7473.pdf (accessed on 16 June 2025).
- US-EPA Method 3545A (SW-846); Pressurized Fluid Extraction (PFE), Revision 1. Environmental Protection Agency: Washington, DC, USA, 2007. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/3545a.pdf (accessed on 18 June 2025).
- US-EPA Method 8270E (SW-846); Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Environmental Protection Agency: Washington, DC, USA, 2014. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/method_8270e_update_vi_06-2018_0.pdf (accessed on 18 June 2025).
- US-EPA Method 1668C; Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS. Environmental Protection Agency: Washington, DC, USA, 2010. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/method_1668c_2010.pdf (accessed on 18 June 2025).
- Luckzak, C.; Janquin, M.-A.; Kupka, A. Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia 1997, 345, 87–94. [Google Scholar] [CrossRef]
- Pagano, G.; Cipollaro, M.; Corsale, G.; Esposito, A.; Ragucci, E.; Giordano, G. The sea urchin bioassay for the assessment of damage from environmental contaminants. In Community Toxicity Testing; Cairns, J., Jr., Ed.; American Society for Testing and Materials: Philadelphia, PA, USA, 1986. [Google Scholar] [CrossRef]
- Gaion, A.; Scuderi, A.; Pellegrini, D.; Sartori, D. Arsenic exposure affects embryo development of sea urchin, Paracentrotus lividus (Lamarck, 1816). Bull. Environ. Contam. Toxicol. 2013, 91, 565–570. [Google Scholar] [CrossRef]
- US-EPA Method 7010 (SW-846); Graphite Furnace Atomic Absorption Spectrophotometry. Environmental Protection Agency: Washington, DC, USA, 1998. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa-7010.pdf (accessed on 18 June 2025).
- Sigudla, J.; Maritz, J.E. Exploratory factor analysis of constructs used for investigating research uptake for public healthcare practice and policy in a resource-limited setting, South Africa. BMC Health Serv. Res. 2023, 23, 1423. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Visentin, D.C.; Thapa, D.K.; Hunt, G.E.; Watson, R.; Cleary, M. Exploratory factor analysis and principal component analysis in clinical studies: Which one should you use? J. Adv. Nurs. 2020, 76, 1886–1889. [Google Scholar] [CrossRef] [PubMed]
- Weide, A.C.; Beauducel, A. Varimax Rotation Based on Gradient Projection Is a Feasible Alternative to SPSS. Front. Psychol. 2019, 10, 645. [Google Scholar] [CrossRef]
- Charles, C.; Veber, P.; Delignette-Muller, M.L. MOSAIC: A web-interface for statistical analyses in ecotoxicology. Environ. Sci. Pollut. Res. Int. 2018, 25, 11295–11302. [Google Scholar] [CrossRef] [PubMed]
- Morse: Modelling Reproduction and Survival Data in Ecotoxicology. Available online: https://cran.r-project.org/web/packages/morse/index.html (accessed on 16 June 2025).
- Italian Ministerial Decree 173/2016. Regulation Containing Technical Procedures and Criteria for the Authorization of Seabed Excavation Material and Sea (in Italian), Italian Official Journal No. 208/2016. Available online: http://www.gazzettaufficiale.it/eli/id/2016/09/06/16G00184/sg (accessed on 20 July 2025).
- Arizzi Novelli, A.; Picone, M.; Losso, C.; Volpi Ghirardini, A. Ammonia as confounding factor in toxicity tests with the sea urchin Paracentrotus lividus (Lmk). Toxicol. Environ. Chem. 2003, 85, 183–191. [Google Scholar] [CrossRef]
- Sartori, D.; Pellegrini, D.; Gaion, A. Analysis of variability in embryological response of two sea urchin species to spatial and temporal features-can these factors influence responses in standardized ecotoxicological assays? EOEB 2016, 5, S1-002. [Google Scholar] [CrossRef]
- Lenzi, M.; Renzi, M.; Nesti, U.; Gennaro, P.; Persia, E.; Porrello, S. Vegetation cyclic shift in eutrophic lagoon: Assessment of dystrophic risk indices based on standing crop evaluations. Estuar. Coast. Shelf Sci. 2013, 132, 99–107. [Google Scholar] [CrossRef]
- Lenzi, M.; Cianchi, F. Summer dystrophic criticalities of non-tidal lagoons: The case study of a Mediterranean lagoon. Diversity 2022, 14, 771. [Google Scholar] [CrossRef]
- McGlathery, K. Macroalgal blooms contribute to the decline in seagrasses in nutrient-enriched coastal waters. J. Phycol. 2001, 37, 453–456. [Google Scholar] [CrossRef]
- Lenzi, M.; Palmieri, R.; Porrello, S. Restoration of the eutrophic Orbetello Lagoon (Tyrrhenian Sea, Italy): Water quality management. Mar. Pollut. Bull. 2003, 46, 1540–1548. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment. Canadian Council of Ministers of the Environment. Canadian sediment quality guidelines for the protection of aquatic life: Polycyclic aromatic hydrocarbons (PAHs). In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999; Available online: https://ccme.ca/en/res/polycyclic-aromatic-hydrocarbons-pahs-canadian-sediment-quality-guidelines-for-the-protection-of-aquatic-life-en.pdf (accessed on 18 June 2025).
- Canadian Council of Ministers of the Environment. Canadian Council of Ministers of the Environment. Canadian sediment quality guidelines for the protection of aquatic life: Polychlorinated biphenyls (PCBs). Updated. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2001; Available online: https://ccme.ca/en/res/polychlorinated-biphenyls-pcbs-canadian-sediment-quality-guidelines-for-the-protection-of-aquatic-life-en.pdf (accessed on 18 June 2025).
- Chalhoub, M.; Amalric, L.; Touzé, S.; Gallé, P.; Reiller, P.E.; Doucet, N.; Clozel, B.; Bataillard, P. PCB partitioning during sediment remobilization—A 1D column experiment. J. Soils Sediments 2013, 13, 1284–1300. [Google Scholar] [CrossRef]
- Gdaniec-Pietryka, M.; Mechlińska, A.; Wolska, L.; Gałuszka, A.; Namieśnik, J. Remobilization of polychlorinated biphenyls from sediment and its consequences for their transport in river waters. Environ. Monit. Assess. 2013, 185, 4449–4459. [Google Scholar] [CrossRef]
- Kumari, K.M.; Lakhani, A. PAHs in Gas and Particulate Phases: Measurement and Control. In Environmental Chemistry for a Sustainable World; Springer: Singapore, 2018; pp. 43–75. [Google Scholar] [CrossRef]
- Leoni, L.; Sartori, F.; Nicolai, I. Metalli pesanti nei sedimenti attuali della piattaforma costiera Toscana. Atti Soc. Toscana Sci. Nat. Mem. A. 1993, 102, 23–60. [Google Scholar]
- Bengtsson, H.; Alvenäs, G.; Nilsson, S.I.; Hultman, B.; Öborn, I. Cadmium, copper and zinc leaching and surface run-off losses at the Öjebyn farm in Northern Sweden—Temporal and spatial variation. Agric. Ecosyst. Environ. 2006, 113, 120–138. [Google Scholar] [CrossRef]
- Fernandez, N.; Beiras, R. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 2001, 10, 263–271. [Google Scholar] [CrossRef]
- Cesar, A.; Marín-Guirao, L.; Vita, R.; Marín, A. Sensitivity of Mediterranean amphipods and sea urchins to reference toxicants. Cienc. Mar. 2002, 28, 407–417. [Google Scholar] [CrossRef]
- Novelli, A.A.; Losso, C.; Ghetti, P.F.; Volpi Ghirardini, A. Toxicity of heavy metals using sperm cell and embryo toxicity bioassays with Paracentrotus lividus (Echinodermata: Echinoidea): Comparisons with exposure concentrations in the Lagoon of Venice, Italy. Environ. Toxicol. Chem. 2003, 22, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Pasquetti, F.; Vaselli, O.; Zanchetta, G.; Nisi, B.; Lezzerini, M.; Bini, M.; Mele, D. Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations. Water 2020, 12, 1998. [Google Scholar] [CrossRef]
- Cossa, D.; Coquery, M. The Mediterranean mercury anomaly, a geochemical or a biological issue. In The Mediterranean Sea. Handbook of Environmental Chemistry; Saliot, A., Ed.; Springer: Berlin, Germany, 2005; Volume 5K, pp. 177–208. [Google Scholar] [CrossRef]
- Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore Mercury Mine, Monte Amiata District, Italy. Sci. Total Environ. 2012, 414, 318–327. [Google Scholar] [CrossRef]
- Lattanzi, P.; Rimondi, V.; Chiarantini, L.; Colica, A.; Benvenuti, M.; Costagliola, P.; Ruggieri, G. Mercury dispersion through streams draining the Mt. Amiata District, southern Tuscany, Italy. Procedia Earth Planet. Sci. 2017, 17, 468–471. [Google Scholar] [CrossRef]
- Pontoni, L.; La Vecchia, C.; Boguta, P.; Sirakov, M.; D’Aniello, E.; Fabbricino, M.; Locascio, A. Natural organic matter controls metal speciation and toxicity for marine organisms: A review. Environ. Chem. Lett. 2022, 20, 797–812. [Google Scholar] [CrossRef]
- Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Ingersoll, C.G. Effects of organic amendments on the toxicity and bioavailabil-ity of cadmium and copper in spiked formulated sediments. Environ. Toxicol. Chem. 2003, 22, 805–815. [Google Scholar] [CrossRef]
- De Schamphelaere, K.A.C.; Unamuno, V.I.R.; Tack, F.M.G.; Vanderdeelen, J.; Janssen, C.R. Reverse osmosis sampling does not affect the protective effect of dissolved organic matter on copper and zinc toxicity to freshwater organisms. Chemosphere 2005, 58, 653–658. [Google Scholar] [CrossRef]
- Smith, K.S.; Ranville, J.F.; Lesher, E.K.; Diedrich, D.J.; McKnight, D.M.; Sofield, R.M. Fractionation of fulvic acid by iron and aluminum oxides-Influence on copper toxicity to Ceriodaphnia dubia. Environ. Sci. Technol. 2014, 48, 11934–11943. [Google Scholar] [CrossRef] [PubMed]
- Al-Reasi, H.A.; Scott, D.S.; Wood, C.M. Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna: Improving the BLM. Ecotoxicology 2012, 21, 524–537. [Google Scholar] [CrossRef]
- Boguta, P.; Sokołowska, Z. Interactions of Zn(II) ions with humic acids isolated from various types of soils: Effect of pH, Zn concentrations and humic acids chemical properties. PLoS ONE 2016, 11, e0153626. [Google Scholar] [CrossRef]
- Bai, H.; Jiang, Z.; He, M.; Ye, B.; Wei, S. Relating Cd2⁺ binding by humic acids to molecular weight: A modeling and spectroscopic study. J. Environ. Sci. 2018, 70, 154–165. [Google Scholar] [CrossRef]
- Damikouka, I.; Katsiri, A. Chemical Speciation and Heavy Metal Mobility in Contaminated Marine Sediments. In Contaminated Sediments: Sustainable Management and Remediation; Galvez, R., Dyer, M., Eds.; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar] [CrossRef]
- Vicinie, A.; Palermo, M.; Matko, L. A review of the applicability of various elutriate tests and refinements of these methodologies. In Proceedings of the Western Dredging Association (WEDA XXXI) Technical Conference & Texas A&M University (TAMU 41) Dredging Seminar, Houston, TX, USA, 6–9 June 2011; Available online: https://www.westerndredging.org/phocadownload/ConferencePresentations/2011_Nashville/Session1A-DredgingResearch/4%20-%20Vicinie%20Palermo%20Matko%20-%20Review%20of%20Applicability%20of%20Various%20Elutriate%20Tests%20Refinements%20of%20Methods.pdf (accessed on 18 June 2025).
- Ravichandran, M. Interactions between mercury and dissolved organic matter—A review. Chemosphere 2004, 55, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xie, L.; Carvan III, M.J.; Guo, L. Mitigative effects of natural and model dissolved organic matter with different functionalities on the toxicity of methylmercury in embryonic zebrafish. Environ. Pollut. 2019, 252, 616–626. [Google Scholar] [CrossRef]
- Aukema, K.G. Bioavailability of hydrophobic organic contaminants in sediments with different particle-size distributions. Arch. Environ. Contam. Toxicol. 2011, 61, 74–82. [Google Scholar] [CrossRef]
- Eggleton, J.; Thomas, K.V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 2004, 30, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, C.; Valdehita, A.; Vethaak, A.D.; Navas, J.M.; León, V.M. Toxicity characterization of surface sediments from a Mediterranean coastal lagoon. Chemosphere 2020, 253, 126710. [Google Scholar] [CrossRef] [PubMed]
- Picone, M.; Bergamin, M.; Losso, C.; Delaney, E.; Novelli, A.A.; Ghirardini, A.V. Assessment of sediment toxicity in the Lagoon of Venice (Italy) using a multi-species set of bioassays. Ecotoxicol. Environ. Saf. 2016, 123, 32–44. [Google Scholar] [CrossRef]
Sample | As | Cd | Cr | Cu | Ni | Pb | Zn | Hg | NH4+ | Organic Matter | EC20/EC50 |
---|---|---|---|---|---|---|---|---|---|---|---|
DOS 01 | <LOQ | 1.1 ± 0.1 | 53.3 ± 3.1 | 40.0 ± 2.7 | 26.4 ± 1.5 | 40.1 ± 2.1 | 148.3 ± 8.6 | 0.75 ± 0.10 | <LOQ | 5.2 ± 0.00 | EC20 = 84.32 [74.83; 93.14]; EC50 > 100 |
DOS 02 | <LOQ | 1.0 ± 0.1 | 51.5 ± 4.3 | 40.9 ± 3.1 | 23.5 ± 1.8 | 52.7 ± 4.5 | 165.8 ± 7.6 | 0.55 ± 0.11 | 0.267 ± 0.06 | 5.8 ± 0.00 | EC20 = 88.64 [81.26; 94.48]; EC50 > 100 |
DOS 03 | <LOQ | 1.0 ± 0,2 | 50.8 ± 3.5 | 42.0 ± 2.6 | 23.5 ± 2.4 | 55.5 ± 3.7 | 171.7 ± 10.6 | 0.55 ± 0.10 | <LOQ | 6.3 ± 0.00 | EC20 > 90 |
DOS 04 | <LOQ | 1.1 ± 0.1 | 49.6 ± 4.6 | 54.3 ± 4.0 | 21.7 ± 1.3 | 78.7 ± 6.0 | 235.4 ± 10.6 | 0.64 ± 0.16 | 0.797 ± 0.04 | 0.9 ± 0.00 | EC20 > 90 |
DOS 05 | <LOQ | <LOQ | 19.1 ± 1.8 | 16.3 ± 1.6 | 7.4 ± 0.6 | 26.5 ± 1.9 | 74.3 ± 5.7 | 0.14 ± 0.03 | 0.115 ± 0.01 | 12.1 ± 0.00 | EC20 > 90 |
DOS 07 | <LOQ | 1.2 ± 0.1 | 52.1 ± 3.6 | 52.4 ± 4.7 | 26.0 ± 2.5 | 63.8 ± 4.5 | 198.6 ± 11.5 | 1.18 ± 0.30 | 6.99 ± 0.03 | 1.7 ± 0.00 | EC50 = 12.70 [9.61; 15.6] |
DOS 08 | <LOQ | 1.1 ± 0.7 | 66.9 ± 4.9 | 66.2 ± 4.9 | 31.1 ± 2.4 | 53.0 ± 3.1 | 191.1 ± 5.2 | 1.14 ± 0.29 | <LOQ | 9.2 ± 0.00 | EC20 > 90 |
DOS 09 | <LOQ | 0.8 ± 0.1 | 34.8 ± 3.2 | 27.4 ± 8.6 | 16.4 ± 1.7 | 37.0 ± 3.4 | 115.3 ± 10.2 | 2.00 ± 0.11 | 1.34 ± 0.03 | 5.8 ± 0.01 | EC50 = 15.80 [11.9; 19.8] |
DOS 10 | <LOQ | 1.2 ± 0.3 | 54.7 ± 4.6 | 47.1 ± 2.5 | 25.8 ± 2.5 | 66.8 ± 6.7 | 191.7 ± 15.2 | 3.41 ± 0.25 | 1.64 ± 0.08 | 11.3 ± 0.00 | EC20 = 76.59 [71.02; 89.38]; EC50 > 100 |
DOS 11 | <LOQ | 1.0 ± 0.4 | 46.2 ± 5.0 | 37.3 ± 5.0 | 22.7 ± 2.2 | 52.7 ± 6.3 | 150.2 ± 15.7 | 2.23 ± 0.16 | 2.29 ± 0.04 | 8.7 ± 0.02 | EC20 > 90 |
DOS 12 | <LOQ | 0.8 ± 0.1 | 43.4 ± 6.0 | 30.2 ±3.1 | 20.8 ± 1.7 | 39.5 ± 7.8 | 117.3 ± 10.6 | 2.03 ± 0.18 | 1.27 ± 0.11 | 7.4 ± 0.01 | EC20 > 90 |
DOS 13 | 0.9 ± 0.6 | 1.2 ± 0.4 | 46.9 ± 4.7 | 43.3 ± 4.1 | 22.9 ± 2.9 | 56.4 ± 4.1 | 175.5 ± 10.4 | 4.16 ± 0.42 | 2.16 ± 0.11 | 10.7 ± 0.00 | EC20 > 90 |
DOS 14 | <LOQ | 1.0 ± 0.6 | 40.1 ± 5.0 | 36.3 ± 4.5 | 19.0 ± 2.3 | 45.6 ± 4.2 | 148.6 ± 17.4 | 3.81 ± 0.32 | 1.59 ± 0.11 | 8.5 ± 0.01 | EC20 > 90 |
DOS 15 | <LOQ | <LOQ | 21.5 ± 2.0 | 20.1 ± 4.9 | 10.6 ± 1.4 | 22.9 ± 1.6 | 86.2 ± 11.5 | 3.65 ± 0.83 | 2.58 ± 0.11 | 5.4 ± 0.01 | EC50 = 51.64 [45.28; 60.36] |
DOS 16 | <LOQ | <LOQ | 29.0 ± 3.4 | 34.8 ± 2.0 | 13.0 ± 1.5 | 25.0 ± 2.5 | 125.9 ± 5.5 | 9.29 ± 1.31 | 2.67 ± 0.16 | 8.5 ± 0.00 | EC20 = 74.05 [40.26; 91.88]; EC50 > 100 |
LOQ (mg/Kg) | 0.0441 | 0.0004 | 0.2951 | 0.0029 | 0.5120 | 0.5907 | 0.2998 | 0.007 | - | - | |
LOQ (mg/L) | 0.02 | - | - |
PC1 | PC2 | ||
---|---|---|---|
Total variance explained | Total | 8.353 | 1.773 |
% of Variance | 64.251 | 13.639 | |
Cumulative % | 64.251 | 77.890 | |
Rotated Component Matrixa | Al | 0.960 | −0.068 |
As | 0.205 | −0.202 | |
Cd | 0.945 | −0.176 | |
Cr | 0.982 | −0.105 | |
Cu | 0.926 | 0.092 | |
Fe | 0.943 | −0.088 | |
Ni | 0.981 | −0.020 | |
Pb | 0.919 | −0.180 | |
V | 0.986 | −0.039 | |
Zn | 0.913 | −0.024 | |
Hg | −0.194 | 0.420 | |
Ammonium (NH4+) | 0.321 | 0.838 | |
Abnorm. Plutei | −0.016 | 0.887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartori, D.; Macchia, S.; Tranchida, G.; Altemura, P.; Tancredi, V.; Scuderi, A.; Piccione, M.E.; Ferrari, S.; Gaion, A. Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium. Nitrogen 2025, 6, 62. https://doi.org/10.3390/nitrogen6030062
Sartori D, Macchia S, Tranchida G, Altemura P, Tancredi V, Scuderi A, Piccione ME, Ferrari S, Gaion A. Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium. Nitrogen. 2025; 6(3):62. https://doi.org/10.3390/nitrogen6030062
Chicago/Turabian StyleSartori, Davide, Simona Macchia, Giorgio Tranchida, Paolo Altemura, Vincenzo Tancredi, Alice Scuderi, Maria Elena Piccione, Stefano Ferrari, and Andrea Gaion. 2025. "Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium" Nitrogen 6, no. 3: 62. https://doi.org/10.3390/nitrogen6030062
APA StyleSartori, D., Macchia, S., Tranchida, G., Altemura, P., Tancredi, V., Scuderi, A., Piccione, M. E., Ferrari, S., & Gaion, A. (2025). Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium. Nitrogen, 6(3), 62. https://doi.org/10.3390/nitrogen6030062