Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = hirshfeld analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1421 KB  
Article
Structural Insights into Ni(II), Cu(II), and Zn(II) Coordination Complexes of Arylazoformamide and Arylazothioformamide Ligands
by Laxmi Tiwari, Jake Nelson and Kristopher V. Waynant
Crystals 2025, 15(10), 869; https://doi.org/10.3390/cryst15100869 (registering DOI) - 4 Oct 2025
Abstract
Understanding how redox-active ligands coordinate to metal centers of different oxidation states is essential for applications ranging from metal remediation and recycling to drug discovery. In this study, coordination complexes of nickel(II), copper(II), and zinc(II) chloride salts were synthesized by mixing the salts [...] Read more.
Understanding how redox-active ligands coordinate to metal centers of different oxidation states is essential for applications ranging from metal remediation and recycling to drug discovery. In this study, coordination complexes of nickel(II), copper(II), and zinc(II) chloride salts were synthesized by mixing the salts with either arylazoformamide (AAF) or arylazothioformamide (ATF) ligands in toluene or methanol. The AAF and ATF ligands coordinate through their 1,3-heterodienes, N=N–C=O and N=N–C=S, respectively, and, due to their known strong binding, the piperidine and pyrrolidine formamide units were selected, as was the electron-donating methoxy group on the aryl ring. A total of 12 complexes were obtained, representing potential chelation events from ligand-driven oxidation of zerovalent metals and/or coordination of oxidized metal salts. The X-ray crystallography revealed a range of coordination patterns. Notably, the Cu(II)Cl2 complexes, in the presence of ATF, produce [ATF-CuCl]2 dimers, supporting a potential reduction event at the copper, while other metals with ATF and all metals with AAF remain in the 2+ oxidation state. Hirshfeld analysis was performed on all complexes, and it was found that most interactions across the complexes were dominated by H…H, followed by Cl…H/H…Cl, with metals showing very little to no interaction with other atoms. Spectroscopic techniques such as UV–VIS absorption, NMR (when diamagnetic), and FTIR, in addition to electrochemical studies support the metal–ligand coordination. Full article
Show Figures

Figure 1

16 pages, 4073 KB  
Article
X-Ray Crystallography, Hirshfeld Surface Analysis, and Molecular Docking Studies of Two Sulfonamide Derivatives
by José Luis Madrigal-Angulo, Nancy E. Magaña-Vergara, Juan Saulo González-González, José Martín Santiago-Quintana, Efrén V. García-Báez, Itzia I. Padilla-Martínez and Francisco J. Martínez-Martínez
Crystals 2025, 15(10), 854; https://doi.org/10.3390/cryst15100854 - 30 Sep 2025
Abstract
This work reports the crystallographic study of two benzenesulfonamides, 1 ((E)-N-benzyl-3-((benzylimino)methyl)-4-hydroxybenzenesulfonamide) and 2 (N-benzyl-3-(3-(N-benzylsulfamoyl)-2-oxo-2H-chromene-6-sulfonamide). These compounds share structural features with belinostat, an FDA-approved histone deacetylase (HDAC) inhibitor used in the treatment of peripheral [...] Read more.
This work reports the crystallographic study of two benzenesulfonamides, 1 ((E)-N-benzyl-3-((benzylimino)methyl)-4-hydroxybenzenesulfonamide) and 2 (N-benzyl-3-(3-(N-benzylsulfamoyl)-2-oxo-2H-chromene-6-sulfonamide). These compounds share structural features with belinostat, an FDA-approved histone deacetylase (HDAC) inhibitor used in the treatment of peripheral T-cell lymphoma. Compound 1 contains one sulfonamide group, meanwhile compound 2 contains two sulfonamide moieties and presents four independent molecules in its unit cell. The crystal packing of 1 and 2 is mainly governed by N–H···O=S hydrogen bonding interactions. π → π* and n → π* stacking interactions also contribute to the molecular assembly. Hirshfeld surface (HS) analysis was carried out to further examine the intermolecular interactions of compounds 1 and 2, revealing that N–H∙∙∙O and C–H∙∙∙O hydrogen bonding interactions, along with O∙∙∙H/H∙∙∙O interactions, are the strongest contributors to the individual surfaces. Interaction energy analysis was also performed to evaluate the relative strength and nature of the intermolecular contacts. Additionally, molecular docking studies of compounds 1 and 2 were performed on the crystal structure of the enzyme HDAC2, an enzyme overexpressed in several cancers, particularly breast cancer. The results revealed that both compounds exhibit a binding mode and binding energies similar to those of belinostat, suggesting their potential as novel therapeutic agents. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 4818 KB  
Article
Structural Characteristics of Homoleptic Zinc Complexes Incorporating Asymmetric Aminopyridinates
by Awal Noor and Sadaf Qayyum
Crystals 2025, 15(9), 821; https://doi.org/10.3390/cryst15090821 - 19 Sep 2025
Viewed by 207
Abstract
First examples of mononuclear homoleptic zinc aminopyridinates have been isolated by reacting the sterically bulky deprotonated 2-aminopyridine ligands, N-(2,6-diisopropylphenyl)-[6-(2,6-dimethylphenyl)-pyridine-2-yl]-amine (1) and N-(2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)-pyridine-2-yl]-amine (2) with [Zn{N(SiMe3)2}2]. Single crystal X-ray analyses of the zinc bis(aminopyridinate) [...] Read more.
First examples of mononuclear homoleptic zinc aminopyridinates have been isolated by reacting the sterically bulky deprotonated 2-aminopyridine ligands, N-(2,6-diisopropylphenyl)-[6-(2,6-dimethylphenyl)-pyridine-2-yl]-amine (1) and N-(2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)-pyridine-2-yl]-amine (2) with [Zn{N(SiMe3)2}2]. Single crystal X-ray analyses of the zinc bis(aminopyridinate) complexes (3 and 4) reveal two different orientations of the coordinated ligands most probably due to the steric variation of the of the applied ligands. For 3 not only the two ligands show rare head to head arrangement but also one of the ligand exhibit localized and the other ligand delocalized mode of coordination. In 4 the two ligands adopt the head to tail arrangement for the two coordinated aminopyridinato ligands with anionic function localized at the amido nitrogen atom of both the ligands. NMR tube reactions between equimolar ratios of 1 or 2 and [Zn{N(SiMe3)2}2] show the possible synthesis of the mono(aminopyridnate) Zn amide complexes (5 and 6, respectively) in solution phase, however, the corresponding bis(aminopyridinate) Zn complexes are the selective products. Hirshfeld surface analysis and the two-dimensional fingerprint plots indicate that intermolecular H⋯H contacts and H⋯C/C⋯H π-interactions dominate the crystal packing. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

38 pages, 13226 KB  
Article
Structural Speciation of Hybrid Ti(IV)-Chrysin Systems—Biological Profiling and Antibacterial, Anti-Inflammatory, and Tissue-Specific Anticancer Activity
by Sevasti Matsia, Georgios Lazopoulos, Antonios Hatzidimitriou and Athanasios Salifoglou
Molecules 2025, 30(18), 3667; https://doi.org/10.3390/molecules30183667 - 9 Sep 2025
Viewed by 529
Abstract
Metal–organic compounds, and especially those containing well-known antioxidant natural flavonoids (Chrysin, Chr) and metal ions (Ti(IV)), attract keen interest for their potential biological activity nutritionally and pharmacologically. To that end, chemical reactivity profiling in binary/ternary systems was investigated synthetically, revealing unique structural correlations [...] Read more.
Metal–organic compounds, and especially those containing well-known antioxidant natural flavonoids (Chrysin, Chr) and metal ions (Ti(IV)), attract keen interest for their potential biological activity nutritionally and pharmacologically. To that end, chemical reactivity profiling in binary/ternary systems was investigated synthetically, revealing unique structural correlations between mononuclear (Ti(IV)-Chr) and tetranuclear assemblies (Ti(IV)-Chr-phen). Chemical profiling involved physicochemical characterization through elemental analysis, FT-IR, UV–Visible, 1D-2D NMR, ESI-MS spectrometry, solid-state luminescence, and X-ray crystallography, with theoretical work on intra(inter)molecular interactions of 3D assemblies pursued through Hirshfeld analysis and BVS calculations. An in-depth study of their chemical reactivity shed light onto specific structural properties in the solid-state and in solution, while concurrently exemplifying quenching behavior due to their distinct flavonoid pattern. In the framework of biological activity, the materials were investigated for their antibacterial properties toward Gram(−)-E. coli and Gram(+)-S. aureus, exhibiting an enhanced effect compared to the free ligand and metal ion. Further investigation of BSA denaturation revealed strong anti-inflammatory properties compared to Chr and Diclofenac, an anti-inflammatory agent. Finally, in vitro studies using physiological and cancer cell lines, including breast (MCF10A, MCF7) and lung tissues (MRC-5, A549), formulated a structure–tissue relation reactivity profile, thus justifying their potential as future metallodrugs. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Graphical abstract

15 pages, 4657 KB  
Article
Conformational and Intermolecular Interaction Analysis of Tiaprofenic Acid: A X-Ray Powder Diffraction and First Principle Modeling Analysis
by Mattia Lopresti, Luca Palin and Marco Milanesio
Molecules 2025, 30(17), 3593; https://doi.org/10.3390/molecules30173593 - 2 Sep 2025
Viewed by 888
Abstract
(±)-tiaprofenic acid (TA), marketed as (Surgam®), belongs to the family of NSAIDs, with the peculiarity of a reduced incidence of ulcer induction in rats compared with parent drugs. However, some adverse effects were observed, and better knowledge of its interaction with [...] Read more.
(±)-tiaprofenic acid (TA), marketed as (Surgam®), belongs to the family of NSAIDs, with the peculiarity of a reduced incidence of ulcer induction in rats compared with parent drugs. However, some adverse effects were observed, and better knowledge of its interaction with biologic substrates is needed. Unfortunately, unlike most commercial NSAIDs, suitable single crystals for an X-ray diffraction study could not be obtained. To fill the gap, the crystal structure of TA was solved by X-ray powder diffraction, and the molecular interactions stabilizing the structure were analyzed by Hirshfeld surface and energy framework analysis. TA crystallizes in the P21/c space group, with its two enantiomers in the asymmetric unit, further confirming the peculiarity of the crystal structure and the difficulty of solving it. TA packing is characterized by alternating enantiomers connected through hydrogen bonds, forming chains, arranged in layers, stabilized by π-stacking. First principle modeling revealed several stable conformations within 4kJ mol1 of the global minimum and the relaxed potential energy scans revealed modest (8kJ mol1 to 15kJ mol1) energy barriers. Such flat energy landscape suggests flexible and dynamic behavior of tiaprofenic acid in solution and in vivo conditions, with multiple suitable docking sites. Full article
Show Figures

Graphical abstract

20 pages, 10072 KB  
Article
Design, Synthesis, and Computational Insights into PKMYT1 Inhibitors for the Treatment of Breast Cancer
by Jinyu Yu, Haoyu Zhang, Chuanxu Su, Shizhe Yuan, Nian Liu, Yin Sun, Yixiang Sun, Zixuan Gao, Dongmei Zhao and Maosheng Cheng
Biomedicines 2025, 13(9), 2116; https://doi.org/10.3390/biomedicines13092116 - 29 Aug 2025
Viewed by 509
Abstract
Background: Membrane-associated tyrosine-threonine protein kinase 1 (PKMYT1), which is identified as a synthetic lethal partner of CCNE1, emerged as a promising therapeutic target in oncology. Methods: A series of novel PKMYT1 inhibitors were designed by employing a pharmacophore fusion strategy. [...] Read more.
Background: Membrane-associated tyrosine-threonine protein kinase 1 (PKMYT1), which is identified as a synthetic lethal partner of CCNE1, emerged as a promising therapeutic target in oncology. Methods: A series of novel PKMYT1 inhibitors were designed by employing a pharmacophore fusion strategy. The underlying mechanisms were investigated by means of pharmacological experiments and molecular simulations. Results: Compound MY-14 demonstrated optimal kinase inhibition (IC50 = 0.002 μM) and significant anti-proliferative efficacy against CCNE1-amplified cells (IC50-HCC1569 = 1.06 μM and IC50-OVCAR3 = 0.80 μM). Furthermore, MY-14 induced concentration-dependent apoptosis, inhibited colony formation, and effectively arrested cell-cycle progression at the S-phase through synthetic lethality. Molecular dynamics simulations, Hirshfeld surface analysis, dynamic cross-correlation matrix (DCCM), and MM/GBSA calculations elucidated the molecular mechanism underlying MY-14’s interaction with PKMYT1. Conclusions: MY-14 emerged as a promising compound for the development of a novel PKMYT1 inhibitor. Full article
Show Figures

Figure 1

16 pages, 4846 KB  
Article
A Neodymium(III)-Based Hydrogen-Bonded Bilayer Framework with Dual Functions: Selective Ion Sensing and High Proton Conduction
by Jie Liu, Xin-Yu Guo, Wen-Duo Zhu, Nan Zheng and Jiu-Fu Lu
Molecules 2025, 30(17), 3455; https://doi.org/10.3390/molecules30173455 - 22 Aug 2025
Viewed by 574
Abstract
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a [...] Read more.
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a novel neodymium(III)-based hydrogen-bonded framework material, formulated as {Nd(H2O)3(4-CPCA)[H(4-CPCA)]∙H2O}ₙ (SNUT-15), via hydrothermal assembly using 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid (H2(4-CPCA)) as the ligand. Single-crystal X-ray diffraction analysis revealed a rare two-dimensional hydrogen-bonded bilayer structure stabilized by π-π stacking interactions and intermolecular hydrogen bonds. Hirshfeld surface analysis further corroborated the structural characteristics of this material. Moreover, leveraging the superior luminescent properties of lanthanide elements, this crystalline material exhibits dual functionality: selective fluorescence quenching toward Fe3+, La3+, and Mn2+ (with detection limits of 1.74 × 10−4, 1.88 × 10−4, and 3.57 × 10−4 mol·L−1, respectively), as well as excellent proton conductivity reaching 7.92 × 10−3 S cm−1 under conditions of 98% relative humidity and 353 K (80 °C). As a multifunctional neodymium(III)-based HOF material, SNUT-15 demonstrates its potential for applications in environmental monitoring and solid-state electrolytes, providing valuable insights into the rational design of lanthanide-containing frameworks. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

14 pages, 3458 KB  
Article
Synthesis and Characterization of [Co(tta)2(4,4′-bipy)2.CHCl3]n: A Coordination Polymer with Sulfur–Sulfur Interactions
by Mohammed A. Al-Anber, Deeb Taher, Petra Ecorchard, Matous Kloda, Yasser Mahmoud Aboelmagd and Heinrich Lang
Crystals 2025, 15(8), 729; https://doi.org/10.3390/cryst15080729 - 16 Aug 2025
Viewed by 679
Abstract
Coordination polymer [{Co(tta)2(4,4′-bipy)}n] (1) (tta = 4,4,4 trifluoro-1-(2-thienyl)-1,3-butanedionate; 4,4′-bipy = 4,4′-bipyridine) was synthesized by reacting [Co(tta)2-(H2O)2] with equivalent of 4,4′-bipy, whereby the aqua ligands in [Co(tta)2-(H2O)2 [...] Read more.
Coordination polymer [{Co(tta)2(4,4′-bipy)}n] (1) (tta = 4,4,4 trifluoro-1-(2-thienyl)-1,3-butanedionate; 4,4′-bipy = 4,4′-bipyridine) was synthesized by reacting [Co(tta)2-(H2O)2] with equivalent of 4,4′-bipy, whereby the aqua ligands in [Co(tta)2-(H2O)2] were replaced by 4,4′-bipy ligand. Thermal behavior, investigated via thermogravimetric analysis (TGA), revealed that 1 decomposes between 290 and 400 °C. The solid-state structure of 1 was confirmed by single-crystal X-ray diffraction, which established its polymeric nature of 1. Each monomer unit of 1 features a cobalt center in an octahedral coordination environment, with two equatorially chelating tta ligands and one axially oriented 4,4′-bipy ligand. Sulfur–sulfur interactions lead to the formation of a two-dimensional supramolecular network. In addition, compound 1 is stabilized by various intermolecular interactions, including C-H···π, C-F···F-C, and C-H···F-C contacts. Hirshfeld surface analysis and 2D-fingerprint plots were employed to further investigate the non-covalent intermolecular interactions in the solid state, providing strong evidence for their role in stabilizing the crystal structure. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

22 pages, 4237 KB  
Article
Gone with the Wind—Adducts of Volatile Pyridine Derivatives and Copper(II) Acetylacetonate
by Luca Mensing, Tim Schäfer, Marcus Layh and Marian Hebenbrock
Crystals 2025, 15(8), 690; https://doi.org/10.3390/cryst15080690 - 29 Jul 2025
Viewed by 745
Abstract
The investigation of adducts of weakly coordinating pyridine ligands with copper acetylacetonate is more arduous in the presence of volatile pyridine derivatives. The present study reports the synthesis of new adducts, including those with volatile ligands. Furthermore, the formation of one-dimensional coordination polymers [...] Read more.
The investigation of adducts of weakly coordinating pyridine ligands with copper acetylacetonate is more arduous in the presence of volatile pyridine derivatives. The present study reports the synthesis of new adducts, including those with volatile ligands. Furthermore, the formation of one-dimensional coordination polymers is observed when bidentate ligands are used. The synthesis and characterization of the adduct formed by pyridine is particularly noteworthy, which despite its simplicity has not yet been structurally elucidated. A total of four pentacoordinate complexes, one oligomer and two coordination polymers are synthesized and discussed in this study. The obtained structures of the complexes complement the spectrum of known adducts due to the substituents on the pyridines, and allow conclusions to be drawn about the cause of the different structures based on the electronic properties of the substituents. Furthermore, intermolecular interactions are discussed using Hirshfeld surface analysis and attributed to the pyridine derivatives present. Full article
Show Figures

Graphical abstract

9 pages, 2968 KB  
Short Note
Diethyl 3-(4-Bromobenzoyl)-7-(4-pyridyl)indolizine-1,2-dicarboxylate
by Mihaela Cristea, Mihai Răducă, Maria Gdaniec, Sergiu Shova, Nicoleta Doriana Banu and Florea Dumitrascu
Molbank 2025, 2025(3), M2032; https://doi.org/10.3390/M2032 - 7 Jul 2025
Viewed by 562
Abstract
The title compound, C26H21BrN2O5 (Compound 4), was obtained via our previously described procedure with modifications, i.e., via a facile one-pot three component reaction starting from commercially available materials. Compound 4 was crystallized from nitromethane. It [...] Read more.
The title compound, C26H21BrN2O5 (Compound 4), was obtained via our previously described procedure with modifications, i.e., via a facile one-pot three component reaction starting from commercially available materials. Compound 4 was crystallized from nitromethane. It crystalized in a triclinic crystal system, in the P-1¯ space group. The crystal structure of 4 is described herein. Hirsfeld surface analysis, generated by the Crystal Explorer 21 software, was used to visualize the intermolecular close contacts in the title compound. The electrostatic, dispersion, and total energies in the crystal structure were calculated using the same program. Full article
Show Figures

Graphical abstract

30 pages, 5942 KB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Cited by 1 | Viewed by 703
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

20 pages, 4816 KB  
Article
Exploring the Structural Design, Antibacterial Activity, and Molecular Docking of Newly Synthesized Zn(II) Complexes with NNO-Donor Carbazate Ligands
by Claudia C. Gatto, Daniel J. de Siqueira, Eduardo de A. Duarte, Érica C. M. Nascimento, João B. L. Martins, Mariana B. Santiago, Nagela B. S. Silva and Carlos H. G. Martins
Molecules 2025, 30(13), 2822; https://doi.org/10.3390/molecules30132822 - 30 Jun 2025
Viewed by 691
Abstract
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate [...] Read more.
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate (HL2), and 2-acetylpyridine-benzylcarbazate (HL3). All compounds were characterized by spectroscopic methods, and the crystal structures of the complexes were elucidated by single-crystal X-ray. Based on the analysis, distorted square pyramid geometry is suggested for complex (1) and an octahedral geometry is suggested for complexes (2) and (3) with the ligands exhibiting an NNO-donor system. The 3D Hirshfeld surface and the 2D fingerprint plot were used to study the non-covalent interactions in the crystal structures. The in vitro antibacterial investigation of the free ligands and their complexes was performed against different strains of periodontopathogen bacteria. The Zn(II) complexes showed more potent antibacterial activity than the free ligand. Molecular docking studies showed the metal complexes as promising candidates for further therapeutic exploration, particularly in targeting the ATP-binding cassette transporter with peptidase domain of the cariogenic bacteria S. mutans (PDB code 5XE9) and the prolyl tripeptidyl aminopeptidase from P. gingivalis anaerobic bacteria (PDB code 2EEP) inhibition. Full article
Show Figures

Graphical abstract

15 pages, 14240 KB  
Article
Substituent Effects on Crystal Engineering of DNBT-Based Energetic Cocrystals: Insights from Multiscale Computational Analysis
by Lu Shi, Min Liu, Shangrui Xie, Song Li, Shuxin Liu, Shen Yuan, Xiaohui Duan and Hongzhen Li
Materials 2025, 18(13), 2995; https://doi.org/10.3390/ma18132995 - 24 Jun 2025
Viewed by 446
Abstract
The substituent effects on crystal stacking topology and stability of the 5,5-dinitro-2H,2H-3,3-bi-1,2,4-triazole (DNBT) and its three energetic cocrystals with 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitrotoluene (TNT), and picric acid (PA) were systematically investigated through combined density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. [...] Read more.
The substituent effects on crystal stacking topology and stability of the 5,5-dinitro-2H,2H-3,3-bi-1,2,4-triazole (DNBT) and its three energetic cocrystals with 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitrotoluene (TNT), and picric acid (PA) were systematically investigated through combined density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. The interaction mechanism and detonation performance of the three energetic cocrystals were implemented to the electrostatic potential (ESP), Hirshfeld surface analysis, radial distribution function (RDF), binding energy, and detonation parameters. In contrast to N-H⋯O interactions in DNBT, three cocrystals exhibited more distinctly weak C-H⋯O intermolecular hydrogen bonds and NO2-π stacking interactions to stabilize the lattice. Notably, the highest binding energy of PA/DNBT shows the largest stability and lowest impact sensitivity is related to the more intermolecular interactions. Although the introduction of substituents slightly affects the crystal density of DNBT crystals, it significantly reduces the impact sensitivity. Moreover, the balanced detonation performance and impact sensitivity of DNBT-based cocrystals make it a candidate to expand the applications of DNBT crystals. These findings contribute to a broadened understanding of construction and design strategies for the energy release mechanisms of energetic compounds with the azoles ring family. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

9 pages, 2176 KB  
Short Note
4-Methyl-N-(1-benzyl)-N’-(1-benzylidene)benzenesulfonohydrazide
by Leticia Almazán-Sánchez, Marco A. García-Eleno, Diego Martínez-Otero and Erick Cuevas-Yañez
Molbank 2025, 2025(2), M2022; https://doi.org/10.3390/M2022 - 13 Jun 2025
Viewed by 522
Abstract
4-Methyl-N-(1-benzyl)-N’-(1-benzylidene)benzenesulfonohydrazide is formed through a direct, solventless reaction between benzaldehyde tosylhydrazone and potassium carbonate, which is carried out using an eco-friendly grinding method. The NMR spectra of the compound are here described. The structure was unequivocally determined by X-ray [...] Read more.
4-Methyl-N-(1-benzyl)-N’-(1-benzylidene)benzenesulfonohydrazide is formed through a direct, solventless reaction between benzaldehyde tosylhydrazone and potassium carbonate, which is carried out using an eco-friendly grinding method. The NMR spectra of the compound are here described. The structure was unequivocally determined by X-ray analysis. As suggested by Hirshfeld surface analysis, the predominant intermolecular H-O interactions in this molecule are involved in crystal packing. Full article
Show Figures

Figure 1

17 pages, 2559 KB  
Article
Thermal Strain and Microstrain in a Polymorphic Schiff Base: Routes to Thermosalience
by Teodoro Klaser, Marko Jaklin, Jasminka Popović, Ivan Grgičević and Željko Skoko
Molecules 2025, 30(12), 2567; https://doi.org/10.3390/molecules30122567 - 12 Jun 2025
Viewed by 510
Abstract
We present a comprehensive structural and thermomechanical investigation of N-salicylideneaniline, a Schiff base derivative that exhibits remarkable thermosalient phase transition behavior. By combining variable-temperature X-ray powder diffraction (VT-XRPD), differential scanning calorimetry (DSC), hot-stage microscopy, and Hirshfeld surface analysis, we reveal two distinct [...] Read more.
We present a comprehensive structural and thermomechanical investigation of N-salicylideneaniline, a Schiff base derivative that exhibits remarkable thermosalient phase transition behavior. By combining variable-temperature X-ray powder diffraction (VT-XRPD), differential scanning calorimetry (DSC), hot-stage microscopy, and Hirshfeld surface analysis, we reveal two distinct thermosalient mechanisms operating in different polymorphic forms. Form I displays pronounced anisotropic thermal expansion with negative strain along a principal axis, culminating in a sudden and explosive phase transition into Form IV. In contrast, Form III transforms more gradually through a microstrain accumulation mechanism. Fingerprint plots and contact evolution from Hirshfeld surface analysis further support this dual-mechanism model. These insights highlight the importance of integrating macro- and microscale structural descriptors to fully capture the mechanical behavior of responsive molecular solids. The findings not only enhance the fundamental understanding of thermosalience but also inform the rational design of functional materials for actuating and sensing applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

Back to TopTop