Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = hippocampal neurogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 28078 KiB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 (registering DOI) - 1 Aug 2025
Viewed by 190
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

18 pages, 5008 KiB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 259
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

34 pages, 27180 KiB  
Article
Lifetime Variations in Prolactin Expression in the Hippocampus and Dentate Gyrus of the Rat
by Marta Carretero-Hernández, Elisa Herráez, Leonardo Catalano-Iniesta, David Hernández-González, David Díez-Castro, Ana E. Rodríguez-Vicente, Josefa García-Barrado, Teresa Vicente-García, Miguel Robles-García, Enrique J. Blanco and José Carretero
Int. J. Mol. Sci. 2025, 26(15), 7299; https://doi.org/10.3390/ijms26157299 - 28 Jul 2025
Viewed by 316
Abstract
Prolactin is a hormone with demonstrated roles in the brain, including neurogenesis, neuroprotection, learning, stress response or memory consolidation. To determine the prolactin expression in the rat hippocampus during aging and to resolve some controversies related to the presence of prolactin in the [...] Read more.
Prolactin is a hormone with demonstrated roles in the brain, including neurogenesis, neuroprotection, learning, stress response or memory consolidation. To determine the prolactin expression in the rat hippocampus during aging and to resolve some controversies related to the presence of prolactin in the hippocampus, the aim of this study was to analyze whether changes occur in the expression of prolactin during different stages of life. To determine this, we designed an experimental study in which we analyzed the expression and location of prolactin in the rat hippocampus, Ammon’s horn and Dentate Gyrus, during different stages of life (prepubertal, postpubertal, young adult, adult and old) and checked if there are differences related to sex. Overall, the results obtained show that prolactin is present in the rat hippocampus and that prolactin is synthesized, as deduced from the findings obtained via ELISA, immunohistochemistry, qPCR and in situ hybridization. After analyzing the correlation between serum and hippocampal prolactin levels and comparing the amounts of Prl mRNA and the hormone, the results obtained suggest that hippocampal prolactin has a dual origin: local synthesis of the hormone and its passage from the blood. On the other hand, the amounts of prolactin and its mRNA in the hippocampus vary with sex and age, suggesting the existence of age-related sexual dimorphism. The results obtained suggest that hippocampal aging is related to a decrease in the hippocampal prolactin system, which helps to better understand brain aging. Full article
(This article belongs to the Special Issue Understanding Aging in Health and Disease)
Show Figures

Figure 1

19 pages, 8295 KiB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 403
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 335 KiB  
Opinion
The Microbiota–Gut–Brain Axis in Light of the Brain Axes and Dysbiosis Where Piezo2 Is the Critical Initiating Player
by Balázs Sonkodi
Int. J. Mol. Sci. 2025, 26(15), 7211; https://doi.org/10.3390/ijms26157211 - 25 Jul 2025
Viewed by 303
Abstract
The current opinion paper puts into perspective how altered microbiota transplanted from Alzheimer’s patients initiates the impairment of the microbiota–gut–brain axis of a healthy recipient, leading to impaired cognition primarily arising from the hippocampus, dysfunctional adult hippocampal neurogenesis, dysregulated systemic inflammation, long-term spatial [...] Read more.
The current opinion paper puts into perspective how altered microbiota transplanted from Alzheimer’s patients initiates the impairment of the microbiota–gut–brain axis of a healthy recipient, leading to impaired cognition primarily arising from the hippocampus, dysfunctional adult hippocampal neurogenesis, dysregulated systemic inflammation, long-term spatial memory impairment, or chronic pain with hippocampal involvement. This altered microbiota may induce acquired Piezo2 channelopathy on enterochromaffin cells, which, in turn, impairs the ultrafast long-range proton-based oscillatory synchronization to the hippocampus. Therefore, an intact microbiota–gut–brain axis could be responsible for the synchronization of ultradian and circadian rhythms, with the assistance of rhythmic bacteria within microbiota, to circadian regulation, and hippocampal learning and memory formation. Hippocampal ultradian clock encoding is proposed to be through a Piezo2-initiated proton-signaled manner via VGLUT3 allosteric transmission at a distance. Furthermore, this paper posits that these unaccounted-for ultrafast proton-based long-range oscillatory synchronizing ultradian axes may exist not only within the brain but also between the periphery and the brain in an analogous way, like in the case of this depicted microbiota–gut–brain axis. Accordingly, the irreversible Piezo2 channelopathy-induced loss of the Piezo2-initiated ultradian prefrontal–hippocampal axis leads to Alzheimer’s disease pathophysiology onset. Moreover, the same irreversible microdamage-induced loss of the Piezo2-initiated ultradian muscle spindle–hippocampal and cerebellum–hippocampal axes may lead to amyotrophic lateral sclerosis and Parkinson’s disease initiation, respectively. Full article
Show Figures

Figure 1

20 pages, 8740 KiB  
Article
Agomelatine Ameliorates Cognitive and Behavioral Deficits in Aβ-Induced Alzheimer’s Disease-like Rat Model
by Raviye Ozen Koca, Z. Isik Solak Gormus, Hatice Solak, Burcu Gultekin, Ayse Ozdemir, Canan Eroglu Gunes, Ercan Kurar and Selim Kutlu
Medicina 2025, 61(8), 1315; https://doi.org/10.3390/medicina61081315 - 22 Jul 2025
Viewed by 288
Abstract
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four [...] Read more.
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four groups: Control (C), Alzheimer’s disease-like model (AD), Alzheimer’s disease-like model treated with Ago (ADAgo), and Ago alone (Ago). Physiological saline was injected intrahippocampally in C and Ago animals, whereas Aβ peptide was delivered similarly in AD and ADAgo rats. On day 15, 0.9% NaCl was administered to the C and AD groups, and Agomelatine (1 mg/kg/day) was infused into ADAgo and Ago rats via osmotic pumps for 30 days. Behavioral functions were evaluated using Open Field (OF), Forced Swim (FST), and Morris Water Maze (MWM) tests. Brain tissues were examined histopathologically. Neuritin, Nestin, DCX, NeuN, BDNF, MASH1, MT1, and MT2 transcripts were quantified by real-time PCR. Statistical analyses were performed in R 4.3.1, with p < 0.05 deemed significant. Results: In the FST, swimming, climbing, immobility time, and mobility percentage differed significantly among groups (p < 0.05). In the MWM, AD rats exhibited impaired learning and memory that was ameliorated by Ago treatment (p < 0.05). DCX expression decreased in AD rats but was elevated by Ago (p < 0.05). Nestin levels differed significantly between control and AD animals; MT1 expression varied between control and AD cohorts; and MT2 transcript levels were significantly lower in AD, ADAgo, and Ago groups compared to C (all p < 0.05). Conclusions: Ago exhibits antidepressant-like activity in this experimental AD model and may enhance cognitive function via mechanisms beyond synaptic plasticity and neurogenesis. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

18 pages, 6054 KiB  
Article
Mitotic Activity, Cell Survival, and Neuronal Differentiation in the Hilus of the Dentate Gyrus Under Physiological and Hypothyroid Conditions in Adult Wistar Rats
by Karla Sánchez-Huerta, Ana Karen García-Juárez, Lía Diana Colmenero-Rodríguez, Yuliana García-Martínez and Jorge Pacheco-Rosado
Cells 2025, 14(14), 1112; https://doi.org/10.3390/cells14141112 - 19 Jul 2025
Viewed by 291
Abstract
The adult rodent hippocampus is capable of maintaining its capacity to generate new neurons in the subgranular zone (SGZ) of the dentate gyrus (DG). Interestingly, proliferative cells have also been described in the hilus. The involvement of the hilar neurogenesis process in hippocampal [...] Read more.
The adult rodent hippocampus is capable of maintaining its capacity to generate new neurons in the subgranular zone (SGZ) of the dentate gyrus (DG). Interestingly, proliferative cells have also been described in the hilus. The involvement of the hilar neurogenesis process in hippocampal physiology is unknown. Thyroid hormones (THs) are necessary for the survival of postmitotic progenitor cells, neuroblasts, and immature granule neurons in the SGZ. In contrast, evidence concerning the role of THs in the hilar neurogenesis process is limited. The present study characterized the mitotic activity, cell survival, and neuronal differentiation of hilar neurogenesis under physiological and hypothyroid conditions and compared them with those of the granular layer (GL) and the SGZ of the DG in adult Wistar rats. We found that, under physiological conditions, the hilus harbors fewer proliferative cells than the neurogenic zone (GL/SGZ) does, with a rate of cell survival of 18.9% and a rate of differentiation into granular neurons of 19%. Interestingly, hypothyroidism provokes decreased cell proliferation and an increased rate of cell survival without affecting neuronal differentiation. These effects induced by hypothyroidism in the hilus were different or inclusive, contrary to those observed in the neurogenic zone. Full article
Show Figures

Graphical abstract

21 pages, 3299 KiB  
Article
Cognitive and Affective Dysregulation in Neuropathic Pain: Associated Hippocampal Remodeling and Microglial Activation
by Anna Tyrtyshnaia, Igor Manzhulo, Anastasia Egoraeva and Darya Ivashkevich
Int. J. Mol. Sci. 2025, 26(13), 6460; https://doi.org/10.3390/ijms26136460 - 4 Jul 2025
Viewed by 494
Abstract
Neuropathic pain is a persistent and exhausting condition which results from damage to the nervous system and is often accompanied by emotional and cognitive impairments. In this study, we investigated dynamic changes in pain-related behaviors over 8 weeks using a spared nerve injury [...] Read more.
Neuropathic pain is a persistent and exhausting condition which results from damage to the nervous system and is often accompanied by emotional and cognitive impairments. In this study, we investigated dynamic changes in pain-related behaviors over 8 weeks using a spared nerve injury (SNI) model in male C57Bl/6 mice. We examined behavioral outcomes in conjunction with glial activation, neurogenesis, and glutamatergic signaling in the hippocampus to elucidate the mechanisms underlying cognitive and affective alterations associated with chronic pain. Our findings demonstrate that SNI-induced neuropathic pain progressively increases anxiety-like behavior and impairs both working and long-term memory. These behavioral deficits are accompanied by significant activation of microglia and astrocytes, a reduction in hippocampal neurogenesis, and a decrease in the expression of NMDA and AMPA glutamate receptor subunits and the scaffolding protein PSD-95. Taken together, our results suggest that hippocampal neuroinflammation and associated synaptic dysfunction contribute to the affective and cognitive disturbances observed in chronic pain, providing insight into potential molecular targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Physiological Functions and Pathological Effects of Microglia)
Show Figures

Figure 1

19 pages, 2192 KiB  
Article
Transcriptome Analysis of the Hippocampus in Domestic Laying Hens with Different Fear Responses to the Tonic Immobility Test
by Jingyi Zhang, Min Li, Liying Pan, Ye Wang, Hui Yuan, Zhiwei Zhang, Chaochao Luo and Runxiang Zhang
Animals 2025, 15(13), 1889; https://doi.org/10.3390/ani15131889 - 26 Jun 2025
Viewed by 312
Abstract
Fear is a critical welfare concern in laying hens. Fearful behaviors in domestic chickens are influenced by both genetic and environmental factors, contributing to individual differences in stress responses. Tonic immobility (TI) duration is widely recognized as a reliable indicator of fear levels. [...] Read more.
Fear is a critical welfare concern in laying hens. Fearful behaviors in domestic chickens are influenced by both genetic and environmental factors, contributing to individual differences in stress responses. Tonic immobility (TI) duration is widely recognized as a reliable indicator of fear levels. The hippocampus, a critical brain region for emotional states, plays a pivotal role in associating fearful experiences with specific stimuli, enabling adaptive behavioral responses. This study investigated hippocampal histological characteristics and transcriptomic profiles in laying hens with different fear responses categorized based on TI duration. A total of 80 native Lindian hens (75 weeks old) were individually housed in modified conventional cages. At 76 weeks of age, hens exhibiting the longest and shortest TI durations were classified into the high-fear (TH) and low-fear (TL) groups, respectively. Whole hemibrains were collected for histological and immunohistochemical analyses, while hippocampal tissues underwent transcriptome sequencing. The results showed a significant reduction in Nissl body counts in hippocampal neurons of high-fear hens (p < 0.05), suggesting potential neuronal damage or functional impairment. Transcriptomic analysis revealed 365 differentially expressed genes (DEGs) between two groups, with 277 upregulated and 88 downregulated genes in TH chickens. KEGG pathway enrichment analysis identified seven significantly associated pathways (p < 0.01), including retinol metabolism, vitamin B6 metabolism, and nicotinate and nicotinamide metabolism, all of which are crucial for neuronal function and immune regulation. In addition, a significant increase in DCX protein expression (p < 0.05) and a decrease in c-Fos protein expression (p < 0.05) was noted in in high-fear hens, whereas PCNA levels remained unchanged (p > 0.05) under immunohistochemical validation. The neuronal alterations observed in high fear individuals suggest neural damage, while transcriptomic variations point to potential disruptions in neurogenesis, synaptic signaling, and stress-related pathways. Collectively, these results provide novel insights into the neurobiological basis of fear regulation in laying hens and may have implications for poultry welfare and management strategies. Full article
(This article belongs to the Special Issue Welfare and Behavior of Laying Hens)
Show Figures

Figure 1

24 pages, 1404 KiB  
Review
Hippocampal Neurogenesis in Alzheimer’s Disease: Multimodal Therapeutics and the Neurogenic Impairment Index Framework
by Li Ma, Qian Wei, Ming Jiang, Yanyan Wu, Xia Liu, Qinghu Yang, Zhantao Bai and Liang Yang
Int. J. Mol. Sci. 2025, 26(13), 6105; https://doi.org/10.3390/ijms26136105 - 25 Jun 2025
Viewed by 713
Abstract
Alzheimer’s disease (AD) is characterized by progressive cognitive decline strongly associated with impaired adult hippocampal neurogenesis (AHN). Mounting evidence suggests that this impairment results from both the intrinsic dysfunction of neural stem cells (NSCs)—such as transcriptional alterations in quiescent states—and extrinsic niche disruptions, [...] Read more.
Alzheimer’s disease (AD) is characterized by progressive cognitive decline strongly associated with impaired adult hippocampal neurogenesis (AHN). Mounting evidence suggests that this impairment results from both the intrinsic dysfunction of neural stem cells (NSCs)—such as transcriptional alterations in quiescent states—and extrinsic niche disruptions, including the dysregulation of the Reelin signaling pathway and heightened neuroinflammation. Notably, AHN deficits may precede classical amyloid-β and Tau pathology, supporting their potential as early biomarkers of disease progression. In this review, we synthesize recent advances in therapeutic strategies aimed at restoring AHN, encompassing pharmacological agents, natural products, and non-pharmacological interventions such as environmental enrichment and dietary modulation. Emerging approaches—including BDNF-targeted nanocarriers, NSC-derived extracellular vesicles, and multimodal lifestyle interventions—highlight the translational promise of enhancing neurogenesis in models of familial AD. We further propose the Neurogenesis Impairment Index (NII)—a novel composite metric that quantifies hippocampal neurogenic capacity relative to amyloid burden, while adjusting for demographic and cognitive variables. By integrating neurogenic potential, cognitive performance, and pathological load, NII provides a framework for stratifying disease severity and guiding personalized therapeutic approaches. Despite ongoing challenges—such as interspecies differences in neurogenesis rates and the limitations of stem cell-based therapies—this integrative perspective offers a promising avenue to bridge mechanistic insights with clinical innovation in the development of next-generation AD treatments. Full article
Show Figures

Figure 1

15 pages, 2053 KiB  
Article
Effects of Phenosanic Acid in Rat Seizure Models
by Victor A. Aniol, Natalia A. Lazareva, Yulia V. Moiseeva, Olga A. Nedogreeva, Margarita R. Novikova, Pavel A. Kostryukov, Mikhail V. Onufriev and Natalia V. Gulyaeva
Int. J. Mol. Sci. 2025, 26(12), 5668; https://doi.org/10.3390/ijms26125668 - 13 Jun 2025
Viewed by 498
Abstract
Oxidative stress and membrane damage are believed to be principally involved in the pathogenesis of epilepsy. This study aimed to assess the effects of phenosanic acid (PA), an antioxidant and membrane protector, in acute pentylenetetrazole and chronic lithium–pilocarpine seizure models in male Wistar [...] Read more.
Oxidative stress and membrane damage are believed to be principally involved in the pathogenesis of epilepsy. This study aimed to assess the effects of phenosanic acid (PA), an antioxidant and membrane protector, in acute pentylenetetrazole and chronic lithium–pilocarpine seizure models in male Wistar rats. PA was administered acutely (ip, 120 mg/kg BW ip, or 240 mg/kg BW per os) or chronically (80 mg/kg BW/day per os). Indices of free radical oxidation, the hypothalamo–pituitary–adrenocortical axis, and the nitrergic system were assessed in blood and brain regions. Morphological analysis of the hippocampus was performed in the lithium–pilocarpine model. PA exerted an acute anti-seizure effect in the pentylenetetrazole model. In the lithium–pilocarpine model, acute PA treatment decreased the death rate and corticosterone levels in the neocortex and brainstem. In contrast, the level of free radical oxidation products reacting with thiobarbituric acid declined in the brain stem in response to chronic PA treatment. In the lithium–pilocarpine model, the neuronal density in the dentate gyrus was elevated, and the proliferating cell nuclear antigen positive (PCNA+) cell counts in the subgranular zone did not differ between groups. Doublecortin positive (DCX+) cell count was significantly increased after chronic PA treatment. PA-induced reduction in mortality in the lithium–pilocarpine epilepsy model may be partially mediated by decreasing the lipid peroxidation and corticosterone levels in different brain regions. Chronic PA treatment may affect adult hippocampal neurogenesis by either prolonging the action of factors that increase neurogenesis after status epilepticus or by slowing down the neuronal differentiation rate. These data suggest that PA may be a disease-modifying AED able to hamper epileptogenesis. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

22 pages, 4353 KiB  
Article
Aberrant Development of Hippocampal GABAergic Neurons Arising from Hypothyroidism Contributes to Memory Deficits in Mice Through Maf Suppressing Mef2c
by Mengyan Wu, Xingdong Zeng, Yongle Cai, Haonan Chen and Hao Yang
Biomedicines 2025, 13(6), 1436; https://doi.org/10.3390/biomedicines13061436 - 11 Jun 2025
Viewed by 431
Abstract
Background/Objectives: Thyroid hormone (TH) deficiency during the pregnancy and lactation periods leads to enduring memory impairments in offspring. However, the mechanisms underlying the cognitive and memory deficits induced by developmental hypothyroidism remain largely unexplored. Methods: Mice were exposed to propylthiouracil (PTU) or purified [...] Read more.
Background/Objectives: Thyroid hormone (TH) deficiency during the pregnancy and lactation periods leads to enduring memory impairments in offspring. However, the mechanisms underlying the cognitive and memory deficits induced by developmental hypothyroidism remain largely unexplored. Methods: Mice were exposed to propylthiouracil (PTU) or purified water to detect changes in hippocampal neurogenesis and differentiation of their offspring to explain the pathogenesis of impaired learning and memory. In addition, HT22 cell line were used to investigate the regulation between Maf and Mef2c. Results: Our findings indicate that developmental exposure to PTU results in abnormalities of the preferential differentiation of GABAergic interneurons and a subsequent reduction in PV+ inhibitory interneurons in the hippocampus of mouse pups. More significantly, we also indicate that the downregulation of Maf and the consequent alteration of Mef2c are likely responsible for the mechanisms through which developmental hypothyroidism influences the differentiation and development of PV+ inhibitory interneurons in offspring. Conclusions: Consequently, the aberrant development of PV+ interneuron in the hippocampus of mice subjected to developmental hypothyroidism potentially contributes to memory deficits during adolescence and adulthood. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

16 pages, 10464 KiB  
Article
Absence of Microglial Activation and Maintained Hippocampal Neurogenesis in a Transgenic Mouse Model of Crohn’s Disease
by Rebecca Katharina Masanetz, Hanna Mundlos, Iris Stolzer, Jürgen Winkler, Claudia Günther and Patrick Süß
Cells 2025, 14(11), 841; https://doi.org/10.3390/cells14110841 - 4 Jun 2025
Viewed by 803
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) is not only essential for learning and pattern separation, but it is also involved in emotional regulation. This process is vulnerable to local and peripheral inflammation, which is partly mediated by microglia in the DG. [...] Read more.
Adult neurogenesis in the hippocampal dentate gyrus (DG) is not only essential for learning and pattern separation, but it is also involved in emotional regulation. This process is vulnerable to local and peripheral inflammation, which is partly mediated by microglia in the DG. As Crohn’s disease (CD) is associated with neuropsychiatric comorbidity, including depression and cognitive impairment, a reduction in adult hippocampal neurogenesis by chronic gut-derived inflammation has been hypothesized. Here, we present the first study that examined the influence of chronic ileocolitis on microglia in the DG and on adult hippocampal neurogenesis in a transgenic mouse model of CD, which is generated by a constitutive knockout of caspase 8 in intestinal epithelial cells (IECs, Casp8ΔIEC mice). Structural and transcriptional analyses revealed that microglial cell proliferation and density in the DG as well as the expression of genes associated with their homeostasis and activation in the forebrain were maintained in 14- and 24-week-old Casp8ΔIEC mice compared to Casp8fl controls. Furthermore, different stages of adult hippocampal neurogenesis, including progenitor cell proliferation, maturation, and apoptosis of newly generated cells, were predominantly unaffected by chronic ileocolitis, except a potential minor phenotypic shift in maturating cells in 24-week-old mice. Together, we demonstrate largely preserved adult hippocampal neurogenesis, lacking signs of local inflammatory microglial activation despite chronic inflammation of the gut. Full article
(This article belongs to the Special Issue Advances in Neurogenesis: 3rd Edition)
Show Figures

Graphical abstract

23 pages, 10354 KiB  
Article
Lifetime Variations of Prolactin Receptor Isoforms mRNA in the Hippocampus and Dentate Gyrus of the Rat—Effects of Aging
by Marta Carretero-Hernández, Elisa Herráez, David Hernández-González, David Díez-Castro, Leonardo Catalano-Iniesta, Josefa García-Barrado, Enrique J. Blanco and José Carretero
Int. J. Mol. Sci. 2025, 26(11), 5023; https://doi.org/10.3390/ijms26115023 - 23 May 2025
Cited by 1 | Viewed by 2383
Abstract
Prolactin is a hormone for which actions on the central nervous system such as neurogenesis and neuroprotection have been described by acting on specific receptors. The presence of prolactin receptors in the brain, including the hippocampus, is well documented; however, it is unknown [...] Read more.
Prolactin is a hormone for which actions on the central nervous system such as neurogenesis and neuroprotection have been described by acting on specific receptors. The presence of prolactin receptors in the brain, including the hippocampus, is well documented; however, it is unknown whether these receptors change with age and whether they are related to sex. For this reason, a study of the expression of prolactin receptors, in the short and long isoforms, in the hippocampus of male and female rats has been carried out by qPCR and in situ hybridization, with a densitometric analysis in the following life stages: prepubertal, postpubertal, young adult, adult, and old. The results revealed the greater expression of the long isoform than of the short isoform in males, but not in females, with significant differences between males and females and in the different life stages studied. With significant differences, the highest expression of both isoforms appeared in male rats in the postpubertal stage, and the lowest expression was observed in adult and old animals. In situ hybridization showed differences in the localization of PRLR mRNA expression in CA1, CA3, and DG depending on the age and sex of the rats. The results obtained suggest that hippocampal aging is related to a decrease in prolactin receptors, which helps to better understand brain aging. Full article
Show Figures

Figure 1

17 pages, 3030 KiB  
Article
Pharmacological Blocking of Adiponectin Receptors Induces Alzheimer’s Disease-like Neuropathology and Impairs Hippocampal Function
by Hui-Hui Guo, Hai-Ning Ou, Jia-Sui Yu, Suk-Yu Yau and Hector Wing-Hong Tsang
Biomedicines 2025, 13(5), 1056; https://doi.org/10.3390/biomedicines13051056 - 27 Apr 2025
Viewed by 619
Abstract
Background/Objectives: Previous studies have shown that adiponectin deficiency or blocking adiponectin receptors (AdipoRs) in the brain can lead to an Alzheimer’s disease (AD)-like neuropathology. While AdipoRs are abundantly expressed in peripheral tissues, the effects of blocking these receptors in the peripheral tissues [...] Read more.
Background/Objectives: Previous studies have shown that adiponectin deficiency or blocking adiponectin receptors (AdipoRs) in the brain can lead to an Alzheimer’s disease (AD)-like neuropathology. While AdipoRs are abundantly expressed in peripheral tissues, the effects of blocking these receptors in the peripheral tissues on the brain are unclear. This study investigates the impacts of blocking AdipoRs with a peripheral administration of ADP400, an antagonist peptide that targets AdipoRs on cognitive performance, hippocampal adult neurogenesis, and AD-like neuropathology in mice. Methods: Adult mice were intraperitoneally administered with ADP400 peptide that blocks peripheral AdipoRs continuously for 21 days, followed by a battery of behavioral test for mood and memory performance. Results: ADP400-treated mice exhibited impaired memory performance and increased anxiety-like behaviors. Molecular analyses revealed heightened hyperphosphorylation of tau and increased β-amyloid levels, alongside decreased expression of AdipoRs and PP2A in the hippocampus, suggesting a critical role of AdipoRs in AD-like neuropathology. Furthermore, ADP400 treatment significantly reduced hippocampal adult neurogenesis, as indicated by decreased BrdU, Ki67, and DCX staining. Inhibiting peripheral adiponectin receptors could lead to tau hyperphosphorylation and accumulated β-amyloid levels. Conclusions: These findings highlight the critical role of peripheral manipulation of adiponectin receptors in modulating cognitive function and adult neurogenesis, offering insights into potential therapeutic strategies for AD and related cognitive disorders. Full article
(This article belongs to the Special Issue Recent Advances in Adipokines—2nd Edition)
Show Figures

Figure 1

Back to TopTop