Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = hilly terrain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3172 KiB  
Article
A Simulation Framework for Zoom-Aided Coverage Path Planning with UAV-Mounted PTZ Cameras
by Natalia Chacon Rios, Sabyasachi Mondal and Antonios Tsourdos
Sensors 2025, 25(17), 5220; https://doi.org/10.3390/s25175220 - 22 Aug 2025
Viewed by 27
Abstract
Achieving energy-efficient aerial coverage remains a significant challenge for UAV-based missions, especially over hilly terrain where consistent ground resolution is needed. Traditional solutions use changes in altitude to compensate for elevation changes, which requires a significant amount of energy. This paper presents a [...] Read more.
Achieving energy-efficient aerial coverage remains a significant challenge for UAV-based missions, especially over hilly terrain where consistent ground resolution is needed. Traditional solutions use changes in altitude to compensate for elevation changes, which requires a significant amount of energy. This paper presents a new way to plan coverage paths (CPP) that uses real-time zoom control of a pan–tilt–zoom (PTZ) camera to keep the ground sampling distance (GSD)—the distance between two consecutive pixel centers projected onto the ground—constant without changing the UAV’s altitude. The proposed algorithm changes the camera’s focal length based on the height of the terrain. It only changes the altitude when the zoom limits are reached. Simulation results on a variety of terrain profiles show that the zoom-based CPP substantially reduces flight duration and path length compared to traditional altitude-based strategies. The framework can also be used with low-cost camera systems with limited zoom capability, thereby improving operational feasibility. These findings establish a basis for further development and field validation in upcoming research phases. Full article
(This article belongs to the Special Issue Unmanned Aerial Systems in Precision Agriculture)
Show Figures

Figure 1

14 pages, 831 KiB  
Article
Migratory Bird-Inspired Adaptive Kalman Filtering for Robust Navigation of Autonomous Agricultural Planters in Unstructured Terrains
by Zijie Zhou, Yitao Huang and Jiyu Sun
Biomimetics 2025, 10(8), 543; https://doi.org/10.3390/biomimetics10080543 - 19 Aug 2025
Viewed by 184
Abstract
This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, [...] Read more.
This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, and somatosensory balance). The algorithm mimics the migratory bird’s ability to integrate multimodal information by fusing laser SLAM, inertial measurement unit (IMU), and GPS data to estimate the position, velocity, and attitude of the planter in real time. Adopting a nonlinear processing approach, the EKF effectively handles nonlinear dynamic characteristics in complex terrain, similar to the adaptive response of a biological nervous system to environmental perturbations. The algorithm demonstrates bio-inspired robustness through the derivation of the nonlinear dynamic teaching model and measurement model and is able to provide high-precision state estimation in complex environments such as mountainous or hilly terrain. Simulation results show that the algorithm significantly improves the navigation accuracy of the planter in unstructured environments. A new method of bio-inspired adaptive state estimation is provided. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 3rd Edition)
Show Figures

Figure 1

35 pages, 9670 KiB  
Article
Land Cover Changes in the Rural Border Region of Serbia Affected by Demographic Dynamics
by Vladimir Malinić, Marko Sedlak, Filip Krstić, Marko Joksimović, Rajko Golić, Mirjana Gajić, Snežana Vujadinović and Dejan Šabić
Land 2025, 14(8), 1663; https://doi.org/10.3390/land14081663 - 17 Aug 2025
Viewed by 466
Abstract
The rural border areas of Serbia have been undergoing significant demographic shifts and transformations in land use. Between 2002 and 2022, these regions experienced a continuous population decline, an increase in the average age, and a growing share of single-person households. Simultaneously, there [...] Read more.
The rural border areas of Serbia have been undergoing significant demographic shifts and transformations in land use. Between 2002 and 2022, these regions experienced a continuous population decline, an increase in the average age, and a growing share of single-person households. Simultaneously, there has been a reduction in agricultural land and a noticeable expansion of forested and grassland areas, particularly in hilly and mountainous terrain. This paper aims to explore the interrelationship between demographic indicators and land cover changes in these areas. Pearson’s correlation analysis was applied to data from the national population censuses and the CORINE Land Cover datasets for 1990 and 2018. The strongest positive correlation was found between the decline in the number of households and the reduction in agricultural land. Conversely, the expansion of forested areas showed a negative correlation with most demographic indicators. The findings reflect trends similar to those observed in other Eastern European countries but also reveal specific patterns of spatial marginalization unique to Serbia. In the study, the conclusion leads to the idea that depopulated border areas are in transition between past and future functions that will be influenced by their resource base. Full article
Show Figures

Figure 1

19 pages, 8271 KiB  
Article
Characteristics of Hydrodynamic Parameters of Different Understory Vegetation Patterns
by Chenhui Zhang, Jiali Wang and Jianbo Jia
Plants 2025, 14(16), 2556; https://doi.org/10.3390/plants14162556 - 17 Aug 2025
Viewed by 228
Abstract
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, [...] Read more.
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, 60%, and 90%) were set up by simulating rainfall (45, 60, 90, and 120 mm·h−1) to evaluate the runoff-sediment process and the response characteristics of hydrodynamic parameters. The results showed that increasing vegetation cover significantly reduced soil erosion on forest slopes (p < 0.05). When the vegetation cover ranged from 60% to 90%, vegetation pattern C and pattern D were the most effective in suppressing erosion, where increased cover improved runoff stability. Under low-cover conditions, overland flow tended toward turbulent and rapid regimes, whereas under high cover conditions, flow was primarily laminar and slow. Patterns C and D significantly reduced flow velocity and water depth (p < 0.05). Structural equation patterning revealed that, under different vegetation patterns, the runoff power (ω), Reynolds number (Re), and resistance coefficient (f) more effectively characterized the erosion process. Among these, the Reynolds number and runoff power were the dominant factors driving erosion on red soil slopes. By contrast, runoff shear stress was significantly reduced under high-cover conditions and showed weak correlation with sediment yield, suggesting that it was unsuitable as an indicator of slope erosion. Segmental vegetation arrangements and increasing vegetation cover near runoff outlets—especially at 60–90% coverage—effectively reduced soil erosion. These findings provide scientific insight into the hydrodynamic mechanisms of vegetation cover on slopes and offer theoretical support for optimizing soil and water conservation strategies on hilly terrain. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

26 pages, 5311 KiB  
Article
Design and Experiment for a Crawler Self-Propelled Potato Combine Harvester for Hilly and Mountainous Areas
by Huimin Fang, Jinyu Li, Qingyi Zhang, Guangsen Cheng, Jialu Lu and Jie Zhang
Agriculture 2025, 15(16), 1748; https://doi.org/10.3390/agriculture15161748 - 15 Aug 2025
Viewed by 327
Abstract
Aiming at key issues in harvesting film-covered potatoes in hilly and mountainous areas—incomplete residual film collection, poor potato–soil separation, and high damage from potato-collecting devices—this study developed a crawler self-propelled potato harvester suitable for these regions. This study first expounds the overall structure [...] Read more.
Aiming at key issues in harvesting film-covered potatoes in hilly and mountainous areas—incomplete residual film collection, poor potato–soil separation, and high damage from potato-collecting devices—this study developed a crawler self-propelled potato harvester suitable for these regions. This study first expounds the overall structure and working principle of the potato harvester and then conducts principal analysis and structural design for key components (film-collecting device, digging device, primary conveying and separating device, secondary conveying and separating device, and intelligent potato-collecting device) from the perspectives of material force and movement. Finally, field performance tests were carried out in Huangzhong County, Xining City, Qinghai Province. The test results show that the machine can achieve an operation effect with a potato harvest loss rate of 2.4%, a potato damage rate of 1.4%, an impurity content rate of 2.8%, a skin-breaking rate of 2.7%, and a residual film cleaning rate of 89.6%, meeting the potato harvesting needs of this region. The lightweight self-propelled crawler potato harvester designed in this paper can realize functions such as residual film collection, potato–soil vibration separation, manual auxiliary sorting, and intelligent potato boxing, providing technical and equipment references for the harvesting of film-covered potatoes in complex terrain areas. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

31 pages, 6857 KiB  
Article
Performance Analysis and Experimental Validation of Small-Radius Slope Steering for Mountainous Crawler Tractors
by Luojia Duan, Longhai Zhang, Kaibo Kang, Yuxuan Ji, Xiaodong Mu, Hansong Wang, Junrui Zhou, Zhijie Liu and Fuzeng Yang
Agronomy 2025, 15(8), 1956; https://doi.org/10.3390/agronomy15081956 - 13 Aug 2025
Viewed by 296
Abstract
This study investigates the dynamic performance of mountainous crawler tractors during small-radius slope steering, providing theoretical support for power machinery design in hilly and mountainous regions. Addressing the mechanization demands in complex terrains and existing research gaps, a steering dynamics model is established. [...] Read more.
This study investigates the dynamic performance of mountainous crawler tractors during small-radius slope steering, providing theoretical support for power machinery design in hilly and mountainous regions. Addressing the mechanization demands in complex terrains and existing research gaps, a steering dynamics model is established. The model incorporates an amplitude-varied multi-peak cosine ground pressure distribution, employs position vectors and rotation matrices to characterize 3D pose variations in the tractor’s center of mass, and integrates slope angle, soil parameters, vehicle geometry, center-of-mass shift, bulldozing resistance, and sinkage resistance via d’Alembert’s principle. Numerical simulations using Maple 2024 analyzed variations in longitudinal offset of the instantaneous steering center, bilateral track traction forces, and bulldozing resistance with slope, speed, and acceleration. Variable-gradient steering tests on the “Soil-Machine-Crop” Comprehensive Experimental Platform demonstrated model accuracy, with <8% mean error and <12% maximum relative error between predicted and measured track forces. This research establishes a theoretical foundation for predicting, evaluating, and controlling the steering performance/stability of crawler tractors in complex slope conditions. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

16 pages, 1990 KiB  
Article
Applicability Assessment of ERA5 Surface Wind Speed Data Across Different Landforms in China
by Peng Zuo, Xiangdong Chen and Lihua Zhu
Atmosphere 2025, 16(8), 956; https://doi.org/10.3390/atmos16080956 - 11 Aug 2025
Viewed by 439
Abstract
Accurate surface wind speed data are vital for atmospheric science, climatology, and energy applications. European Centre for Medium-Range Weather Forecasts Reanalysis v.5 (ERA5), as one of the most widely used global reanalysis datasets, has insufficient assessment of its applicability across diverse landform types. [...] Read more.
Accurate surface wind speed data are vital for atmospheric science, climatology, and energy applications. European Centre for Medium-Range Weather Forecasts Reanalysis v.5 (ERA5), as one of the most widely used global reanalysis datasets, has insufficient assessment of its applicability across diverse landform types. Using the gridded observational dataset over China (CN05.1) and the Global Basic Landform Units dataset, this study evaluated the surface wind speed data from ERA5 over various altitudinal zones and undulating terrains in China via root-mean-square differences (RMSD) and mean absolute percentage error (MAPE) against CN05.1 observations. Results reveal significant regional variations, with ERA5 effectively capturing the spatial distribution of mean wind speeds but systematically underestimating magnitudes, particularly in plateau and mountainous regions. ERA5 reanalysis fails to reproduce the observed altitudinal increase in surface wind speed. Elevation-dependent biases are prominent, with RMSD and MAPE increasing from low-altitude to high-altitude areas. Terrain complexity exacerbates errors, showing maximum deviations in high-relief mountains and minimum deviations in hilly regions. These biases evolve seasonally, peaking in spring and reaching minima in winter. In summary, discrepancies between observations and ERA5 vary with altitude, topographic relief, and season. The most significant deviations occur for spring surface winds in high-altitude, high-relief mountains, with mean RMSD reaching 3.3 m/s and MAPE 553%. The findings highlight the limitations of ERA5 reanalysis data in scientific and operational contexts over complex terrains. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 8231 KiB  
Article
Comparative Assessment Using Different Topographic Change Detection Algorithms for Gravity Erosion Quantification Based on Multi-Source Remote Sensing Data
by Jinfei Hu, Haoyong Fu, Pengfei Li, Jinbo Wang and Lu Yan
Water 2025, 17(15), 2309; https://doi.org/10.3390/w17152309 - 3 Aug 2025
Viewed by 434
Abstract
Gravity erosion is one of the main physical processes of soil erosion and sediment sources in catchments, and its spatiotemporal patterns and driving mechanisms are seriously understudied, mainly due to the the great difficulties in monitoring and quantifying. This study obtained gravity erosion [...] Read more.
Gravity erosion is one of the main physical processes of soil erosion and sediment sources in catchments, and its spatiotemporal patterns and driving mechanisms are seriously understudied, mainly due to the the great difficulties in monitoring and quantifying. This study obtained gravity erosion amounts by runoff scouring experiments on the field slope of the hilly–gully region of the Chinese Loess Plateau. The terrain point cloud before and after gravity erosion was obtained based on the TLS, SfM and the fusion of single-scan TLS and SfM, and then the gravity erosion was estimated by four terrain change detection algorithms (DoD, C2C, C2M and M3C2). Results showed that the M3C2 algorithm plus fused data had the highest quantization accuracy among all the algorithms and data sources, with a relative error of 14.71%. The fused data combined with M3C2 algorithm performed much better than other algorithms and data sources for the different gravity erosion magnitudes (mean relative error < 17.00%). The DoD algorithm plus TLS data were preferable for collapse areas, while the M3C2 algorithm plus TLS was suitable for the alcove area. This study provides a useful reference for the monitor and quantitative research of gravity erosion in complex topographic areas. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

19 pages, 12174 KiB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 389
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

26 pages, 4142 KiB  
Review
Progress in Mechanized Harvesting Technologies and Equipment for Minor Cereals: A Review
by Xiaojing Ren, Fei Dai, Wuyun Zhao, Ruijie Shi, Junzhi Chen and Leilei Chang
Agriculture 2025, 15(15), 1576; https://doi.org/10.3390/agriculture15151576 - 22 Jul 2025
Viewed by 611
Abstract
Minor cereals are an important part of the Chinese grain industry, accounting for about 8 percent of the country’s total grain-growing area. Minor cereals include millet, buckwheat, Panicum miliaceum, and other similar grains. Influenced by topographical and climatic factors, the distribution of [...] Read more.
Minor cereals are an important part of the Chinese grain industry, accounting for about 8 percent of the country’s total grain-growing area. Minor cereals include millet, buckwheat, Panicum miliaceum, and other similar grains. Influenced by topographical and climatic factors, the distribution of minor cereals in China is mainly concentrated in the plateau and hilly areas north of the Yangtze River. In addition, there are large concentrations of minor cereals in Inner Mongolia, Heilongjiang, and other areas with flatter terrain. However, the level of mechanized harvesting in these areas is still low, and there is little research on the whole process of mechanized harvesting of minor cereals. This paper aims to discuss the current status of the minor cereal industry and its mechanization level, with particular attention to the challenges encountered in research related to the mechanized harvesting of minor cereals, including limited availability of suitable machinery, high losses, and low efficiency. The article provides a comprehensive overview of the key technologies that must be advanced to achieve mechanized harvesting throughout the process, such as header design, threshing, cleaning, and intelligent modular systems. It also summarizes current research progress on advanced equipment for mechanized harvesting of minor cereals. In addition, the article puts forward suggestions to promote the development of mechanized harvesting of minor cereals, focusing on aspects such as crop variety optimization, equipment modularization, and intelligentization technology, aiming to provide a reference for the further development and research of mechanized harvesting technology for minor cereals in China. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 5467 KiB  
Article
Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China
by Cheng Lin, Hao Chen, Jiawen Chen, Shaolong Gou, Yande Liu and Jun Hu
Sensors 2025, 25(14), 4498; https://doi.org/10.3390/s25144498 - 19 Jul 2025
Viewed by 359
Abstract
To address the limitations of conventional single-track rail systems in challenging hilly and mountainous terrains, which are ill-suited for transporting heavy agricultural machinery, there is a critical need to develop a specialized the double-track rail transportation system optimized for orchard equipment. Recognizing this [...] Read more.
To address the limitations of conventional single-track rail systems in challenging hilly and mountainous terrains, which are ill-suited for transporting heavy agricultural machinery, there is a critical need to develop a specialized the double-track rail transportation system optimized for orchard equipment. Recognizing this requirement, our research team designed and implemented a double-track rail transportation system. In this innovative system, the rail functions as the pivotal component, with its structural properties significantly impacting the machine’s overall stability and operational performance. In this study, resistance strain gauges were employed to analyze the stress–strain distribution of the track under a full load of 750 kg, a critical factor in the system’s design. To further investigate the structural performance of the double-track rail, the impact hammer method was utilized in conjunction with triaxial acceleration sensors to conduct experimental modal analysis (EMA) under actual support conditions. By integrating the Eigensystem Realization Algorithm (ERA), the first 20 natural modes and their corresponding parameters were successfully identified with high precision. A comparative analysis between finite element simulation results and experimental measurements was performed, revealing the double-track rail’s inherent vibration characteristics under constrained modal conditions versus actual boundary constraints. These valuable findings serve as a theoretical foundation for the dynamic optimization of rail structures and the mitigation of resonance issues. The advancement of hilly and mountainous rail transportation systems holds significant promise for enhancing productivity and transportation efficiency in agricultural operations. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

22 pages, 4050 KiB  
Review
A Review of Pressure Regulation Technologies for Irrigation Pipeline Systems
by Fan Yang, Hong Li and Yue Jiang
Agriculture 2025, 15(14), 1528; https://doi.org/10.3390/agriculture15141528 - 15 Jul 2025
Viewed by 393
Abstract
This review examines water pressure regulation technologies in irrigation systems tailored for hilly and mountainous terrains. In such areas, effective water management is crucial due to the terrain’s complexity and variability, which can greatly affect water distribution and resource efficiency. This text analyzes [...] Read more.
This review examines water pressure regulation technologies in irrigation systems tailored for hilly and mountainous terrains. In such areas, effective water management is crucial due to the terrain’s complexity and variability, which can greatly affect water distribution and resource efficiency. This text analyzes various types of pressure-regulating devices, including direct-acting and pilot-operated regulators, delving into their working principles, performance characteristics, and practical advantages and disadvantages. This summary also addresses the current research trends in these technologies, focusing on design optimization and performance enhancements. By summarizing existing studies and highlighting areas for future research, this review aims to provide a solid foundation for technological advancements in agricultural irrigation systems suited to challenging landscapes. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

40 pages, 3472 KiB  
Review
The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei and Anze Li
Appl. Sci. 2025, 15(13), 7505; https://doi.org/10.3390/app15137505 - 3 Jul 2025
Viewed by 555
Abstract
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability [...] Read more.
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability for mechanization, traditional agricultural machinery experiences significantly reduced operational efficiency—typically by 30% to 50%—along with poor mobility. These limitations impose serious constraints on grain yield stability and the advancement of agricultural modernization. Therefore, enhancing the scenario-adaptive performance of chassis systems (e.g., slope adaptability ≥ 25°, lateral tilt stability > 30°) is a major research priority for China’s agricultural equipment industry. This paper presents a systematic review of the global development status of agricultural machinery chassis tailored for hilly and mountainous environments. It focuses on three core subsystems—power systems, traveling systems, and leveling systems—and analyzes their technical characteristics, working principles, and scenario-specific adaptability. In alignment with China’s “Dual Carbon” strategy and the unique operational requirements of hilly–mountainous areas (such as high gradients, uneven terrain, and small field sizes), this study proposes three key technological directions for the development of intelligent agricultural machinery chassis: (1) Multi-mode traveling mechanism design: Aimed at improving terrain traversability (ground clearance ≥400 mm, obstacle-crossing height ≥ 250 mm) and traction stability (slip ratio < 15%) across diverse landscapes. (2) Coordinated control algorithm optimization: Designed to ensure stable torque output (fluctuation rate < ±10%) and maintain gradient operation efficiency (e.g., less than 15% efficiency loss on 25° slopes) through power–drive synergy while also optimizing energy management strategies. (3) Intelligent perception system integration: Facilitating high-precision adaptive leveling (accuracy ± 0.5°, response time < 3 s) and enabling terrain-adaptive mechanism optimization to enhance platform stability and operational safety. By establishing these performance benchmarks and focusing on critical technical priorities—including terrain-adaptive mechanism upgrades, energy-drive coordination, and precision leveling—this study provides a clear roadmap for the development of modular and intelligent chassis systems specifically designed for China’s hilly and mountainous regions, thereby addressing current bottlenecks in agricultural mechanization. Full article
Show Figures

Figure 1

23 pages, 6989 KiB  
Article
Design of the Vibrating Sieving Mechanism for a Quinoa Combine Harvester and Coupled Analysis of DEM-MBD
by Ruijie Shi, Xiaojing Ren, Fei Dai, Wuyun Zhao and Tianfu Wang
Agriculture 2025, 15(12), 1317; https://doi.org/10.3390/agriculture15121317 - 19 Jun 2025
Viewed by 518
Abstract
Quinoa is renowned for its high nutritional value, which not only meets the nutritional needs of the human body but also makes it a suitable option for individuals with diabetes and celiac disease due to its low sugar and gluten-free characteristics. In China, [...] Read more.
Quinoa is renowned for its high nutritional value, which not only meets the nutritional needs of the human body but also makes it a suitable option for individuals with diabetes and celiac disease due to its low sugar and gluten-free characteristics. In China, the primary cultivation regions of quinoa are the Tibetan Plateau, the Yunnan–Guizhou Plateau, and Northwest China, which are predominantly characterized by hilly and mountainous terrain, resulting in the gradual development of mechanized harvesting processes. The efficacy of the mechanized harvesting process in these regions is suboptimal, exhibiting poor clearance and efficiency. In this paper, the design and MBD-EDEM coupling analysis of the quinoa combine harvester’s cleaning and screening mechanism is carried out to simulate the cleaning process of quinoa threshing materials. The results show that the vibrating screen can complete the forward sliding and dispersed throwing up of the materials and effectively avoid the accumulation of the threshing materials. The coupling results of the permeability of each material in the cleaning and screening mechanism, as well as the vibrating screen movement condition, indicate that when the herringbone screen opening degree is set in the range of 15° to 30°, the cleaning and screening device can achieve a high cleaning efficiency while maintaining a low impurity rate. Field trial data further confirm that within this opening range, the cleaning effect and efficiency both exhibit significant advantages. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 1733 KiB  
Article
Decentralized Communication-Free Controller for Synchronous Solar-Powered Water Pumping with Emulated Neighbor Sensing
by Roungsan Chaisricharoen, Wanus Srimaharaj, Punnarumol Temdee, Hamed Yahoui and Nina Bencheva
Sensors 2025, 25(12), 3811; https://doi.org/10.3390/s25123811 - 18 Jun 2025
Viewed by 375
Abstract
Solar-powered pumping systems using series pumps are commonly applied in the delivery of water to remote agricultural regions, particularly in hilly tropical terrain. The synchronization of these pumps typically depends on reliable communication; however, dense vegetation, elevation changes, and weather conditions often disrupt [...] Read more.
Solar-powered pumping systems using series pumps are commonly applied in the delivery of water to remote agricultural regions, particularly in hilly tropical terrain. The synchronization of these pumps typically depends on reliable communication; however, dense vegetation, elevation changes, and weather conditions often disrupt signals. To address these limitations, a fully decentralized, communication-free control system is proposed. Each pumping station operates independently while maintaining synchronized operation through emulated neighbor sensing. The system applies a discrete-time control algorithm with virtual sensing that estimates neighboring pump statuses. Each station consists of a solar photovoltaic (PV) array, variable-speed drive, variable inlet valve, reserve tank, and local control unit. The controller adjusts the valve positions and pump power based on real-time water level measurements and virtual neighbor sensing. The simulation results across four scenarios, including clear sky, cloudy conditions, temporary outage, and varied irradiance, demonstrated steady-state operation with no water overflow or shortage and a steady-state error less than 4% for 3 m3 transfer. The error decreased as the average power increased. The proposed method maintained system functionality under simulated power outage and variable irradiance, confirming its suitability for remote agricultural areas where communication infrastructure is limited. Full article
Show Figures

Figure 1

Back to TopTop