A Review of Pressure Regulation Technologies for Irrigation Pipeline Systems
Abstract
1. Introduction
2. Methods
3. Results and Discussions
3.1. Direct-Acting Pressure Regulator
3.2. Diaphragm Pressure Reducing Valves
3.3. Bio-Inspired Pressure Compensation
3.4. Controllable Butterfly Valve
3.5. Pressure-Compensating Emitter
3.6. Pump as Turbine Instead of Pressure-Reducing Valve
3.7. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Marangon, F.; Troiano, S.; Visintin, F. The Economic Value of Olive Plantation in Rural Areas: A Study on a Hill Region Between Italy and Slovenia. In Proceedings of the 12th Congress of the European Association of Agricultural Economists (EAAE), Parma, Italy, 26–29 August 2008. [Google Scholar]
- Daniel Kipruto, T.; Clement Cheruiyot, T.; Lydia, J. Analysis of Technical Efficiency of Small Scale Tea Production in Nandi Hills – Nandi County: A Data Envelopment Analysis Approach. Int. J. Res. Innov. Soc. Sci. 2020, 4, 149–163. [Google Scholar]
- María Galindo-Uribe, D.; Mario Hoyos-Hoyos, J.; Isaacs-Cubides, P.; Corral-Gómez, N.; Urbina-Cardona, N. Classification and sensitivity of taxonomic and functional diversity indices of anurans in the Andean coffee cultural landscape. Ecol. Indic. 2022, 136, 108650. [Google Scholar] [CrossRef]
- Vernie, A.; Rafdinal, R.; Ifadatin, S. Inventory of Edible Fruit Species in The Tembawang Forest Semahung Hills Saham Village Landak Regency. Biol. Samudra 2023, 5, 47–59. [Google Scholar] [CrossRef]
- Hu, H.J.; Lu, Y.Z.; Hu, Y.G.; Ding, R.S. Evaluation of Two Surface Renewal Methods for Calculating the Sensible Heat Flux over a Tea Field Ecosystem in Hilly Terrain. Agronomy 2023, 13, 1302. [Google Scholar] [CrossRef]
- Kannan, V.; Raja Priya, P.; Tharkeshwari, K.; Mazumder, B.; Gayatri, P.; Neha, J. Assessment of water demand and potential water sources to face future water scarcity of hilly regions. AQUA-Water Infrastruct. Ecosyst. Soc. 2023, 72, 299–312. [Google Scholar] [CrossRef]
- Mali, S. Irrigation Water Management Practices for Improved Crop Production and Productivity in Eastern Plateau and Hill Region of India. Agric. Food e-Newsl. 2023, 5, 206–209. [Google Scholar]
- Darko, R.O.; Yuan, S.Q.; Hong, L.; Liu, J.P.; Yan, H.F. Irrigation, a productive tool for food security—A review. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2016, 66, 191–206. [Google Scholar] [CrossRef]
- Sruthy, K.T.; Arjun, T.P. Water Requirement of Major Tuber Crops: A Review. Int. J. Environ. Clim. Change 2023, 13, 1482–1487. [Google Scholar] [CrossRef]
- Menzel, C. Plant water relations and irrigation. In Litchi and Longan: Botany, Production, and Uses; CABI Publishing: Wallingford, UK, 2005; pp. 183–207. [Google Scholar]
- Aiken, R.; Lamm, F.; AbouKheira, A. Water use of oilseed crops. In Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO, USA, 22–23 February 2011. [Google Scholar]
- Dietz, K.J.; Zörb, C.; Geilfus, C.M. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Singh, A.K.; Ansari, M.I. Effect of Drought Stress on Crop Production. In New Frontiers in Stress Management for Durable Agriculture; Rakshit, A., Singh, H.B., Singh, A.K., Singh, U.S., Fraceto, L., Eds.; Springer: Singapore, 2020; pp. 35–47. [Google Scholar]
- Wang, X.W.; Cai, H.J.; Zheng, Z.; Yu, L.Y.; Wang, Z.S.; Li, L. Modelling root water uptake under deficit irrigation and rewetting in Northwest China. Agron. J. 2020, 112, 158–174. [Google Scholar] [CrossRef]
- Kumari, P.; Bara, A.; Kumar, M.; Job, M.; Rai, P. Crop water requirement and water use efficiency of cauliflower under mulching and drip irrigation in eastern Plateau hills region of Jharkhand. Progress. Hortic. 2020, 52, 81–87. [Google Scholar] [CrossRef]
- Steele, D.D.; Greenland, R.G.; Hatterman-Valenti, H.M. Furrow vs hill planting of sprinkler-irrigated russet burbank potatoes on coarse-textured soils. Am. J. Potato Res. 2006, 83, 249–257. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.W.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in Sprinkler Irrigation: A Review in the Context of Precision Irrigation for Crop Production. Agronomy 2024, 14, 47. [Google Scholar] [CrossRef]
- Darko, R.O.; Yuan, S.Q.; Liu, J.P.; Yan, H.F.; Zhu, X.Y. Overview of advances in improving uniformity and water use efficiency of sprinkler irrigation. Int. J. Agric. Biol. Eng. 2017, 10, 1–15. [Google Scholar] [CrossRef]
- Brouwer, C.; Prins, K.; Kay, M.; Heibloem, M. Irrigation water management: Irrigation methods. Train. Man. 1988, 9, 5–7. [Google Scholar]
- Wannapop, R.; Jearsiripongkul, T.; Jiamjiroch, K. Effect of elevation to accuracy in water pipeline network simulation. Eng. Appl. Sci. Res. 2016, 43, 454–458. [Google Scholar]
- Daccache, A.; Lamaddalena, N.; Fratino, U. Assessing Pressure Changes in an On-Demand Water Distribution System on Drip Irrigation Performance—Case Study in Italy. J. Irrig. Drain. Eng. 2010, 136, 261–270. [Google Scholar] [CrossRef]
- Wang, W.; Xu, R.; Wei, R.; Wang, W.; Hu, X. Effects of different pressures and laying lengths of micro-sprinkling hose irrigation on irrigation uniformity and yield of spring wheat. Agric. Water Manag. 2023, 288, 108495. [Google Scholar] [CrossRef]
- Bruckler, L.; Lafolie, F.; Ruy, S.; Granier, J.; Baudequin, D. Modelling the agricultural and environmental consequences of non-uniform irrigation on a maize crop. 1. Water balance and yield. Agronomie 2000, 20, 609–624. [Google Scholar] [CrossRef]
- Dechmi, F.; Playán, E.; Cavero, J.; Faci, J.; Martínez-Cob, A. Wind effects on solid set sprinkler irrigation depth and yield of maize (Zea mays). Irrig. Sci. 2003, 22, 67–77. [Google Scholar] [CrossRef]
- Stern, J.; Bresler, E. Nonuniform sprinkler irrigation and crop yield. Irrig. Sci. 1983, 4, 17–29. [Google Scholar] [CrossRef]
- Jiménez, M. La Distribución del Agua Bajo Riego por Aspersión Estacionario y su Influencia Sobre el Rendimiento del Cultivo de la Cebolla (Allium cepa L.). Doctoral Thesis, ETSIA, Universidad de Castilla-La Mancha, Albacete, Spain, 2008. [Google Scholar]
- Miao, Q.; Gonçalves, J.M.; Li, R.; Gonçalves, D.; Levita, T.; Shi, H. Assessment of Precise Land Levelling on Surface Irrigation Development. Impacts on Maize Water Productivity and Economics. Sustainability 2021, 13, 1191. [Google Scholar] [CrossRef]
- Bai, M.; Xu, D.; Li, Y.; Zhang, S.; Liu, S. Coupled impact of spatial variability of infiltration and microtopography on basin irrigation performances. Irrig. Sci. 2017, 35, 437–449. [Google Scholar] [CrossRef]
- Naresh, R.; Singh, S.; Misra, A.; Tomar, S.; Kumar, P.; Kumar, V.; Kumar, S. Evaluation of the laser leveled land leveling technology on crop yield and water use productivity in Western Uttar Pradesh. Afr. J. Agric. Res. 2014, 9, 473–478. [Google Scholar] [CrossRef]
- Zhang, Q.-q.; Luo, H.-b.; Yan, J.-m. Integrating biodiversity conservation into land consolidation in hilly areas—A case study in southwest China. Acta Ecol. Sin. 2012, 32, 274–278. [Google Scholar] [CrossRef]
- Jat, M.; Gathala, M.K.; Ladha, J.; Saharawat, Y.; Jat, A.; Kumar, V.; Sharma, S.; Kumar, V.; Gupta, R. Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil Tillage Res. 2009, 105, 112–121. [Google Scholar] [CrossRef]
- Aquino, L.S.; Timm, L.C.; Reichardt, K.; Barbosa, E.P.; Parfitt, J.M.B.; Nebel, A.L.C.; Penning, L.H. State-space approach to evaluate effects of land levelling on the spatial relationships of soil properties of a lowland area. Soil Tillage Res. 2015, 145, 135–147. [Google Scholar] [CrossRef]
- Zhiliang, D. Initial Exploration of Pressure Reduction in Gravity Flow Pipeline System Pressure Reducing Tank. J. Water Resour. Water Eng. 1993, 4, 58–62. [Google Scholar]
- Dang, Z.; Tian, C. Research on Automatic Water Level Control Device for Self-Pressure Sprinkler Irrigation Pressure Reducing Tank. China Rural Water Hydropower 1994, 3, 33–35. [Google Scholar]
- Zhiliang, D. Determination of Available Volume of Pressure-Reduction Pool for Self-Pressure Sprinkler Irrigation. J. Xi’an Univ. Technol. 1999, 15, 66–68. [Google Scholar] [CrossRef]
- Zumin, R. The Planning-layout and Application of Sprinkler on Sloping Land. Mod. Agric. Sci. 2008, 15, 51–52. [Google Scholar]
- Pérez, R.; Martínez, F.; Vela, A. Cost reduction in irrigation networks by an efficient use of pressure reducing valves. In Pipeline Systems; Springer: Dordrecht, The Netherlands, 1992; pp. 43–57. [Google Scholar]
- Zhu, H.; Sorensen, R.; Butts, C.; Lamb, M.; Blankenship, P. A pressure regulating system for variable irrigation flow controls. Appl. Eng. Agric. 2002, 18, 533–540. [Google Scholar] [CrossRef]
- Pang, Y.; Li, H.; Tang, P.; Chen, C. Irrigation scheduling of pressurized irrigation networks for minimizing energy consumption. Irrig. Drain. 2023, 72, 268–283. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Use of hydraulically operated PRVs for pressure regulation and power generation in water distribution networks. J. Water Resour. Plan. Manag. 2020, 146, 04020047. [Google Scholar] [CrossRef]
- Cho, N.-K.; Bansal, P.; Hurst, A.M. Investigating Structural Response of Pressure Reducing Valve of Supercritical Steam Generator System Under Cyclic Moments, Thermal Transient, and Pressure Loadings. In Proceedings of the International Conference on Nuclear Engineering, Virtually, 4–5 August 2020; p. V001T006A015. [Google Scholar]
- Chacón, M.C.; Díaz, J.A.R.; Morillo, J.G.; McNabola, A. Evaluation of the design and performance of a micro hydropower plant in a pressurised irrigation network: Real world application at farm-level in Southern Spain. Renew. Energy 2021, 169, 1106–1120. [Google Scholar] [CrossRef]
- Loganathan, S.; Esakkimuthu, P.; Srivatsan, M.; Anand, M. Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System; SAE Technical Paper; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
- Morselli, S.; Gessi, S.; Marani, P.; Martelli, M.; De Hieronymis, C.M.R. Dynamics of pilot operated pressure relief valves subjected to fast hydraulic transient. AIP Conf. Proc. 2019, 2191, 020116. [Google Scholar]
- McGlone, R.; Wichmann, H.; Fitzsimmons, M. Comparison of operating the Space Shuttle orbiter primary thruster with pilot operated versus direct acting valves. In Proceedings of the 22nd Joint Propulsion Conference, Huntsville, AL, USA, 16–18 June 1986; p. 1441. [Google Scholar]
- Chenxu, X.; Hongju, C.; Haohan, T.; Hong, G.; Qin, S.; Yunfeng, H.; Peng, J. Next Generation of Underwater Wet-Mate Electrical Connectors. In Proceedings of the 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE), Changchun, China, 29–31 December 2023; pp. 165–172. [Google Scholar]
- Nesbitt, B. Handbook of Valves and Actuators: Valves Manual International; Elsevier: Oxford, UK, 2011. [Google Scholar]
- Mitra, S.; Mathew, S.; Rajan, A.; Sajeev, P. Design of a Gas Filled Bellow Pogo Suppression Device for Launch Vehicles. Adv. Astronaut. Sci. Technol. 2021, 4, 27–37. [Google Scholar] [CrossRef]
- Fale, V.; Shelare, S.; Khope, P. State of the art of pressure regulators for industrial applications. AIP Conf. Proc. 2023, 2800, 020151. [Google Scholar]
- He, X.; Zhao, D.; Sun, X.; Zhu, B. Theoretical and experimental research on a three-way water hydraulic pressure reducing valve. J. Press. Vessel Technol. 2017, 139, 041601. [Google Scholar] [CrossRef]
- Meniconi, S.; Brunone, B.; Mazzetti, E.; Laucelli, D.B.; Borta, G. Hydraulic characterization and transient response of pressure reducing valves: Laboratory experiments. J. Hydroinform. 2017, 19, 798–810. [Google Scholar] [CrossRef]
- García-Todolí, S.; Iglesias-Rey, P.; Martínez-Solano, F. Experimental analysis of proportional pressure reducing valves for water distribution systems. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 637–647. [Google Scholar]
- Hős, C.; Champneys, A.; Paul, K.; McNeely, M. Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms. J. Loss Prev. Process Ind. 2014, 31, 70–81. [Google Scholar] [CrossRef]
- Jin, Z.-j.; Wei, L.; Chen, L.-l.; Qian, J.-y.; Zhang, M. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve. J. Zhejiang Univ. Sci. A 2013, 14, 137–146. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, G.; Qian, J.; Fei, Y.; Jin, Z. Numerical simulation of flow-induced noise in high pressure reducing valve. PLoS ONE 2015, 10, e0129050. [Google Scholar] [CrossRef] [PubMed]
- Hanaei, S.; Lakzian, E. Numerical and experimental investigation of the effect of the optimal usage of pump as turbine instead of pressure-reducing valves on leakage reduction by genetic algorithm. Energy Convers. Manag. 2022, 270, 116253. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Srivastava, R. Gravity-fed drip irrigation system for hilly terraces of the northwest Himalayas. Irrig. Sci. 2003, 21, 151–157. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, N.; Singh, K.P.; Kumar, P.; Srinivas, K.; Srivastva, A.K. Integrating water harvesting and gravity-fed micro-irrigation system for efficient water management in terraced land for growing vegetables. Biosyst. Eng. 2009, 102, 106–113. [Google Scholar] [CrossRef]
- Lamaddalena, N.; Khila, S. Energy saving with variable speed pumps in on-demand irrigation systems. Irrig. Sci. 2012, 30, 157–166. [Google Scholar] [CrossRef]
- Uossef Gomrokchi, A. Dynamic Modeling of Variable Speed Pumps in Pressurized Irrigation System Considering Energy Consumption Analysis (Case Study: Ashrafieh Agro-Industry Irrigation System). Irrig. Drain. Struct. Eng. Res. 2017, 18, 143–160. [Google Scholar] [CrossRef]
- Ella, V.B.; Keller, J.; Reyes, M.R.; Yoder, R. A low-cost pressure regulator for improving the water distribution uniformity of a microtube-type drip irrigation system. Appl. Eng. Agric. 2013, 29, 343–349. [Google Scholar]
- Meniconi, S.; Brunone, B.; Mazzetti, E.; Laucelli, D.B.; Borta, G. Pressure reducing valve characterization for pipe system management. Procedia Eng. 2016, 162, 455–462. [Google Scholar] [CrossRef]
- Zhao, R.-H.; Zhang, Z.-H.; He, W.-Q.; Lou, Z.-K.; Ma, X.-Y. Synthetical Optimization of a Gravity-Driven Irrigation Pipeline Network System with Pressure-Regulating Facilities. Water 2019, 11, 1112. [Google Scholar] [CrossRef]
- Waller, P.; Yitayew, M. Irrigation and Drainage Engineering; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Lianhao, L.; Xinyue, Z.; Xiaodong, Q.; Guiming, L. Analysis of the decrease of center pivot sprinkling system uniformity and its impact on maize yield. Int. J. Agric. Biol. Eng. 2016, 9, 108–119. [Google Scholar]
- Chirgwin, G.A.; Sutton, B. A low-cost, high-precision drip emitter suitable for low-pressure micro-irrigation systems. Irrig. Sci. 2019, 37, 725–735. [Google Scholar] [CrossRef]
- Mahesha, M.; Venkatachalapathy, K.; Tulasidas, T.; Rajashekharappa, K. Emitter sensitivity to operating pressure and uniform slopes. Environ. Ecol. 2006, 24, 17–19. [Google Scholar]
- Keshtgar, A.; Bhuiyan, M.A.; Jayasuriya, N. Design of drip irrigation system using microtubes for full emission uniformity. Irrig. Drain. 2013, 62, 613–623. [Google Scholar] [CrossRef]
- Nakayama, F.S.; Boman, B.J.; Pitts, D.J. 11. Maintenance. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 2007; Volume 13, pp. 389–430. [Google Scholar]
- Surendran, U.; Jayakumar, M.; Marimuthu, S. Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Sci. Total Environ. 2016, 573, 1430–1440. [Google Scholar] [CrossRef]
- Ella, V.B.; Reyes, M.R.; Yoder, R. Effect of hydraulic head and slope on water distribution uniformity of a low-cost drip irrigation system. Appl. Eng. Agric. 2009, 25, 349–356. [Google Scholar] [CrossRef]
- Karlberg, L.; Rockström, J.; Annandale, J.G.; Steyn, J.M. Low-cost drip irrigation—A suitable technology for southern Africa?: An example with tomatoes using saline irrigation water. Agric. Water Manag. 2007, 89, 59–70. [Google Scholar] [CrossRef]
- Kincaid, D.C.; Romspert, D.G. Inexpensive Pressure Regulation for Irrigation Pipelines. Appl. Eng. Agric. 1996, 12, 203–207. [Google Scholar] [CrossRef]
- Li, L.; Niu, W. Influence of Spring on Pressure Regulating Effect of Micro-irrigation Pressure Regulator. J. Irrig. Drain. 2015, 34, 15–18+44. [Google Scholar] [CrossRef]
- Yan, H.J.; Yao, P.P.; Wang, M. Performance test and force analysis of pressure regulator used in irrigation system. J. Drain. Irrig. 2010, 6, 548–552. [Google Scholar]
- Tian, J.X.; Gong, S.H.; Li, G.Y.; Wang, J.D. Impacts of pressure regulator parameters on preset pressure in micro-irrigation system. Trans. CSAE 2005, 12, 48–51. [Google Scholar]
- Chen, X.; Wei, Z.; Wei, C.; He, K. Effect of compensation chamber structure on the hydraulic performance of pressure compensating drip emitters. Biosyst. Eng. 2022, 214, 107–121. [Google Scholar] [CrossRef]
- von Bemuth, R.D.; Baird, D. Characterizing Pressure Regulator Performance. Trans. ASAE 1990, 33, 145–150. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G. Optimization of a direct-acting pressure regulator for irrigation systems based on CFD simulation and response surface methodology. Irrig. Sci. 2017, 35, 383–395. [Google Scholar] [CrossRef]
- Kincaid, D.C. Evaluation of Very Low Pressure Sprinkler Irrigation and Reservoir Tillage for Efficient Use of Water and Energy: Final Report; U.S. Department of Energy: Washington, DC, USA, 1987.
- Talamini Junior, M.V.; de Araujo, A.C.S.; de Camargo, A.A.-O.; Saretta, E.; Frizzone, J.A. Operational Characterization of Pressure Regulating Valves. Sci. World J. 2018, 2018, 1213638. [Google Scholar] [CrossRef]
- Mohr, D. Performance Characterisation of Pressure Regulation Devices Used in Broad-Acre Irrigation; University of Southern Queensland: Toowoomba, Australia, 2011. [Google Scholar]
- Korven, H.C.; Wilcox, J.C. An Evaluation of Flow and Pressure Regulators for Sprinkler Irrigation. Trans. ASAE 1966, 9, 516–519. [Google Scholar] [CrossRef]
- Mbiya, B.M.; Fester, V.G.; Slatter, P.T. Evaluating resistance coefficients of straight-through diaphragm control valves. Can. J. Chem. Eng. 2009, 87, 704–714. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Zhang, C. Simulation analysis of the effects of friction on the performance of pressure regulator for drip tape. Comput. Electron. Agric. 2021, 184, 106130. [Google Scholar] [CrossRef]
- Ohlsson, P.-Å. Diaphragm valve development–challenging traditional thinking. Pharm. Eng. 2013, 33, 1–4. [Google Scholar]
- Heimann, A.; Meyer, N.; Liemberger, R. Tailoring the Specifications for Pressure Reducing Valves. In Proceedings of the 5th IWA Water Loss Reduction Specialist Conference, Cape Town, South Africa, 26–30 April 2009. [Google Scholar]
- Monserrat, J.; Rubio, A.; Cots, L. Diaphragm Valve Hydraulic Behavior Depending on Operating Pressure. J. Irrig. Drain. Eng. 2019, 145, 06019007. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Zhang, Y. A simple method for high-precision evaluation of valve flow coefficient by computational fluid dynamics simulation. Adv. Mech. Eng. 2017, 9, 1687814017713702. [Google Scholar] [CrossRef]
- Mehra, K. Literature Review on Design and Working of 3 Way Pilot Operated Diaphragm Controlled Hydraulic Control Valve. Int. J. Adv. Eng. Res. Sci. 2017, 4, 167–169. [Google Scholar] [CrossRef]
- Doghri, M.; Duchesne, S.; Poulin, A.; Villeneuve, J.-P. Regulation response of pilot operated diaphragm pressure reducing valves: Laboratory testing and impact on the performance of pressure control modes in water distribution systems. Can. J. Civ. Eng. 2021, 49, 636–643. [Google Scholar] [CrossRef]
- Thierheimer, W.; Alexandru, C.; Thierheimer, A.; Crauciuc, D. Performance of Diaphragm Elastic Elements in ABS. Appl. Mech. Mater. 2020, 896, 241–248. [Google Scholar] [CrossRef]
- Zimoch, P.J.; Tixier, E.; Joshi, A.; Hosoi, A.; Winter, A.G. Bio-Inspired, low-cost, self-regulating valves for drip irrigation in developing countries. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013; p. V005T006A040. [Google Scholar]
- Afschrift, M.; Clément, J.; van de Woestijne, K. Maximum expiratory flows and effort independency in patients with airway obstruction. J. Appl. Physiol. 1974, 37, 566–569. [Google Scholar] [CrossRef]
- Wang, J.; Yang, T.; Wei, T.; Chen, R.; Yuan, S. Experimental determination of local head loss of non-coaxial emitters in thin-wall lay-flat polyethylene pipes. Biosyst. Eng. 2020, 190, 71–86. [Google Scholar] [CrossRef]
- Tang, P.; Li, H.; Issaka, Z.; Chen, C. Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems. Agric. Water Manag. 2018, 200, 71–79. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R. An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrig. Sci. 2020, 38, 147–162. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of Drip Irrigation Emitter Density with Various Irrigation Levels on Physiological Parameters, Root, Yield, and Quality of Cherry Tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Li, J.; Jiang, Y.; Huang, X. Influence of micro/nano aeration on the diversity of the microbial community in drip irrigation to reduce emitter clogging. Biosyst. Eng. 2023, 235, 116–130. [Google Scholar] [CrossRef]
- Li, Y.-k.; Yang, P.-l.; Ren, S.-m.; Xu, T.-w. Hydraulic Characterizations of Tortuous Flow in Path Drip Irrigation Emitter. J. Hydrodyn. Ser. B 2006, 18, 449–457. [Google Scholar] [CrossRef]
- Perea, H.; Enciso, J.; Singh, V.; Dutta, D.; Lesikar, B. Statistical Analysis of Non-Pressure-Compensating and Pressure-Compensating Drip Emitters. J. Irrig. Drain. Eng. 2013, 139, 986–994. [Google Scholar] [CrossRef]
- Narain, J.; Winter, A.G. A Hybrid Computational and Analytical Model of Inline Drip Emitters. J. Mech. Des. 2018, 141, 071405. [Google Scholar] [CrossRef]
- Burt, C.; Feist, K. Low-Pressure Testing: Microirrigation Emitters; Irrigation Training & Research Center: San Luis Obispo, CA, USA, 2013. [Google Scholar]
- Oliver, M.M.H.; Hewa, G.A.; Pezzaniti, D. Thermal variation and pressure compensated emitters. Agric. Water Manag. 2016, 176, 29–39. [Google Scholar] [CrossRef]
- Wei, Q.; Shi, Y.; Dong, W.; Lu, G.; Huang, S. Study on hydraulic performance of drip emitters by computational fluid dynamics. Agric. Water Manag. 2006, 84, 130–136. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, L. Influence and analysis of structure design and optimization on the performance of a pit drip irrigation emitter*. Irrig. Drain. 2020, 69, 633–645. [Google Scholar] [CrossRef]
- Xing, S.; Wang, Z.; Zhang, J.; Liu, N.; Zhou, B. Simulation and Verification of Hydraulic Performance and Energy Dissipation Mechanism of Perforated Drip Irrigation Emitters. Water 2021, 13, 171. [Google Scholar] [CrossRef]
- Guo, L.; Bai, D.; Zhou, W.; Wang, X. Evaluation of numerical simulation accuracy for two-ways mixed flow drip irrigation emitter based on CFD. Int. J. Heat Technol. 2017, 35, 384–392. [Google Scholar] [CrossRef]
- Zhangzhong, L.; Yang, P.; Li, Y.; Ren, S. Effects of Flow Path Geometrical Parameters on Flow Characteristics and Hydraulic Performance of Drip Irrigation Emitters. Irrig. Drain. 2016, 65, 426–438. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Deng, T.; Tang, Y. The step-by-step CFD design method of pressure-compensating emitter. Trans. Chin. Soc. Agric. Eng. 2013, 28, 86–92. [Google Scholar]
- Wei, Z.; Ma, S.; Zhou, X.; Yuan, W. Influence factors on hydraulic performance of pressure-compensating emitter. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2015, 31, 19–25. [Google Scholar] [CrossRef]
- Shamshery, P.; Wang, R.-Q.; Tran, D.V.; Winter, A.G., V. Modeling the future of irrigation: A parametric description of pressure compensating drip irrigation emitter performance. PLoS ONE 2017, 12, e0175241. [Google Scholar] [CrossRef]
- Shamshery, P.; Winter, A.G., V. Shape and Form Optimization of On-Line Pressure-Compensating Drip Emitters to Achieve Lower Activation Pressure. J. Mech. Des. 2017, 140, 035001. [Google Scholar] [CrossRef]
- Morabito, A.; Hendrick, P. Pump as turbine applied to micro energy storage and smart water grids: A case study. Appl. Energy 2019, 241, 567–579. [Google Scholar] [CrossRef]
- Lima, G.M.; Junior, E.L.; Brentan, B.M. Selection of Pumps as Turbines Substituting Pressure Reducing Valves. Procedia Eng. 2017, 186, 676–683. [Google Scholar] [CrossRef]
- Stefanizzi, M.; Capurso, T.; Balacco, G.; Binetti, M.; Camporeale, S.M.; Torresi, M. Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks. Renew. Energy 2020, 162, 1292–1306. [Google Scholar] [CrossRef]
- Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H.M. Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resour. Manag. 2012, 26, 3947–3959. [Google Scholar] [CrossRef]
- Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H.M. PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies 2013, 6, 411–424. [Google Scholar] [CrossRef]
- Fecarotta, O.; Ramos, H.; Derakhshan, S.; Del Giudice, G.; Carravetta, A. Fine Tuning a PAT Hydropower Plant in a Water Supply Network to Improve System Effectiveness. J. Water Resour. Plan. Manag. 2018, 144, 04018038. [Google Scholar] [CrossRef]
- Gupta, A.; Kulat, K.D.; Bokde, N.; Marathe, D. Leakage Reduction in Water Distribution Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft Computing Techniques. Eng. Technol. Appl. Sci. Res. 2017, 7, 1528–1534. [Google Scholar] [CrossRef]
Type | Fluid | Size | Pressure | Accuracy | Flow | Sealing | Sensitivity | |
---|---|---|---|---|---|---|---|---|
Direct | Bellows | G | 1,2 | 1 | 1 | 2 | 2 | 2 |
Diaphragm | G, L | 1,2 | 1,2 | 2 | 1 | 3 | 3 | |
Piston | G, L | 1,2,3 | 1,2,3 | 3 | 3 | 2 | 1 | |
Pilot | Bellows | G | 1,2 | 1 | 3 | 3 | 2 | 2 |
Diaphragm | G, L | 1,2 | 1 | 3 | 2 | 2 | 3 | |
Piston | G, L | 1,2,3 | 1,2,3 | 3 | 3 | 2 | 1 |
Technology | Key Pros and Cons | Main Issues and Limitations | Improvements and Research Opportunities |
---|---|---|---|
Direct-Acting PRV | Pros: easy installation, low cost, fast response; Cons: limited regulation range, prone to oscillation | Initial outlet pressure overshoot, noticeable lag; not suitable for high-precision or high-flow applications | Optimize spring parameters and clearances; investigate coupling between setpoint and outlet pressure |
Pilot-Operated PRV | Pros: high accuracy, handles large flows, stable output; Cons: complex structure, high maintenance cost, slower response | Structural complexity, sensitive to particulates; requires filters | Simplify pilot system; develop lightweight materials and smart control strategies |
Diaphragm Valve | Pros: simple structure, corrosion-resistant, tolerates dirty fluids; Cons: deviation at high flow, material aging | Limited diaphragm lifespan; suitable only for low-precision scenarios | Optimize diaphragm material and thickness; establish fatigue life prediction models |
Biomimetic Self-Comp Valve | Pros: low cost, self-adjusting pressure; Cons: limited accuracy, affected by pipe elasticity and environment | Material degradation and dimensional instability; limited to low-pressure micro-irrigation | Improve manufacturing precision; develop durable materials; optimize biomimetic structure and porous array designs |
Control Butterfly Valve | Pros: light weight, low cost, suited for high flows; Cons: high friction/inertia, prone to blockage, manual adjustment | Significant lag; unsuitable for low-flow or high-accuracy needs | Simplify adjustment mechanism; add self-cleaning/isolation features; automatic tensioning module |
Pressure-Comp Emitter | Pros: constant flow, adapts to elevation changes; Cons: complex design and manufacturing, high cost | Multi-factor interactions unexplored; limited to low-flow micro-irrigation | Simplify internal structure; CFD + genetic algorithm coupled design; study internal turbulence characteristics |
Pump as Turbine (PAT) | Pros: recovers energy for power, sustainable; Cons: high capital/maintenance cost, efficiency limited by operating point | Narrow best-efficiency range; poor energy recovery at low flows; high upfront investment | Develop small-scale PAT units; enhance smart control and economic assessment; explore advanced control systems (e.g., HER) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Li, H.; Jiang, Y. A Review of Pressure Regulation Technologies for Irrigation Pipeline Systems. Agriculture 2025, 15, 1528. https://doi.org/10.3390/agriculture15141528
Yang F, Li H, Jiang Y. A Review of Pressure Regulation Technologies for Irrigation Pipeline Systems. Agriculture. 2025; 15(14):1528. https://doi.org/10.3390/agriculture15141528
Chicago/Turabian StyleYang, Fan, Hong Li, and Yue Jiang. 2025. "A Review of Pressure Regulation Technologies for Irrigation Pipeline Systems" Agriculture 15, no. 14: 1528. https://doi.org/10.3390/agriculture15141528
APA StyleYang, F., Li, H., & Jiang, Y. (2025). A Review of Pressure Regulation Technologies for Irrigation Pipeline Systems. Agriculture, 15(14), 1528. https://doi.org/10.3390/agriculture15141528