Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = high-speed railway station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5599 KiB  
Article
Full-Scale Experimental Study on the Combustion Characteristics of a Fuel Island in a High-Speed Railway Station
by Wenbin Wei, Jiaming Zhao, Cheng Zhang, Yanlong Li and Saiya Feng
Fire 2025, 8(8), 291; https://doi.org/10.3390/fire8080291 - 24 Jul 2025
Viewed by 460
Abstract
This study aims to provide a reference for the fire protection design and fire emergency response strategies for fuel islands in high-speed railway stations and other transportation buildings. By using an industrial calorimeter, this paper analyzes the combustion characteristics of a fuel island. [...] Read more.
This study aims to provide a reference for the fire protection design and fire emergency response strategies for fuel islands in high-speed railway stations and other transportation buildings. By using an industrial calorimeter, this paper analyzes the combustion characteristics of a fuel island. For the fuel island setup in this test, the fuel island fire development cycle was relatively long, and the maximum fire source heat release rate reached 4615 kW. Before the fire source heat release rate reaches the maximum peak, the HRR curve slowly fluctuates and grows within the first 260 s after ignition. Within the time range of 260 s to 440 s, the fire growth rate resembled that of a t2 medium-speed fire, and within the time range of 400 s to 619 s, it more closely aligned with a t2 fast fire. It is generally suggested that the growth curve of t2 fast fire could be used for the numerical simulation of fuel island fires. The 1 h fire separation method adopted in this paper demonstrated a good fire barrier effect throughout the combustion process. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

19 pages, 4717 KiB  
Article
Seismic Response Characteristics of High-Speed Railway Hub Station Considering Pile-Soil Interactions
by Ning Zhang and Ziwei Chen
Buildings 2025, 15(14), 2466; https://doi.org/10.3390/buildings15142466 - 14 Jul 2025
Viewed by 196
Abstract
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to [...] Read more.
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to consider the engineering geological characteristics of the site, soil nonlinearity, and pile-soil interactions. The results show that the hub station structural system, considering pile-soil interaction, presents the ‘soft-upper-rigid-down’ characteristics as a whole, and the natural vibration is lower than that of the station structure with a rigid foundation assumption. Under the action of three strong seismic motions, the nonlinear site seismic effect is significant, the surface acceleration is significantly enlarged, and decreases with the buried depth. The interaction between pile and soil is related to the nonlinear seismic effect of the site, which deforms together to resist the foundation deformation caused by the strong earthquake motions, and the depth range affected by the interaction between the two increases with the increase of the intensity of earthquake motion. Among the three kinds of input earthquake motions, the predominant frequency of the Kobe earthquake is the closest to the natural vibration of the station structure system, followed by the El Centro earthquake. Moreover, the structures above the foundation of the high-speed railway hub station structural system are more sensitive to the spectral characteristics of Taft waves and El Centro waves compared to the site soil. This is also the main innovation point of this study. The existence of the roof leads to the gradual amplification of the seismic response of the station frame structure with height, and the seismic response amplification at the connection between the roof and the frame structure is the largest. The maximum story drift angle at the top floor of the station structure is also greater than that at the bottom floor. Full article
Show Figures

Figure 1

22 pages, 3776 KiB  
Article
Passenger-Centric Integrated Timetable Rescheduling for High-Speed Railways Under Multiple Disruptions
by Letian Fan, Ke Qiao, Yongsheng Chen, Meiling Hui, Tiqiang Shen and Pengcheng Wen
Sustainability 2025, 17(12), 5624; https://doi.org/10.3390/su17125624 - 18 Jun 2025
Viewed by 310
Abstract
In high-speed railway networks, multiple spatiotemporal correlated disruptions often cause passenger trip failures and delay propagation. Conventional single-disruption rescheduling strategies struggle to resolve such cross-line conflicts, necessitating an integrated, passenger-centric rescheduling framework for multiple correlated disruptions. This paper proposes a mixed-integer linear programming [...] Read more.
In high-speed railway networks, multiple spatiotemporal correlated disruptions often cause passenger trip failures and delay propagation. Conventional single-disruption rescheduling strategies struggle to resolve such cross-line conflicts, necessitating an integrated, passenger-centric rescheduling framework for multiple correlated disruptions. This paper proposes a mixed-integer linear programming (MILP) model to minimize total passenger delay time and trip failures under scenarios involving disruptions that are geographically dispersed but operationally interconnected. Two rescheduling mechanisms are introduced: a stepwise rescheduling method, which iteratively applies single-disruption models to optimize local problems, and an integrated rescheduling method, which simultaneously considers the global impact of all disruptions. Case studies on a real-world China’s high-speed railway network (29 stations, 42 trains, and 36,193 passenger trips) demonstrate that the proposed integrated rescheduling method reduces total passenger delays by 13% and trip failures by 67% within a 300 s computational threshold. By systematically coordinating spatiotemporal interdependencies among disruptions, this approach enhances network accessibility and service quality while ensuring operational safety, providing theoretical foundations for intelligent railway rescheduling. Full article
(This article belongs to the Special Issue Innovative Strategies for Sustainable Urban Rail Transit)
Show Figures

Figure 1

32 pages, 5808 KiB  
Article
Spatiotemporal Evolution of 3D Spatial Compactness in High-Speed Railway Station Areas: A Case Study of Chengdu-Chongqing North–South Line Stations (2015–2025)
by Tijin Gui, Hong Yuan and Ziyi Liu
Land 2025, 14(6), 1275; https://doi.org/10.3390/land14061275 - 13 Jun 2025
Viewed by 410
Abstract
As a pivotal node in urban spatial restructuring, the evolution of three-dimensional (3D) compactness in high-speed rail station areas is crucial for sustainable development. However, the existing research predominantly focuses on two-dimensional forms and lacks dynamic analysis and models that are adaptable to [...] Read more.
As a pivotal node in urban spatial restructuring, the evolution of three-dimensional (3D) compactness in high-speed rail station areas is crucial for sustainable development. However, the existing research predominantly focuses on two-dimensional forms and lacks dynamic analysis and models that are adaptable to complex terrains. This study develops an enhanced 3D gravitational model that integrates satellite imagery and Gaode building data to quantify the spatiotemporal heterogeneity and carry out multidimensional classification of the compactness across 16 stations in the Chengdu-Chongqing urban agglomeration (2015–2025), with driving factors being identified through correlation and regression analyses. The key findings reveal the following: (1) The mean compactness increased by 22.41%, exhibiting nonlinear heterogeneity characterized by high initial values with low growth rates versus low initial values with high growth rates. Spatially, the southern line evolved from a dual-core pattern at the terminals to multigradient development, while the northern line maintained stable growth despite gradient discontinuities. These spatial differentiations resulted from synergistic effects of urban sizes (station hierarchy), terrain features, administrative divisions, and the line affiliation. (2) The built-up land area (under equal study conditions) and vertical development emerged as key drivers, with the building height diversity demonstrating dual spatial effects (enhancing both compactness and aesthetic richness). Complex terrain characteristics were found to promote clustered urban land use and compact efficiency during initial development phases. This study proposes a planning framework that integrates morphology-adaptive zoning control, ecology-responsive compactness principles, and urban–rural integrated settlement patterns, providing quantitative tools for mountainous station development. These findings offer theoretical and practical support for achieving urban sustainability goals and meeting the 3D compactness and transit-oriented development requirements in territorial spatial planning. Full article
Show Figures

Figure 1

43 pages, 14882 KiB  
Article
Planning for Cultural Connectivity: Modeling and Strategic Use of Architectural Heritage Corridors in Heilongjiang Province, China
by Lyuhang Feng, Jiawei Sun, Tongtong Zhai, Mingrui Miao and Guanchao Yu
Buildings 2025, 15(12), 1970; https://doi.org/10.3390/buildings15121970 - 6 Jun 2025
Viewed by 555
Abstract
This study focuses on the systematic conservation of historical architectural heritage in Heilongjiang Province, particularly addressing the challenges of point-based protection and spatial fragmentation. It explores the construction of a connected and conductive heritage corridor network, using historical building clusters across the province [...] Read more.
This study focuses on the systematic conservation of historical architectural heritage in Heilongjiang Province, particularly addressing the challenges of point-based protection and spatial fragmentation. It explores the construction of a connected and conductive heritage corridor network, using historical building clusters across the province as empirical cases. A comprehensive analytical framework is established by integrating the nearest neighbor index, kernel density estimation, minimum cumulative resistance (MCR) model, entropy weighting, circuit theory, and network structure metrics. Kernel density analysis reveals a distinct spatial aggregation pattern, characterized by “one core, multiple zones.” Seven resistance factors—including elevation, slope, land use, road networks, and service accessibility—are constructed, with weights assigned through an entropy-based method to generate an integrated resistance surface and suitability map. Circuit theory is employed to simulate cultural “current” flows, identifying 401 potential corridors at the provincial, municipal, and district levels. A hierarchical station system is further developed based on current density, forming a coordinated structure of primary trunks, secondary branches, and complementary nodes. The corridor network’s connectivity is evaluated using graph-theoretic indices (α, β, and γ), which indicate high levels of closure, structural complexity, and accessibility. The results yield the following key findings: (1) Historical architectural resources in Heilongjiang demonstrate significant coupling with the Chinese Eastern Railway and multi-ethnic cultural corridors, forming a “one horizontal, three vertical” spatial configuration. The horizontal axis (Qiqihar–Harbin–Mudanjiang) aligns with the core cultural route of the railway, while the three vertical axes (Qiqihar–Heihe, Harbin–Heihe, and Mudanjiang–Luobei) correspond to ethnic cultural pathways. This forms a framework of “railway as backbone, ethnicity as wings.” (2) Comparative analysis of corridor paths, railways, and highways reveals structural mismatches in certain regions, including absent high-speed connections along northern trunk lines, insufficient feeder lines in secondary corridors, sparse terminal links, and missing ecological stations near regional boundaries. To address these gaps, a three-tier transportation coordination strategy is recommended: it comprises provincial corridors linked to high-speed rail, municipal corridors aligned with conventional rail, and district corridors connected via highway systems. Key enhancement zones include Yichun–Heihe, Youyi–Hulin, and Hegang–Wuying, where targeted infrastructure upgrades and integrated station hubs are proposed. Based on these findings, this study proposes a comprehensive governance paradigm for heritage corridors that balances multi-level coordination (provincial–municipal–district) with ecological planning. A closed-loop strategy of “identification–analysis–optimization” is developed, featuring tiered collaboration, cultural–ecological synergy, and multi-agent dynamic evaluation. The framework provides a replicable methodology for integrated protection and spatial sustainability of historical architecture in Heilongjiang and other cold-region contexts. Full article
Show Figures

Figure 1

29 pages, 3634 KiB  
Article
Machine Learning-Driven Multimodal Feature Extraction and Optimization Strategies for High-Speed Railway Station Area
by Xiang Li, Fa Zhang, Ziyi Liu, Yao Wei, Runlong Dai, Zhiyue Qiu, Yuxin Gu and Hong Yuan
Land 2025, 14(5), 1039; https://doi.org/10.3390/land14051039 - 9 May 2025
Viewed by 698
Abstract
The construction of high-speed railway (HSR) station areas serves as a crucial catalyst for urban spatial evolution. However, the absence of targeted urban management theories has led to widespread spatial resource waste and post-construction abandonment phenomena in these areas. Existing research predominantly focuses [...] Read more.
The construction of high-speed railway (HSR) station areas serves as a crucial catalyst for urban spatial evolution. However, the absence of targeted urban management theories has led to widespread spatial resource waste and post-construction abandonment phenomena in these areas. Existing research predominantly focuses on development strategies for individual construction elements of HSR stations yet lacks comprehensive strategy formulation through coordinated multi-level elements from a sustainable perspective. This study establishes a national database comprising 1018 HSR station area samples across China in 2020, integrating built environment characteristics, HSR network topology, ecological considerations, and socioeconomic indicators. Guided by the land equilibrium utilization theory, we employ the random forest Boruta algorithm to identify critical features, using land supply capacity and development intensity as target variables. Subsequently, K-means++ clustering analysis based on these key variables categorizes the samples into nine distinct clusters. Through normal distribution tests, we establish reference ranges for cluster-specific indicators and propose tailored development strategies across multiple dimensions. This research develops a multimodal feature extraction and evaluation framework specifically designed for the large-scale analysis of HSR station areas. The nine-category strategic recommendations with defined quantitative threshold intervals provide decision-makers with visually intuitive, operationally implementable, and practically significant guidance for spatial planning and resource allocation. Full article
(This article belongs to the Topic Spatial Decision Support Systems for Urban Sustainability)
Show Figures

Figure 1

21 pages, 7637 KiB  
Article
Analysis of China’s High-Speed Railway Network Using Complex Network Theory and Graph Convolutional Networks
by Zhenguo Xu, Jun Li, Irene Moulitsas and Fangqu Niu
Big Data Cogn. Comput. 2025, 9(4), 101; https://doi.org/10.3390/bdcc9040101 - 16 Apr 2025
Viewed by 812
Abstract
This study investigated the characteristics and functionalities of China’s High-Speed Railway (HSR) network based on Complex Network Theory (CNT) and Graph Convolutional Networks (GCN). First, complex network analysis was applied to provide insights into the network’s fundamental characteristics, such as small-world properties, efficiency, [...] Read more.
This study investigated the characteristics and functionalities of China’s High-Speed Railway (HSR) network based on Complex Network Theory (CNT) and Graph Convolutional Networks (GCN). First, complex network analysis was applied to provide insights into the network’s fundamental characteristics, such as small-world properties, efficiency, and robustness. Then, this research developed three novel GCN models to identify key nodes, detect community structures, and predict new links. Findings from the complex network analysis revealed that China’s HSR network exhibits a typical small-world property, with a degree distribution that follows a log-normal pattern rather than a power law. The global efficiency indicator suggested that stations are typically connected through direct routes, while the local efficiency indicator showed that the network performs effectively within local areas. The robustness study indicated that the network can quickly lose connectivity if key nodes fail, though it showed an ability initially to self-regulate and has partially restored its structure after disruption. The GCN model for key node identification revealed that the key nodes in the network were predominantly located in economically significant and densely populated cities, positively contributing to the network’s overall efficiency and robustness. The community structures identified by the integrated GCN model highlight the economic and social connections between official urban clusters and the communities. Results from the link prediction model suggest the necessity of improving the long-distance connectivity across regions. Future work will explore the network’s socio-economic dynamics and refine and generalise the GCN models. Full article
Show Figures

Figure 1

22 pages, 12922 KiB  
Article
Theoretical Approach for Micro-Settlement Control in Super-Large Cross-Section Tunnels Under Sensitive Environments
by Zhongsheng Tan, Zhengquan Ding, Zhenliang Zhou and Zhanxian Li
Appl. Sci. 2025, 15(8), 4375; https://doi.org/10.3390/app15084375 - 15 Apr 2025
Viewed by 453
Abstract
The rapid development of urban transportation renovation and transportation networks in China has driven the construction of an increasing number of large-span, large cross-section tunnels under sensitive environments, such as airport runways, critical infrastructure, and high-speed railways. These projects often require strict settlement [...] Read more.
The rapid development of urban transportation renovation and transportation networks in China has driven the construction of an increasing number of large-span, large cross-section tunnels under sensitive environments, such as airport runways, critical infrastructure, and high-speed railways. These projects often require strict settlement control within a millimeter-level tolerance range, thus theoretical methods and key technologies for micro-settlement control have been developed. This study first derives a calculation formula for surface settlement associated with large cross-section tunnels and elucidates its correlations with factors such as pipe-roof stiffness, support system stiffness, pipe-roof construction procedures, and groundwater level changes. Theoretical approaches for controlling micro-settlement are introduced, including increasing pipe-roof stiffness, reinforcing the support system, mitigating group pipe effects, maintaining pressure and reducing resistance around the pipe, and controlling groundwater levels. A method is proposed for determining the appropriate stiffness of the pipe roof and support system. The stiffness should be selected from the transition segment between the steep decline and the gentle slope on the stiffness-settlement curves of the pipe roof and the support system. If the stiffness of the pipe roof and primary support combined with temporary support fails to meet the micro-settlement control requirements, an integrated support system with greater stiffness can be adopted. A reasonable pressure-regulating grouting technique for maintaining pressure and reducing resistance around the pipe is proposed. It is recommended that the spacing for simultaneous jacking of pipes be greater than half the width of the settlement trough. For over-consolidation-sensitive strata such as medium or coarse sands, water-blocking measures, including freezing, grouting, or a combination of both, are recommended. For over-consolidation-insensitive strata like gravels and cobbles with strong permeability, water-blocking treatments are generally unnecessary. The proposed theoretical approaches have been successfully implemented in projects such as the tunnel beneath Beijing Capital Airport runways and Taiyuan Railway Station, demonstrating their reliability. The research findings provide valuable insights into surface micro-settlement control for similar projects. Full article
Show Figures

Figure 1

18 pages, 7007 KiB  
Article
Research on the Dynamic Behavior of “Building-Bridge Integrated” Railway Bridge-Type Station with Setting the Structural Joints on the Mainline
by Xiangrong Guo, Yaolin Liu and Jianghao Liu
Appl. Sci. 2025, 15(8), 4335; https://doi.org/10.3390/app15084335 - 14 Apr 2025
Viewed by 496
Abstract
The prevalence of “building-bridge integrated” structures in station design is increasing. However, in stations where the mainline speed exceeds 160 km/h, structural joints are typically incorporated to ensure the integrity and functionality of the integrated system. The inspection and maintenance of these joints, [...] Read more.
The prevalence of “building-bridge integrated” structures in station design is increasing. However, in stations where the mainline speed exceeds 160 km/h, structural joints are typically incorporated to ensure the integrity and functionality of the integrated system. The inspection and maintenance of these joints, which are critical for the long-term performance of such structures, can be particularly complex. Therefore, it is important to explore the feasibility of designing such stations without structural joints on the mainline. To address this issue, two six-line railway bridge-type stations are selected. The vibration simulation analysis model of the train-track-station coupling system is established, considering two structural types of the “building-bridge integrated” system: the arrival-departure line “building-bridge integrated” and the mainline “building-bridge integrated”. The vibration responses induced by trains passing through two types of “building-bridge integrated” station structures at speeds of 200~350 km/h on the mainline and 80 km/h on the arrival and departure tracks were simulated. The six-line operating conditions were selected as an example, and the influence of setting a structural joint on the mainline on the dynamic response of the “building-bridge integrated” station structure was analyzed. For both types of “building-bridge integrated” station structures, with and without a structural joint on the mainline, the dynamic responses of trains under operational loads show minimal differences. However, the structural joints on the mainline reduce the overall stiffness of the rail bearing floor slab and effectively isolate the train-induced responses transmitted to the platform slab during high-speed operation on the mainline. Therefore, the acceleration response of the platform slab is smaller in station structures with structural joints, while the acceleration and displacement response of the rail bearing floor slab is larger. Additionally, structural joints often lead to issues such as water leakage and seepage. Considering these factors, it is advisable to avoid setting structural joints on the mainline for such station structures. Full article
Show Figures

Figure 1

16 pages, 8231 KiB  
Article
Spatial Adaptation of Railway Stations: Arrival of High-Speed Rail Network
by Juan Bautista Font Torres, Jorge Luis García Valldecabres and Luís Cortés Meseguer
Infrastructures 2025, 10(4), 91; https://doi.org/10.3390/infrastructures10040091 - 8 Apr 2025
Viewed by 609
Abstract
In the years since the emergence of the railway, the main objective has been focused on trains arriving and stopping at stations, with stations being considered a secondary or even residual objective for bringing people or goods on or off. The arrival of [...] Read more.
In the years since the emergence of the railway, the main objective has been focused on trains arriving and stopping at stations, with stations being considered a secondary or even residual objective for bringing people or goods on or off. The arrival of high-speed trains at stations has allowed for the creation of integrated, environmentally friendly stations which have become mobility hubs, connecting different modes of transportation and cities, as well as being clusters of economic activities that stimulate the inclusive growth of the areas where they are located. These transport infrastructures condition the social and communication relationships of many spaces. The consequences that have been demonstrated in the stations analyzed have been strengthened intermodally with other means of transport, giving value to commercial developments and old stations, as well as the environments where they are located, a development aimed beyond the railway users themselves. From an operational point of view, the main consequence of this transformation is the necessity to absorb the increase in passenger demand. The integration of the railway within an urban space is shaped through the construction of new stations within the already existing urban framework or, in some cases, by relocating them to the periphery of the city. New stations have undergone changes compared to those built a century ago. Their conception has evolved, adapting to the architecture of their time, but the most radical change they have experienced is related to the new uses that have been developed within them and how these spaces are utilized. The introduction of high-speed trains has initiated a series of reflections on new station concepts. The new operation is characterized by journey times, frequency, and comfort. This comfort is not only perceived on board a train but also in stations during a passenger’s stay, which has a direct impact on the design of stations. Provisional railway stations are valuable tools in situations where flexibility, speed, and reduced costs are required. Although they are not designed to be permanent, their ability to adapt to specific needs makes them a strategic option for temporary projects, though not in the case studied of the Valencia station. The planning of projects makes it necessary to implement proxemic standards in the design of spaces that contribute to the diversification of economic activity around and in a station itself, such as commercial, residential, or cultural areas. Full article
Show Figures

Figure 1

20 pages, 2010 KiB  
Article
Emergency Evacuation Capacity Evaluation of High-Speed Railway Stations Based on Pythagorean Fuzzy Three-Way Decision Models
by Shang Wu and Shaozhi Hong
Appl. Sci. 2025, 15(8), 4087; https://doi.org/10.3390/app15084087 - 8 Apr 2025
Viewed by 316
Abstract
Improving the emergency evacuation capacity of high-speed railway stations (HSRSs) and developing effective emergency management and evacuation plans are crucial issues that need to be addressed by safety and operational departments. Thus, a Pythagorean fuzzy three-way decision (PF-3WD) method was developed to evaluate [...] Read more.
Improving the emergency evacuation capacity of high-speed railway stations (HSRSs) and developing effective emergency management and evacuation plans are crucial issues that need to be addressed by safety and operational departments. Thus, a Pythagorean fuzzy three-way decision (PF-3WD) method was developed to evaluate the emergency evacuation capacity of HSRSs. Firstly, a new Pythagorean fuzzy closeness measure was designed to overcome the shortcomings of the existing Pythagorean fuzzy similarity measures, which ignore the practical semantics of its membership and non-membership values and may be counter intuitive in some cases. Then, PF-3WD models with multi risk preferences were developed and applied to emergency evacuation evaluations. The results showed that the developed PF-3WD method deals with emergency evacuation evaluations effectively. Also, the developed Pythagorean fuzzy closeness measure overcomes the limitations of existing similarity measures by providing a more intuitive, computationally efficient, and semantically meaningful approach to decision-making in emergency evacuation scenarios. Full article
Show Figures

Figure 1

36 pages, 1982 KiB  
Article
Service Quality Assessment and Optimization of High-Speed Railway Waiting Halls Using a Kano Model and Multidimensional Questionnaire Analysis
by Wenjing Dong, Runzhao Qi, Dachuan Wang, Wei Zhang and Xinyi Liu
Buildings 2025, 15(8), 1212; https://doi.org/10.3390/buildings15081212 - 8 Apr 2025
Viewed by 784
Abstract
With the rapid development of high-speed railways, the quality of service in the waiting halls of high-speed railway stations has become a subject of great concern. In order to clarify the impact of various service elements on the overall satisfaction associated with high-speed [...] Read more.
With the rapid development of high-speed railways, the quality of service in the waiting halls of high-speed railway stations has become a subject of great concern. In order to clarify the impact of various service elements on the overall satisfaction associated with high-speed railway passenger stations, this study offers an in-depth exploration of the service quality of the waiting halls of high-speed railway stations by considering the physical environment (such as thermal environment, acoustic environment, light environment, and air quality), environmental design (including architectural design, route design, and hygiene situations), and service facilities (such as rest facilities, information facilities, safety features, commercial facilities, and ticketing facilities). The study uses a combination of an online questionnaire and an on-site questionnaire to collect data, and we ensured the reliability and validity of the research results through reliability and validity analyses. The Kano model was used to accurately identify the demand attributes of passengers for various service elements in the departure hall. Linear regression analysis was used to conduct a detailed study of the quantitative relationship between the influencing factors and overall satisfaction, and the satisfaction level of each dimension was systematically calculated to accurately quantify the impact of different factors on the overall satisfaction. Pearson correlation analysis was used to carefully explore the correlations among the factors and reveal the potential relationships. The study clearly depicts the performance of each service element. According to the demand classification of the Kano model, Must-Have Quality (M) elements include air quality, thermal environment, route design, the hygiene situation, and information facilities; Attractive Quality (A) elements include the acoustic environment, light environment, and architectural design; rest facilities, commercial facilities, and ticketing facilities are classified as One-Dimensional Quality (O); and safety facilities are of Indifferent Quality (I). Combined with regression analysis and correlation analysis, these results were used to further determine the focus of service element optimization. By clarifying the attributes of different service elements and their degree of impact on overall satisfaction, the corresponding optimization direction is proposed. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 5462 KiB  
Article
Optimization of Line Planning by Integrating Ticket Pricing and Seat Allocation Decisions for High-Speed Railway
by Xin Shi, Wenliang Zhou and Xiang Li
Mathematics 2025, 13(7), 1073; https://doi.org/10.3390/math13071073 - 25 Mar 2025
Viewed by 367
Abstract
In the transportation organization optimization of high-speed railway (HSR), optimizations such as line planning, ticket pricing, and seat allocation are generally studied separately. However, in reality, when passengers choose trains, they need to consider multiple factors such as train routes, stop plans, seat [...] Read more.
In the transportation organization optimization of high-speed railway (HSR), optimizations such as line planning, ticket pricing, and seat allocation are generally studied separately. However, in reality, when passengers choose trains, they need to consider multiple factors such as train routes, stop plans, seat prices, seat availability, and departure times. Therefore, there is an urgent need for an integrated optimization method to simultaneously make decisions regarding these multiple factors. This study constructs a nonlinear optimization model of line planning integrating differentiated pricing and seat allocation decisions for HSR under elastic demand. To efficiently solve the model, an improved heuristic algorithm based on the simulated annealing framework combined with a linear passenger flow allocation method is proposed. Finally, case analysis proves that the improved algorithm can effectively solve the model under the input conditions of an actual Y-shaped HSR network composed of 13 stations, with a potential for a 106.54% improvement from the initial solution to the final solution. The uniqueness of our study lies in the joint optimization of three critical HSR operations, which has not been comprehensively explored in prior studies and is of great significance for improving the level of HSR train operations and passenger services. Full article
Show Figures

Figure 1

25 pages, 1706 KiB  
Article
Field Strength Prediction in High-Speed Train Carriages Using a Multi-Neural Network Ensemble Model with Optimized Output Weights
by Zhou Fang, Hengkai Zhao, Yichen Feng, Yating Wu, Yanqiong Sun, Qi Yang and Guoxin Zheng
Appl. Sci. 2025, 15(5), 2709; https://doi.org/10.3390/app15052709 - 3 Mar 2025
Viewed by 828
Abstract
Accurate path loss prediction within train carriages is crucial for deploying base stations along high-speed railway lines. The field strength at receiving points inside carriages is influenced by outdoor signal transmission, penetration through window glass, and multiple reflections within the carriage, making it [...] Read more.
Accurate path loss prediction within train carriages is crucial for deploying base stations along high-speed railway lines. The field strength at receiving points inside carriages is influenced by outdoor signal transmission, penetration through window glass, and multiple reflections within the carriage, making it challenging for traditional models to predict the field strength distribution accurately. To address this issue, this paper proposes a machine learning-based path loss prediction method that incorporates ensemble techniques of multiple neural networks to enhance prediction stability and accuracy. The Whale Optimization Algorithm (WOA) is used to optimize the output weight configuration of each neural network in the ensemble model, thereby significantly improving the overall model performance. Specifically, on the test set, the WOA-optimized ensemble model reduces RMSE by 1.47 dB for CI, 0.47 dB for CNN, 0.93 dB for RNN, 1.38 dB for GNN, 0.1 dB for Transformer, 0.09 dB for AutoML, 0.33 dB for the GA-optimized ensemble model, and 0.18 dB for the PSO-optimized ensemble model. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

34 pages, 5297 KiB  
Article
Train Planning for Through Operation Between Intercity and High-Speed Railways: Enhancing Sustainability Through Integrated Transport Solutions
by Li Lin, Xuelei Meng, Kewei Song, Liping Feng, Zheng Han and Ximan Xia
Sustainability 2025, 17(3), 1089; https://doi.org/10.3390/su17031089 - 29 Jan 2025
Viewed by 843
Abstract
In order to advocate for green and environmentally friendly travel modes, enhance the attractiveness of rail transit, and promote the sustainable development of rail transport, we focus on the transportation organization problem under limited-resource conditions. This paper studies the formulation of a train [...] Read more.
In order to advocate for green and environmentally friendly travel modes, enhance the attractiveness of rail transit, and promote the sustainable development of rail transport, we focus on the transportation organization problem under limited-resource conditions. This paper studies the formulation of a train plan under the condition of through operation between intercity and high-speed railway, constructing a multi-objective nonlinear optimization model with train frequency, a stop plan, and turn-back station locations as decision variables. Given the high dimensionality of model variables and complex constraints, an improved multi-population genetic algorithm (IMGA) is designed. Through an actual case study of the through operation between the Chengdu–Mianyang–Leshan Intercity Railway and the Chengdu–Chongqing High-Speed Railway, a staged solution method is adopted for analysis. The results indicate that the through-operation mode can save operational costs for enterprises and travel costs for passengers, while also better adapting to changes in passenger flow. Additionally, the IMGA demonstrates better solution quality and higher efficiency compared to the classical genetic algorithm. The main contribution of this paper is to propose a novel approach to solve the train plan problem. It also contributes to creating a high-quality, high-efficiency, and high-comfort integrated transportation service network, promoting the sustainable development of rail transit. Full article
Show Figures

Figure 1

Back to TopTop