Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = high-resolution wide-swath

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3569 KB  
Article
Lossless Compression of Infrared Images via Pixel-Adaptive Prediction and Residual Hierarchical Decomposition
by Ya Liu, Zheng Li, Yong Zhang and Rui Zhang
Appl. Sci. 2026, 16(2), 1030; https://doi.org/10.3390/app16021030 - 20 Jan 2026
Viewed by 79
Abstract
Linear array detector-based infrared push-broom imaging systems are widely employed in remote sensing and security surveillance due to their high spatial resolution, wide swath coverage, and low cost. However, the massive data volume generated during continuous scanning presents substantial storage and transmission challenges. [...] Read more.
Linear array detector-based infrared push-broom imaging systems are widely employed in remote sensing and security surveillance due to their high spatial resolution, wide swath coverage, and low cost. However, the massive data volume generated during continuous scanning presents substantial storage and transmission challenges. To mitigate this issue, we propose a lossless compression algorithm based on pixel-adaptive prediction and hierarchical decomposition of residuals. The algorithm first performs pixel-wise adaptive noise compensation according to local image characteristics and achieves efficient prediction by exploiting the strong inter-pixel correlation along the scanning direction. Subsequently, hierarchical decomposition is applied to high-energy residual blocks to further eliminate spatial redundancy. Finally, the Golomb–Rice coding parameters are adaptively adjusted based on the neighborhood residual energy, optimizing the overall code length distribution. The experimental results demonstrate that our method significantly outperforms most state-of-the-art approaches in terms of both the compression ratio (CR) and bits per pixel (BPP). Moreover, while maintaining a CR comparable to H.265-Intra, our method achieves a 21-fold reduction in time complexity, confirming its superiority for large-format image compression. Full article
Show Figures

Figure 1

25 pages, 2339 KB  
Article
An Operational Ground-Based Vicarious Radiometric Calibration Method for Thermal Infrared Sensors: A Case Study of GF-5A WTI
by Jingwei Bai, Yunfei Bao, Guangyao Zhou, Shuyan Zhang, Hong Guan, Mingmin Zhang, Yongchao Zhao and Kang Jiang
Remote Sens. 2026, 18(2), 302; https://doi.org/10.3390/rs18020302 - 16 Jan 2026
Viewed by 113
Abstract
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors [...] Read more.
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors and demonstrate its performance using the Wide-swath Thermal Infrared Imager (WTI) onboard Gaofen-5 01A (GF-5A). Three arid Gobi calibration sites were selected by integrating Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, Shuttle Radar Topography Mission (SRTM)-derived topography, and WTI-based radiometric uniformity metrics to ensure low cloud cover, flat terrain, and high spatial homogeneity. Automated ground stations deployed at Golmud, Dachaidan, and Dunhuang have continuously recorded 1 min contact surface temperature since October 2023. Field-measured emissivity spectra, Integrated Global Radiosonde Archive (IGRA) radiosonde profiles, and MODTRAN (MODerate resolution atmospheric TRANsmission) v5.2 simulations were combined to compute top-of-atmosphere (TOA) radiances, which were subsequently collocated with WTI imagery. After data screening and gain-stratified regression, linear calibration coefficients were derived for each TIR band. Based on 189 scenes from February–July 2024, all four bands exhibit strong linearity (R-squared greater than 0.979). Validation using 45 independent scenes yields a mean brightness–temperature root-mean-square error (RMSE) of 0.67 K. A full radiometric-chain uncertainty budget—including contact temperature, emissivity, atmospheric profiles, and radiative transfer modeling—results in a combined standard uncertainty of 1.41 K. The proposed framework provides a low-maintenance, traceable, and high-frequency solution for the long-term on-orbit radiometric calibration of GF-5A WTI and establishes a reproducible pathway for future TIR missions requiring sustained calibration stability. Full article
(This article belongs to the Special Issue Radiometric Calibration of Satellite Sensors Used in Remote Sensing)
Show Figures

Figure 1

53 pages, 3354 KB  
Review
Mamba for Remote Sensing: Architectures, Hybrid Paradigms, and Future Directions
by Zefeng Li, Long Zhao, Yihang Lu, Yue Ma and Guoqing Li
Remote Sens. 2026, 18(2), 243; https://doi.org/10.3390/rs18020243 - 12 Jan 2026
Viewed by 205
Abstract
Modern Earth observation combines high spatial resolution, wide swath, and dense temporal sampling, producing image grids and sequences far beyond the regime of standard vision benchmarks. Convolutional networks remain strong baselines but struggle to aggregate kilometre-scale context and long temporal dependencies without heavy [...] Read more.
Modern Earth observation combines high spatial resolution, wide swath, and dense temporal sampling, producing image grids and sequences far beyond the regime of standard vision benchmarks. Convolutional networks remain strong baselines but struggle to aggregate kilometre-scale context and long temporal dependencies without heavy tiling and downsampling, while Transformers incur quadratic costs in token count and often rely on aggressive patching or windowing. Recently proposed visual state-space models, typified by Mamba, offer linear-time sequence processing with selective recurrence and have therefore attracted rapid interest in remote sensing. This survey analyses how far that promise is realised in practice. We first review the theoretical substrates of state-space models and the role of scanning and serialization when mapping two- and three-dimensional EO data onto one-dimensional sequences. A taxonomy of scan paths and architectural hybrids is then developed, covering centre-focused and geometry-aware trajectories, CNN– and Transformer–Mamba backbones, and multimodal designs for hyperspectral, multisource fusion, segmentation, detection, restoration, and domain-specific scientific applications. Building on this evidence, we delineate the task regimes in which Mamba is empirically warranted—very long sequences, large tiles, or complex degradations—and those in which simpler operators or conventional attention remain competitive. Finally, we discuss green computing, numerical stability, and reproducibility, and outline directions for physics-informed state-space models and remote-sensing-specific foundation architectures. Overall, the survey argues that Mamba should be used as a targeted, scan-aware component in EO pipelines rather than a drop-in replacement for existing backbones, and aims to provide concrete design principles for future remote sensing research and operational practice. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Graphical abstract

25 pages, 10750 KB  
Article
LHRSI: A Lightweight Spaceborne Imaging Spectrometer with Wide Swath and High Resolution for Ocean Color Remote Sensing
by Bo Cheng, Yongqian Zhu, Miao Hu, Xianqiang He, Qianmin Liu, Chunlai Li, Chen Cao, Bangjian Zhao, Jincai Wu, Jianyu Wang, Jie Luo, Jiawei Lu, Zhihua Song, Yuxin Song, Wen Jiang, Zi Wang, Guoliang Tang and Shijie Liu
Remote Sens. 2026, 18(2), 218; https://doi.org/10.3390/rs18020218 - 9 Jan 2026
Viewed by 198
Abstract
Global water environment monitoring urgently requires remote sensing data with high temporal resolution and wide spatial coverage. However, current space-borne ocean color spectrometers still face a significant trade-off among spatial resolution, swath width, and system compactness, which limits the large-scale deployment of satellite [...] Read more.
Global water environment monitoring urgently requires remote sensing data with high temporal resolution and wide spatial coverage. However, current space-borne ocean color spectrometers still face a significant trade-off among spatial resolution, swath width, and system compactness, which limits the large-scale deployment of satellite constellations. To address this challenge, this study developed a lightweight high-resolution spectral imager (LHRSI) with a total mass of less than 25 kg and power consumption below 80 W. The visible (VIS) camera adopts an interleaved dual-field-of-view and detectors splicing fusion design, while the shortwave infrared (SWIR) camera employs a transmission-type focal plane with staggered detector arrays. Through the field-of-view (FOV) optical design, the instrument achieves swath widths of 207.33 km for the VIS bands and 187.8 km for the SWIR bands at an orbital altitude of 500 km, while maintaining spatial resolutions of 12 m and 24 m, respectively. On-orbit imaging results demonstrate that the spectrometer achieves excellent performance in both spatial resolution and swath width. In addition, preliminary analysis using index-based indicators illustrates LHRSI’s potential for observing chlorophyll-related features in water bodies. This research not only provides a high-performance, miniaturized spectrometer solution but also lays an engineering foundation for developing low-cost, high-revisit global ocean and water environment monitoring constellations. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

18 pages, 3200 KB  
Article
Non-Circular Domain Surface Figure Analysis of High-Dynamic Scanning Mirrors Under Multi-Physics Coupling
by Xiaoyan He, Kaiyu Jiang, Penglin Liu, Xi He and Peng Xie
Photonics 2026, 13(1), 65; https://doi.org/10.3390/photonics13010065 - 9 Jan 2026
Viewed by 227
Abstract
The use of large-aperture scanning mirrors for high-resolution and wide-swath imaging represents a major trend in Earth observation technology. However, to improve dynamic response performance, scanning mirror assemblies are highly lightweighted, resulting in reduced overall stiffness. This makes the mirror surface susceptible to [...] Read more.
The use of large-aperture scanning mirrors for high-resolution and wide-swath imaging represents a major trend in Earth observation technology. However, to improve dynamic response performance, scanning mirror assemblies are highly lightweighted, resulting in reduced overall stiffness. This makes the mirror surface susceptible to thermal and inertial loads during operation, leading to degraded surface accuracy and poor imaging quality. Moreover, dynamic scanning mirror has the multi-disciplinary coupling effects and non-circular structural characteristics. It poses significant challenges for surface figure analysis. To address these issues, this paper proposes a surface analysis method for high-dynamic scanning mirrors under multi-physics coupling in non-circular domains. First, a finite element model of the mirror assembly is established based on the minimum aperture and angular velocity parameters. Through finite element analysis, the surface response of the scanning mirror assembly under thermal loads, dynamic inertial loads, and their coupled effects is quantitatively investigated. Subsequently, an analytical approach, which combines rigid-body displacement separation and Gram–Schmidt orthogonalization, is developed to construct non-circular Zernike polynomials, enabling high-precision fitting and reconstruction of the mirror’s dynamic surface distortions. Numerical experiments validate the accuracy of the model. Results show that for a scanning mirror with an aperture of 466 mm × 250 mm under the coupled condition of a 5 °C temperature rise and 50 N·mm torque, the surface figure achieves RMS < 2 nm and PV < 22 nm, with a fitting accuracy achieves 10−6. These results verify the accuracy and reliability of the proposed method. The surface analysis approach presented in this study provides theoretical guidance and a design framework for subsequent image quality evaluation and assurance. Full article
(This article belongs to the Special Issue Advances in Optical Precision Manufacturing and Processing)
Show Figures

Figure 1

25 pages, 72453 KB  
Article
Fast Low-Artifact Image Generation for Staggered SAR: A Preview-Oriented Method
by Sixi Hou, Jinsong Qiu, Yunkai Deng, Heng Zhang, Wei Wang, Huaitao Fan, Zhen Chen, Qingchao Zhao and Fengjun Zhao
Remote Sens. 2026, 18(1), 83; https://doi.org/10.3390/rs18010083 - 25 Dec 2025
Viewed by 272
Abstract
Staggered synthetic aperture radar (SAR) is an innovative concept capable of achieving an ultrawide continuous swath with fine azimuth resolution by variable pulse repetition interval. However, the inherent data gaps and nonuniform sampling introduce severe azimuth artifacts, degrading image quality. Existing methods can [...] Read more.
Staggered synthetic aperture radar (SAR) is an innovative concept capable of achieving an ultrawide continuous swath with fine azimuth resolution by variable pulse repetition interval. However, the inherent data gaps and nonuniform sampling introduce severe azimuth artifacts, degrading image quality. Existing methods can mitigate these artifacts but struggle to effectively balance imaging quality and computational cost, especially under low oversampling conditions. To address this challenge, this paper proposes a low-artifact preview image generation method for staggered SAR. First, the artifact characteristics are analyzed through the derivation of a staggered SAR signal model. Then, a three-stage processing framework is introduced, consisting of constant-gradient phase extrapolation, artifact-based inverse filtering, and result fusion. Additionally, data nonuniformity is addressed using a weighted nonuniform fast Fourier transform. Simulation results demonstrate that the proposed method significantly improves processing speed compared to existing techniques while maintaining good imaging quality, making it suitable for rapid scene screening in wide-area SAR applications. Full article
Show Figures

Figure 1

16 pages, 2815 KB  
Article
Inter-Channel Error Calibration Method for Real-Time DBF-SAR System Based on FPGA
by Yao Meng, Jinsong Qiu, Pei Wang, Yang Liu, Zhen Yang, Yihai Wei, Xuerui Cheng and Yihang Feng
Sensors 2025, 25(24), 7561; https://doi.org/10.3390/s25247561 - 12 Dec 2025
Viewed by 322
Abstract
Elevation Digital Beamforming (DBF) technology is key to achieving high-resolution wide-swath (HRWS) imaging in spaceborne Synthetic Aperture Radar (SAR) systems. However, multi-channel DBF-SAR systems face a prominent conflict between the need for real-time channel error calibration and the constraints of limited on-board hardware [...] Read more.
Elevation Digital Beamforming (DBF) technology is key to achieving high-resolution wide-swath (HRWS) imaging in spaceborne Synthetic Aperture Radar (SAR) systems. However, multi-channel DBF-SAR systems face a prominent conflict between the need for real-time channel error calibration and the constraints of limited on-board hardware resources. To address this bottleneck, this paper proposes a real-time channel error calibration method based on Fast Fourier Transform (FFT) pulse compression and introduces a “calibration-operation” dual-mode control with a parameter-persistence architecture. This scheme decouples high-complexity computations by confining them to the system initialization phase, enabling on-board, real-time, closed-loop compensation for multi-channel signals with low resource overhead. Test results from a high-performance Field-Programmable Gate Array (FPGA) platform demonstrate that the system achieves high-precision compensation for inter-channel amplitude, phase, and time-delay errors. In the 4-channel system validation, the DBF synthesized signal-to-noise ratio (SNR) improved by 5.93 dB, reaching a final SNR of 44.26 dB. This performance approaches the theoretical ideal gain and significantly enhances the coherent integration gain of multi-channel signals. This research fully validates the feasibility of on-board, real-time calibration with low resource consumption, providing key technical support for the engineering robustness and efficient data processing of new-generation SAR systems. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

40 pages, 6237 KB  
Article
Next-Generation C-Band SAR Mission: Design Concept for Earth Observation Service Continuity
by Igor Zakharov, Desmond Power, Peter McGuire, Michael Völker, Jung-Hyo Kim, Matteo Emanuelli, Joseph Chamberland, Mike Stott, Sherry Warren, Juergen Janoth, Alexander Kaptein, Michael D. Henschel and Yue Ma
Remote Sens. 2025, 17(22), 3761; https://doi.org/10.3390/rs17223761 - 19 Nov 2025
Viewed by 2057
Abstract
This paper presents the findings related to the design solution options for a next-generation C-band Synthetic Aperture Radar (SAR) mission, developed to address the Harmonized User Needs (HUN) in Earth observation (EO) data as defined by several departments of the Government of Canada. [...] Read more.
This paper presents the findings related to the design solution options for a next-generation C-band Synthetic Aperture Radar (SAR) mission, developed to address the Harmonized User Needs (HUN) in Earth observation (EO) data as defined by several departments of the Government of Canada. The work analyses various mission solution options, including multi-satellite constellations, and their performance to evaluate feasibility and assess their compliance with the HUN as well as minimize the associated lifecycle costs, technical risks, implementation schedule, and programmatic challenges. This mission concept contributes to the advancement of space-based surveillance solutions aligned with Canada’s long-term strategic objectives to ensure service continuity for Earth Observation and national security applications. Systematic user needs analysis helped to reveal the importance of high-resolution (1–5 m), enhanced interferometric, polarimetric SAR interferometry (PolInSAR) and other capabilities. Two satellite constellation configurations are proposed: (1) a three-medium-satellite setup with a tandem pair, and (2) a five-large-satellite system incorporating tandem and optimal orbits. Employing High-Resolution Wide Swath (HRWS) imaging modes and full polarimetric capability. Performance simulations indicate low Noise Equivalent Sigma Zero (NESZ) with wide swath width fully addresses driving needs for sea ice and ocean monitoring, covering most of the Canadian areas of interest, with the revisit time of less than 4–6 hours. Orbit optimization ensures high revisit rates, enabling novel interferometric SAR (InSAR) capabilities with observations separated by only a few hours. This mission concept, considering two options with three medium and with five large satellites, respectively, offers a flexible, scalable, and strategically impactful solution for Earth Observation (EO) service continuity and technological leadership for Canada until 2050 and beyond. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

24 pages, 4069 KB  
Article
High-Precision HRWS SAR Phase Error Estimation with Inaccurate Baseline: A Joint-Pixel-Based Image Subspace Approach
by Jixia Fan, Quan Chen, Jixiang Xiang, Xiaojie Ding, Wenxin Zhao and Guangcai Sun
Remote Sens. 2025, 17(21), 3554; https://doi.org/10.3390/rs17213554 - 27 Oct 2025
Viewed by 552
Abstract
HRWS (high resolution and wide swath, HRWS) SAR always suffers channel phase error in the multichannel reconstruction stage and results in a lower imaging quality. The image domain error estimation method can achieve superior performance by utilizing the signal-to-noise ratio (SNR) advantage. Nevertheless, [...] Read more.
HRWS (high resolution and wide swath, HRWS) SAR always suffers channel phase error in the multichannel reconstruction stage and results in a lower imaging quality. The image domain error estimation method can achieve superior performance by utilizing the signal-to-noise ratio (SNR) advantage. Nevertheless, in practice, the inevitable baseline error in HRWS SAR will lead to the inability of multichannel images to be registered in azimuth time and reduction of the channel phase error estimation accuracy. Considering that the joint-pixel model can fully contain the coherent information in such a case, a novel multichannel phase error estimation method is proposed. In this paper, by establishing a multichannel signal model in the image domain, an image domain subspace-based phase error estimation method based on joint-pixel selection and vector construction is derived. The proposed method can weaken the influence of subspace estimation inaccuracy caused by the inaccurate azimuth baseline and avoid the large amount of calculation caused by iterative elimination of baseline error and phase error in traditional algorithms, thus further improving computational efficiency. Simulation experiments and real acquired HRWS SAR data processing validate the estimation accuracy of the proposed method. Full article
Show Figures

Figure 1

16 pages, 20370 KB  
Article
High Resolution Synthetic Aperture Radar Based on Multiple Reflectarray Apertures
by Min Zhou, Pasquale G. Nicolaci, David Marote, Javier Herreros, Niels Vesterdal, Michael F. Palvig, Stig B. Sørensen and Giovanni Toso
Electronics 2025, 14(19), 3832; https://doi.org/10.3390/electronics14193832 - 27 Sep 2025
Cited by 1 | Viewed by 597
Abstract
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration [...] Read more.
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration intended for a high-resolution, wide-swath SAR instrument. At the core of the system is a 1.5 m × 0.55 m reflectarray operating between 35.5–36.0 GHz in the Ka-band. To our knowledge, this is the first demonstration of a reflectarray antenna designed to support two distinct modes of operation, exploiting the inherent advantages of reflectarrays—such as reduced cost and compact stowage—over traditional solutions. The antenna provides a high-resolution mode requiring a higher-gain beam in one polarization and a low-resolution mode covering a larger swath with broader beam coverage in the orthogonal polarization. The design process follows a holistic, multidisciplinary approach, integrating RF and thermomechanical considerations through iterative and concurrent design reviews. The BBM has been successfully manufactured and experimentally tested, and the measurement results show good agreement with simulations, confirming the validity of the proposed concept and demonstrating its potential for future high-performance SAR missions. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

22 pages, 33266 KB  
Article
Deep Analysis of Imaging Characteristics of Spaceborne SAR Systems as Affected by Antennas Using 3D Antenna Pattern
by Wei Shi, Heqing Huang, Wenjun Gao, Huaian Zhou and Hua Jiang
Sensors 2025, 25(19), 5969; https://doi.org/10.3390/s25195969 - 25 Sep 2025
Viewed by 1134
Abstract
Spaceborne Synthetic Aperture Radar (SAR) has become an indispensable tool for environmental monitoring, offering all-weather, day-and-night imaging capabilities. Before the launch, accurately analyzing the imaging characteristics of spaceborne SAR systems on the ground is crucial, and the antenna system is a very important [...] Read more.
Spaceborne Synthetic Aperture Radar (SAR) has become an indispensable tool for environmental monitoring, offering all-weather, day-and-night imaging capabilities. Before the launch, accurately analyzing the imaging characteristics of spaceborne SAR systems on the ground is crucial, and the antenna system is a very important part of SAR system simulation. This paper investigates the impact of antenna configuration on SAR imaging characteristics by using 3D antenna pattern, focusing on resolution consistency, coverage uniformity, and system adaptability under varying observation geometries. Different from the traditional SAR simulation with 2D antenna pattern (range direction and azimuth direction antenna pattern), we provide a novel simulation method by using 3D antenna pattern, which increases the simulation accuracy and realism. The two mainstream spaceborne SAR antennas (phased array antenna (PAA) and reflector antenna (RA)) are used to illustrate the differences between 2D antenna pattern and 3D antenna pattern. We provide a comparative analysis in the context of high-resolution and wide-swath imaging missions. Additionally, the importance of integrating 3D antenna pattern into SAR system simulation is emphasized, as it improves simulation fidelity, reduces development risk, and supports design validation. This study provides insights for the design and optimization of future SAR system simulation. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 3374 KB  
Technical Note
A Novel Real-Time Multi-Channel Error Calibration Architecture for DBF-SAR
by Jinsong Qiu, Zhimin Zhang, Yunkai Deng, Heng Zhang, Wei Wang, Zhen Chen, Sixi Hou, Yihang Feng and Nan Wang
Remote Sens. 2025, 17(16), 2890; https://doi.org/10.3390/rs17162890 - 19 Aug 2025
Viewed by 1054
Abstract
Digital Beamforming SAR (DBF-SAR) provides high-resolution wide-swath imaging capability, yet it is affected by inter-channel amplitude, phase and time-delay errors induced by temperature variations and random error factors. Since all elevation channel data are weighted and summed by the DBF module in real [...] Read more.
Digital Beamforming SAR (DBF-SAR) provides high-resolution wide-swath imaging capability, yet it is affected by inter-channel amplitude, phase and time-delay errors induced by temperature variations and random error factors. Since all elevation channel data are weighted and summed by the DBF module in real time, conventional record-then-compensate approaches cannot meet real-time processing requirements. To resolve the problem, a real-time calibration architecture for Intermediate Frequency DBF (IFDBF) is presented in this paper. The Field-Programmable Gate Array (FPGA) implementation estimates amplitude errors through simple summation, time-delay errors via a simple counter, and phase errors via single-bin Discrete-Time Fourier Transform (DTFT). The time-delay and phase error information are converted into single-tone frequency components through Dechirp processing. The proposed method deliberately employs a reduced-length DTFT implementation to achieve enhanced delay estimation range adaptability. The method completes calibration within tens of PRIs (under 1 s). The proposed method is analyzed and validated through a spaceborne simulation and X-band 16-channel DBF-SAR experiments. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

22 pages, 9740 KB  
Article
A Novel Error Correction Method for Airborne HRWS SAR Based on Azimuth-Variant Attitude and Range-Variant Doppler Domain Pattern
by Yihao Xu, Fubo Zhang, Longyong Chen, Yangliang Wan and Tao Jiang
Remote Sens. 2025, 17(16), 2831; https://doi.org/10.3390/rs17162831 - 14 Aug 2025
Cited by 2 | Viewed by 893
Abstract
In high-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging, the azimuth multi-channel technique effectively suppresses azimuth ambiguity, serving as a reliable approach for achieving wide-swath imaging. However, due to mechanical vibrations of the platform and airflow instabilities, airborne SAR may experience errors [...] Read more.
In high-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging, the azimuth multi-channel technique effectively suppresses azimuth ambiguity, serving as a reliable approach for achieving wide-swath imaging. However, due to mechanical vibrations of the platform and airflow instabilities, airborne SAR may experience errors in attitude and flight path during operation. Furthermore, errors also exist in the antenna patterns, frequency stability, and phase noise among the azimuth multi-channels. The presence of these errors can cause azimuth multi-channel reconstruction failure, resulting in azimuth ambiguity and significantly degrading the quality of HRWS images. This article presents a novel error correction method for airborne HRWS SAR based on azimuth-variant attitude and range-variant Doppler domain pattern, which simultaneously considers the effects of various errors, including channel attitude errors and Doppler domain antenna pattern errors, on azimuth reconstruction. Attitude errors are the primary cause of azimuth-variant errors between channels. This article uses the vector method and attitude transformation matrix to calculate and compensate for the attitude errors of azimuth multi-channels, and employs the two-dimensional frequency-domain echo interferometry method to calculate the fixed delay errors and fixed phase errors. To better achieve channel error compensation, this scheme also considers the estimation and compensation of Doppler domain antenna pattern errors in wide-swath scenes. Finally, the effectiveness of the proposed scheme is confirmed through simulations and processing of airborne real data. Full article
Show Figures

Figure 1

25 pages, 15938 KB  
Article
Coastal Eddy Detection in the Balearic Sea: SWOT Capabilities
by Laura Fortunato, Laura Gómez-Navarro, Vincent Combes, Yuri Cotroneo, Giuseppe Aulicino and Ananda Pascual
Remote Sens. 2025, 17(15), 2552; https://doi.org/10.3390/rs17152552 - 23 Jul 2025
Cited by 1 | Viewed by 1811
Abstract
Mesoscale coastal eddies are key components of ocean circulation, mediating the transport of heat, nutrients, and marine debris. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution sea surface height data, offering a novel opportunity to improve the observation and characterization of [...] Read more.
Mesoscale coastal eddies are key components of ocean circulation, mediating the transport of heat, nutrients, and marine debris. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution sea surface height data, offering a novel opportunity to improve the observation and characterization of these features, especially in coastal regions where conventional altimetry is limited. In this study, we investigate a mesoscale anticyclonic coastal eddy observed southwest of Mallorca Island, in the Balearic Sea, to assess the impact of SWOT-enhanced altimetry in resolving its structure and dynamics. Initial eddy identification is performed using satellite ocean color imagery, followed by a qualitative and quantitative comparison of multiple altimetric datasets, ranging from conventional nadir altimetry to wide-swath products derived from SWOT. We analyze multiple altimetric variables—Sea Level Anomaly, Absolute Dynamic Topography, Velocity Magnitude, Eddy Kinetic Energy, and Relative Vorticity—highlighting substantial differences in spatial detail and intensity. Our results show that SWOT-enhanced observations significantly improve the spatial characterization and dynamical depiction of the eddy. Furthermore, Lagrangian transport simulations reveal how altimetric resolution influences modeled transport pathways and retention patterns. These findings underline the critical role of SWOT in advancing the monitoring of coastal mesoscale processes and improving our ability to model oceanic transport mechanisms. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Graphical abstract

29 pages, 5555 KB  
Review
The Development of a Spaceborne SAR Based on a Reflector Antenna
by Yongfei Huang, Weidong Yu, Qiang Lin, Wenbao Li and Yihang Feng
Remote Sens. 2025, 17(14), 2432; https://doi.org/10.3390/rs17142432 - 14 Jul 2025
Cited by 1 | Viewed by 3067
Abstract
In recent years, synthetic aperture radars (SARs) have been widely applied in various fields due to their all-weather, day-and-night global imaging capabilities. As one of the most common types of antennas, the reflector antenna offers some advantages for spaceborne radars, including low cost, [...] Read more.
In recent years, synthetic aperture radars (SARs) have been widely applied in various fields due to their all-weather, day-and-night global imaging capabilities. As one of the most common types of antennas, the reflector antenna offers some advantages for spaceborne radars, including low cost, lightweight, high gain, high radiation efficiency, and low sidelobes. Consequently, spaceborne SAR systems based on reflector antennas exhibit significant potential. This paper reviews the main types and characteristics of reflector antennas, with particular attention to the structural configurations and feed arrangements of deployable reflector antennas in spaceborne SAR applications. Additionally, some emerging techniques, such as digital beamforming, staggered SAR, and SweepSAR based on reflector antennas, are examined. Finally, future development directions in this field are discussed, including high-resolution wide-swath imaging and advanced antenna deployment schemes. Full article
Show Figures

Figure 1

Back to TopTop