Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,795)

Search Parameters:
Keywords = high-pressure interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12563 KiB  
Article
Optimization of Grouser–Track Structural Parameters for Enhanced Tractive Performance in Unmanned Amphibious Tracked Vehicles
by Yaoyao Chen, Xiaojun Xu, Wenhao Wang, Xue Gao and Congnan Yang
Actuators 2025, 14(8), 390; https://doi.org/10.3390/act14080390 - 6 Aug 2025
Abstract
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) [...] Read more.
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) govern pressure–sinkage relationships at the track base, while grouser structural parameters (height, spacing, V-shaped angle) dominate shear stress–displacement dynamics on grouser shear planes. A novel DEM-MBD coupling simulation framework was established through soil parameter calibration and multi-body dynamics modeling, demonstrating that soil thrust increases with grouser height and V-shaped angle, but decreases with spacing, with grouser height exhibiting the highest sensitivity. A soil bin test validated the numerical model’s accuracy and the coupling method’s efficacy. Parametric optimization via the Whale Optimization Algorithm (WOA) achieved a 55.86% increase in drawbar pull, 40.38% reduction in ground contact pressure and 57.33% improvement in maximum gradability. These advancements substantially improve the tractive performance of UATVs in soft beach terrains. The proposed methodology provides a systematic framework for amphibious vehicle design, integrating numerical modeling, high-fidelity simulation, and experimental validation. Full article
Show Figures

Figure 1

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

24 pages, 6492 KiB  
Review
Review on Multifactorial Coupling Effects and the Time-Dependent Behavior of Lateral Pressure on Concrete Formworks
by Kekuo Yuan, Min Zhang, Yichu Lu and Hongdan Yu
Buildings 2025, 15(15), 2764; https://doi.org/10.3390/buildings15152764 - 5 Aug 2025
Abstract
This critical review synthesizes evidence on the multifactorial coupling mechanisms and time-dependent evolution of lateral pressure in concrete formworks, addressing significant limitations in current design standards (GB50666, CIRIA 108, ACI 347). Through a structured analysis of 60+ experimental and theoretical studies, we establish [...] Read more.
This critical review synthesizes evidence on the multifactorial coupling mechanisms and time-dependent evolution of lateral pressure in concrete formworks, addressing significant limitations in current design standards (GB50666, CIRIA 108, ACI 347). Through a structured analysis of 60+ experimental and theoretical studies, we establish that lateral pressure is governed by nonlinear interactions between concrete rheology, casting dynamics, thermal conditions, and formwork geometry. The key findings reveal that (1) casting rate increments >5 m/h amplify peak pressure by 15–27%, while SCC thixotropy (Athix > 0.5) reduces it by 15–27% at <5 m/h; (2) secondary vibration induces 52–61% pressure surges through liquefaction; and (3) sections with a width >2 m exhibit 40% faster pressure decay due to arching effects. (4) Temporal evolution follows three distinct phases—rapid rise (0–2 h), slow decay (2–10 h), and sharp decline (>10 h)—with the temperature critically modulating transition kinetics. Crucially, the existing codes inadequately model temperature dependencies, SCC/HPC rheology, and high-speed casting (>10 m/h). This work proposes a parameter-specific framework integrating rheological thresholds (Athix, Rstr), casting protocols, and real-time monitoring to enhance standard accuracy, enabling an optimized formwork design and risk mitigation in complex scenarios, such as water conveyance construction and slipforming. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 1294 KiB  
Article
Achieving Optimal Distinctiveness in Green Innovation: The Role of Pressure Congruence
by Rong Cong, Hongyan Gao, Liya Wang, Bo Liu and Ya Wang
Systems 2025, 13(8), 657; https://doi.org/10.3390/systems13080657 - 4 Aug 2025
Viewed by 174
Abstract
As a critical external mechanism driving green innovation, institutional and competitive pressure often coexist and jointly shape firms’ strategic responses. However, existing studies primarily focus on the individual effects of these pressures, with limited attention to their interactive impacts on green innovation. Drawing [...] Read more.
As a critical external mechanism driving green innovation, institutional and competitive pressure often coexist and jointly shape firms’ strategic responses. However, existing studies primarily focus on the individual effects of these pressures, with limited attention to their interactive impacts on green innovation. Drawing on optimal distinctiveness theory, this study proposes a “pressure–response” analytical framework that classifies institutional and competitive pressure combinations into congruent (i.e., high–high or low–low) and incongruent (i.e., high–low or low–high) pressure contexts based on their relative intensities. It further examines how these distinct configurations affect two types of green innovation: strategic green innovation (StrGI) and substantive green innovation (SubGI). Using panel data from Chinese A-share listed firms between 2010 and 2022, the empirical results reveal that under congruent pressure contexts, the alignment of institutional and competitive pressures tends to suppress green innovation. In contrast, under incongruent contexts, the misalignment between the two pressures significantly promotes green innovation. Regarding innovation motivation, the high institutional–low competitive pressure context more significantly promotes StrGI, while the low institutional–high competitive pressure context has a more prominent effect on SubGI. In addition, this study also investigates the mediating roles of StrGI and SubGI on ESG performance. The findings provide theoretical support and policy implications for improving green transition policies and institutional frameworks, as well as promoting sustainable corporate development. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

45 pages, 10039 KiB  
Article
Design of an Interactive System by Combining Affective Computing Technology with Music for Stress Relief
by Chao-Ming Wang and Ching-Hsuan Lin
Electronics 2025, 14(15), 3087; https://doi.org/10.3390/electronics14153087 - 1 Aug 2025
Viewed by 431
Abstract
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music [...] Read more.
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music listening, emotion detection, and interactive devices. A prototype was created accordingly and refined through interviews with four experts and eleven users participating in a preliminary experiment. The system is grounded in a four-stage guided imagery and music framework, along with a static activity model focused on relaxation-based stress management. Emotion detection was achieved using a wearable EEG device (NeuroSky’s MindWave Mobile device) and a two-dimensional emotion model, and the emotional states were translated into visual representations using seasonal and weather metaphors. A formal experiment involving 52 users was conducted. The system was evaluated, and its effectiveness confirmed, through user interviews and questionnaire surveys, with statistical analysis conducted using SPSS 26 and AMOS 23. The findings reveal that: (1) integrating emotion sensing with music listening creates a novel and engaging interactive experience; (2) emotional states can be effectively visualized using nature-inspired metaphors, enhancing user immersion and understanding; and (3) the combination of music listening, guided imagery, and real-time emotional feedback successfully promotes emotional relaxation and increases self-awareness. Full article
(This article belongs to the Special Issue New Trends in Human-Computer Interactions for Smart Devices)
Show Figures

Figure 1

26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 215
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

17 pages, 2612 KiB  
Article
Pressure Response of Crystalline Fluoranthene Probed by Raman Spectroscopy
by Olga Karabinaki, Stylianos Papastylianos, Nayra Machín Padrón, Antonios Hatzidimitriou, Dimitrios Christofilos and John Arvanitidis
Crystals 2025, 15(8), 697; https://doi.org/10.3390/cryst15080697 - 30 Jul 2025
Viewed by 182
Abstract
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. [...] Read more.
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. The frequency shifts, accompanied by intensity redistribution among the Raman peaks, are by far larger for the former than those for the latter vibrations, compatible with their nature: weak intermolecular van der Waals interactions and strong intramolecular covalent bonds. For pressures higher than 2 GPa, changes in the linear pressure coefficients of the Raman peak frequencies, mainly towards lower values, are observed. These are more pronounced for intermolecular and C–H stretching vibrations. For P > 4.7 GPa, the pressure coefficients are further reduced, while all the observed pressure-induced changes are fully reversible upon pressure release. These changes may be interpreted either as two structural transitions at ~2 and ~4.7 GPa or as a single, but sluggish, structural phase transition in the pressure range 2–4.7 GPa, featuring the reorientation and different stacking of the molecules. From the high-pressure Raman data in the low-pressure phase, a bulk modulus of ~7 GPa at ambient pressure is estimated for solid fluoranthene. Full article
Show Figures

Graphical abstract

30 pages, 3319 KiB  
Article
A Pilot Study on Thermal Comfort in Young Adults: Context-Aware Classification Using Machine Learning and Multimodal Sensors
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Serik Aibagarov, Nurtugan Azatbekuly, Gulmira Dikhanbayeva and Aksultan Mukhanbet
Buildings 2025, 15(15), 2694; https://doi.org/10.3390/buildings15152694 - 30 Jul 2025
Viewed by 356
Abstract
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a [...] Read more.
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a high-accuracy, interpretable framework for thermal comfort classification, designed to identify the most significant predictors from a comprehensive suite of environmental, physiological, and anthropometric data in a controlled group of young adults. Initially, an XGBoost model using the full 24-feature dataset achieved the best performance at 91% accuracy. However, after using SHAP analysis to identify and select the most influential features, the performance of our ensemble models improved significantly; notably, a Random Forest model’s accuracy rose from 90% to 94%. Our analysis confirmed that for this homogeneous cohort, environmental parameters—specifically temperature, humidity, and CO2—were the dominant predictors of thermal comfort. The primary strength of this methodology lies in its ability to create a transparent pipeline that objectively identifies the most critical comfort drivers for a given population, forming a crucial evidence base for model design. The analysis also revealed that the predictive value of heart rate variability (HRV) diminished when richer physiological data, such as diastolic blood pressure, were included. For final validation, the optimized Random Forest model, using only the top 10 features, was tested on a hold-out set of 100 samples, achieving a final accuracy of 95% and an F1-score of 0.939, with all misclassifications occurring only between adjacent comfort levels. These findings establish a validated methodology for creating effective, context-aware comfort models that can be embedded into intelligent building management systems. Such adaptive systems enable a shift from static climate control to dynamic, user-centric environments, laying the critical groundwork for future personalized systems while enhancing occupant well-being and offering significant energy savings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 217
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

32 pages, 3694 KiB  
Article
Decoding Urban Traffic Pollution: Insights on Trends, Patterns, and Meteorological Influences for Policy Action in Bucharest, Romania
by Cristiana Tudor, Alexandra Horobet, Robert Sova, Lucian Belascu and Alma Pentescu
Atmosphere 2025, 16(8), 916; https://doi.org/10.3390/atmos16080916 - 29 Jul 2025
Viewed by 406
Abstract
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. [...] Read more.
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. In this context, municipal authorities in the country, particularly in high-density areas, should place a strong focus on mitigating air pollution. In particular, the capital city, Bucharest, ranks among the most congested cities in the world while registering the highest pollution index in Romania, with traffic pollution responsible for two-thirds of its air pollution. Consequently, studies that assess and model pollution trends are paramount to inform local policy-making processes and assist pollution-mitigation efforts. In this paper, a generalized additive modeling (GAM) framework is employed to model hourly concentrations of nitrogen dioxide (NO2), i.e., a relevant traffic-pollution proxy, at a busy urban traffic location in central Bucharest, Romania. All models are developed on a wide, fine-granularity dataset spanning January 2017–December 2022 and include extensive meteorological covariates. Model robustness is assured by switching between the generalized additive model (GAM) framework and the generalized additive mixed model (GAMM) framework when the residual autoregressive process needs to be specifically acknowledged. Results indicate that trend GAMs explain a large amount of the hourly variation in traffic pollution. Furthermore, meteorological factors contribute to increasing the models’ explanation power, with wind direction, relative humidity, and the interaction between wind speed and the atmospheric pressure emerging as important mitigators for NO2 concentrations in Bucharest. The results of this study can be valuable in assisting local authorities to take proactive measures for traffic pollution control in the capital city of Romania. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

22 pages, 3267 KiB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 262
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

23 pages, 1019 KiB  
Article
Deciphering the Environmental Consequences of Competition-Induced Cost Rationalization Strategies of the High-Tech Industry: A Synergistic Combination of Advanced Machine Learning and Method of Moments Quantile Regression Procedures
by Salih Çağrı İlkay, Harun Kınacı and Esra Betül Kınacı
Sustainability 2025, 17(15), 6867; https://doi.org/10.3390/su17156867 - 28 Jul 2025
Viewed by 533
Abstract
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of [...] Read more.
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of cost rationalization management regarding the opportunity cost of ecosystem service consumption and propose to test the fundamental hypothesis stating the possible transmission of competition-induced technological innovations to green economic transformation. Our new methodology estimates quantile-specific effects with MM-QR, while identifying the main interaction effects between regulatory pressure and trade competition uses an extended STIRPAT model. The results reveal a paradoxical finding: despite higher environmental policy stringency and opportunity costs of ecosystem services, HT sectors persistently adopt environmentally detrimental cost-reduction approaches. These findings carry important policy implications: (1) environmental regulations for HT sectors require complementary innovation subsidies, (2) trade agreements should incorporate clean technology transfer clauses, and (3) governments must monitor sectoral emission leakage risks. Our dual machine learning–econometric approach provides policymakers with targeted insights for different emission scenarios, highlighting the need for differentiated strategies across clean and polluting HT subsectors. Full article
Show Figures

Figure 1

36 pages, 25831 KiB  
Article
Identification of Cultural Landscapes and Spatial Distribution Characteristics in Traditional Villages of Three Gorges Reservoir Area
by Jia Jiang, Zhiliang Yu and Ende Yang
Buildings 2025, 15(15), 2663; https://doi.org/10.3390/buildings15152663 - 28 Jul 2025
Viewed by 335
Abstract
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and [...] Read more.
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and development under the impact of modernisation and ecological pressure. This study takes 112 traditional villages in the TGRA that have been included in the protection list as the research objects, aiming to construct a cultural landscape identification framework for the traditional villages in the TGRA. Through field surveys, landscape feature assessments, GIS spatial analysis, and multi-source data analysis, we systematically analyse their cultural landscape type systems and spatial differentiation characteristics, and then reveal their cultural landscape types and spatial differentiation patterns. (1) The results of the study show that the spatial distribution of traditional villages exhibits significant altitude gradient differentiation—the low-altitude area is dominated by traffic and trade villages, the middle-altitude area is dominated by patriarchal manor villages and mountain farming villages, and the high-altitude area is dominated by ethno-cultural and ecologically dependent villages. (2) Slope and direction analyses further reveal that the gently sloping areas are conducive to the development of commercial and agricultural settlements, while the steeply sloping areas strengthen the function of ethnic and cultural defence. The results indicate that topographic conditions drive the synergistic evolution of the human–land system in traditional villages through the mechanisms of agricultural optimisation, trade networks, cultural defence, and ecological adaptation. The study provides a paradigm of “nature–humanities” interaction analysis for the conservation and development of traditional villages in mountainous areas, which is of practical value in coordinating the construction of ecological barriers and the revitalisation of villages in the reservoir area. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 8489 KiB  
Article
Validation of the Pull-Back Method for Dynamic Tensile Strength Characterization in Unidirectional Reinforced Concrete
by Xinlu Yu, Junfeng Zhang and Junhui Gu
Appl. Sci. 2025, 15(15), 8369; https://doi.org/10.3390/app15158369 - 28 Jul 2025
Viewed by 250
Abstract
The pull-back method for determining dynamic tensile strength assumes one-dimensional stress wave propagation and material homogeneity. This study validates these assumptions for unidirectional reinforced concrete (UDRC) through experiments and numerical simulations. Split Hopkinson pressure bar tests were conducted on plain concrete, plain UDRC, [...] Read more.
The pull-back method for determining dynamic tensile strength assumes one-dimensional stress wave propagation and material homogeneity. This study validates these assumptions for unidirectional reinforced concrete (UDRC) through experiments and numerical simulations. Split Hopkinson pressure bar tests were conducted on plain concrete, plain UDRC, and deformed UDRC specimens containing a central 6 mm steel bar. Ultra-high-speed digital image correlation at 500,000 fps enabled precise local strain rate measurements (3 s−1 to 55 s−1) at fracture locations. Finite element simulations revealed that while reinforcement induces localized multi-axial stresses near the steel–concrete interface, the bulk concrete maintains predominantly uniaxial stress conditions. Experimental results showed less than 1% variation in pull-back velocity between specimen types. Statistical analysis confirmed a unified strain rate-strength relationship: σspall=4.1+4.7log10(ε˙)MPa, independent of reinforcement configuration (ANCOVA: p=0.2182 for interaction term). The dynamic tensile strength is governed by concrete matrix properties rather than reinforcement type. These findings are the first to experimentally and numerically validate the pull-back method’s applicability to UDRC systems, establishing that dynamic tensile failure is matrix-dominated and enabling simplified one-dimensional analysis for reinforced concrete under impact. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 3997 KiB  
Article
Simulation of Dynamic Particle Trapping and Accumulation in HGMS Based on FEM-CFD-DEM Coupling Approach
by Xiaoming Wang, Yonghui Hu, Yefei Hao, Zhengchang Shen, Guodong Liang and Ming Zhang
Processes 2025, 13(8), 2391; https://doi.org/10.3390/pr13082391 - 28 Jul 2025
Viewed by 307
Abstract
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation [...] Read more.
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation behavior in HGMS. The dynamic deposition process of magnetic particles under the interactions of magnetic fields, fluid flow fields, and particle–particle forces was simulated using a two-way fluid–solid coupling algorithm based on the FEM-CFD-DEM coupling approach. Experimental results demonstrated that the particle deposition profiles predicted by the double-wire medium model were in good agreement with the measured data. The research findings indicated that the separation process could be divided into three distinct stages—the adsorption stage, the closure stage, and the clogging stage—each characterized by unique dynamic behaviors and pressure-drop evolution patterns. Additionally, the effects of key parameters such as the feeding velocity and medium filling ratio on the separation process were analyzed, providing theoretical foundations and technical support for the optimization of HGMS processes and the enhancement of separation efficiency. Full article
(This article belongs to the Special Issue Mineral Processing Equipments and Cross-Disciplinary Approaches)
Show Figures

Figure 1

Back to TopTop