Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,285)

Search Parameters:
Keywords = high-performance liquid chromatography methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1685 KiB  
Article
Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions
by Maria Bou Saad, Sylvain Ravier, Amandine Durand, Brice Temime-Roussel, Vincent Gaudefroy, Audrey Pevere, Henri Wortham and Pierre Doumenq
Molecules 2025, 30(16), 3397; https://doi.org/10.3390/molecules30163397 (registering DOI) - 16 Aug 2025
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted [...] Read more.
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted from bituminous mixtures, remains challenging due to limitations of conventional analytical techniques. To address this, an advanced methodology was developed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS Orbitrap Eclipse) equipped with an APCI source for the simultaneous identification and quantification of 14 PAH derivatives. Chromatographic and ionization parameters were optimized to ensure maximum sensitivity and selectivity. Following ICH Q2(R2) guidelines, the method was validated, demonstrating excellent linearity (R2 > 0.99), high mass accuracy (≤5 ppm), strong precision (<15%), and excellent sensitivity. Limits of detection (LODs) ranged from 0.1 µg L−1 to 0.6 µg L−1 and limits of quantification (LOQs) ranged from 0.26 µg L−1 to 1.87 µg L−1. The validated method was successfully applied to emissions from asphalt pavement materials collected on quartz filters under controlled conditions, enabling the identification and quantification of all 14 targeted compounds. These results confirm the method’s robustness and suitability for trace-level analysis of PAH derivatives in complex environmental matrices. Full article
Show Figures

Figure 1

19 pages, 1768 KiB  
Article
Pomegranate Peels: A Promising Source of Biologically Active Compounds with Potential Application in Cosmetic Products
by Yulian Tumbarski, Ivan Ivanov, Radka Vrancheva, Nadezhda Mazova and Krastena Nikolova
Cosmetics 2025, 12(4), 169; https://doi.org/10.3390/cosmetics12040169 - 11 Aug 2025
Viewed by 286
Abstract
As a rich source of biologically active compounds, pomegranate peel is a valuable by-product with applications in the food, pharmaceutical and cosmetic sectors. The present study aimed to investigate the phytochemical composition, antioxidant and antimicrobial activity, photoprotective activity and application in a cosmetic [...] Read more.
As a rich source of biologically active compounds, pomegranate peel is a valuable by-product with applications in the food, pharmaceutical and cosmetic sectors. The present study aimed to investigate the phytochemical composition, antioxidant and antimicrobial activity, photoprotective activity and application in a cosmetic emulsion of extracts obtained from pomegranate peel by different solvents. The analysis of phenolic compounds was determined by high-performance liquid chromatography (HPLC); the total phenolic content (TPC) and the total flavonoid content (TFC) were evaluated using standard spectrophotometric methods; the antioxidant activity was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging, ferric-reducing antioxidant power (FRAP) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays; antimicrobial screening was performed against twenty test microorganisms; the ultraviolet (UV) protection effect of extracts and cosmetic emulsion was assessed spectrophotometrically in the wavelength range of 290–320 nm. HPLC analysis revealed fourteen phenolic compounds, including four phenolic acids (ellagic, gallic, p-coumaric, and ferulic), two tannins (pedunculagin and punicalagin), six flavonoids (myricetin, hesperidin, quercetin, luteolin, kaempferol, and apigenin), and two quercetin glycosides (rutin and hyperoside). The four pomegranate peel extracts demonstrated high TPC, TFC and antioxidant potential (DMSO > 70% ethanolic > methanolic > aqueous), and significant antimicrobial activity. The four extracts showed a remarkable UV protection effect. When applied in a cosmetic emulsion, the ethanolic extract showed sun protection factor (SPF) values from 13.59 (0.5 mg/g) to 50.65 (5 mg/g). Based on the results obtained, we can conclude that pomegranate peel is a promising source of bioactive compounds, which can be successfully utilized by integration into various pharmaceutical and value-added skin health products. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

13 pages, 686 KiB  
Article
Development and Validation of an HPLC-MS/MS Method for Quantifying Deoxynivalenol and Zearalenone Biomarkers in Dried Porcine Blood Spots
by Isadora Fabris Laber, Cristina Tonial Simões, Cristiane Rosa da Silva, Luara Medianeira de Lima Schlösser, Janine Alves Sarturi, Luriane Medianeira Carossi Leal, Renê Valmor Theobald and Carlos Augusto Mallmann
Chemosensors 2025, 13(8), 296; https://doi.org/10.3390/chemosensors13080296 - 9 Aug 2025
Viewed by 263
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are common mycotoxins in animal feeds, and their metabolites can be detected in exposed animals. Traditional methods focus on mycotoxin detection in feed, whereas biomarker-based approaches are used for evaluating individual exposure. This study aimed to develop and [...] Read more.
Deoxynivalenol (DON) and zearalenone (ZEN) are common mycotoxins in animal feeds, and their metabolites can be detected in exposed animals. Traditional methods focus on mycotoxin detection in feed, whereas biomarker-based approaches are used for evaluating individual exposure. This study aimed to develop and validate a multi-analyte method for the detection of biomarkers of ZEN, DON, and their metabolites α-zearalanol (α-ZAL), zearalanone (ZAN), deepoxy-DON (DOM-1), and 3-acetyl-DON (3-ADON) in swine using dried blood spots (DBSs) on qualitative filter paper. Analysis was performed using high-performance liquid chromatography–tandem mass spectrometry. Blank blood samples from three male pigs were fortified with 20, 40, and 60 μg/L of each analyte. Aliquots of 40 μL were spotted onto filter paper and then extracted and analyzed. Method validation included evaluating limits of detection and quantification, linearity, matrix effects, recovery, repeatability, intermediate precision, and selectivity. All analytes were detectable in DBS. Also, ZEN, ZAN, DON, and DOM-1 met all validation criteria, with recovery values of 89.10%, 79.79%, 101.50%, and 79.50%, respectively. Both α-ZAL and 3-ADON showed lower recoveries (74.66% and 58.66%). The method was successfully validated for simultaneous analysis of ZEN, ZAN, DON, and DOM-1 in swine DBS, offering a practical and minimally invasive tool for biomonitoring mycotoxin exposure. Full article
Show Figures

Figure 1

10 pages, 208 KiB  
Article
Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk
by Marika Di Paolo, Valeria Pelizzola, Lucia De Luca, Loriana Casalino, Giulia Polizzi, Milena Povolo and Raffaele Marrone
Foods 2025, 14(15), 2756; https://doi.org/10.3390/foods14152756 - 7 Aug 2025
Viewed by 170
Abstract
Phospholipids (PLs) are a group of biomolecules found in the milk fat globule membranes (MFGMs). Recently, MFGM phospholipids have attracted increasing amounts of attention due to their unique composition, stability, and potential health benefits, including protective effects against Alzheimer’s disease, hypercholesterolemia, and certain [...] Read more.
Phospholipids (PLs) are a group of biomolecules found in the milk fat globule membranes (MFGMs). Recently, MFGM phospholipids have attracted increasing amounts of attention due to their unique composition, stability, and potential health benefits, including protective effects against Alzheimer’s disease, hypercholesterolemia, and certain types of cancer. Although buffalo milk is the second most commonly produced milk and has high nutritional value, few studies have focused on the properties of buffalo MFGM. This study investigates the PLs composition of buffalo milk and related dairy by-products (whey and buttermilk). Milk and whey were collected from two dairy farms (A—small and B—big) to produce mozzarella buffalo cheese (high-pasteurization milk for GDO production and low for local); while buttermilk was obtained from a butter-making farm. Phospholipids were purified by a solid-phase extraction method and then identified by high-performance liquid chromatography with an evaporative light-scattering detector (HPLC/ELSD). Five classes of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM)] were identified. The thermal process of milk did not significantly affect the PLs milk. However, local whey showed a higher concentration of total PLs than GDO, which was mainly represented by PE followed by PC content. Farm A exhibited higher PL content than B, particularly with a greater concentration of SM. Buttermilk showed the lowest PLs content. These findings offer valuable insights for the dairy industry and related applications, contributing to the valorization of buffalo dairy products. Full article
(This article belongs to the Section Food Engineering and Technology)
15 pages, 1507 KiB  
Article
Determination of Fumonisins B1 and B2 in Food Matrices: Optimisation of a Liquid Chromatographic Method with Fluorescence Detection
by Óscar Cebadero-Domínguez, Santiago Ruiz-Moyano, Alberto Martín and Elisabet Martín-Tornero
Toxins 2025, 17(8), 391; https://doi.org/10.3390/toxins17080391 - 5 Aug 2025
Viewed by 302
Abstract
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a [...] Read more.
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the quantification of fumonisin B1 (FB1) and B2 (FB2) in various food matrices. In contrast with conventional protocols employing potassium phosphate buffers as the mobile phase, the proposed method utilises formic acid, offering enhanced compatibility with liquid chromatography systems. An automated online precolumn derivatisation with o-phthaldialdehyde (OPA) was optimised through experimental design and response surface methodology, enabling baseline separation of FB1 and FB2 derivatives in less than 20 min. The method demonstrated high sensitivity, with limits of detection of 0.006 µg mL−1 for FB1 and 0.012 µg mL−1 for FB2, and excellent repeatability (intraday RSD values of 0.85% and 0.83%, respectively). Several solid-phase extraction (SPE) strategies were evaluated to enhance sample clean-up using a variety of food samples, including dried figs, raisins, dates, corn, cornmeal, wheat flour, and rice. FumoniStar Inmunoaffinity columns were the only clean-up method that provided optimal recoveries (70–120%) across all tested food matrices. However, the MultiSep™ 211 column yielded good recoveries for both fumonisins in dried figs and raisins. Additionally, the C18 cartridge achieved acceptable recoveries for both fumonisins in dried figs and wheat flour. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

15 pages, 449 KiB  
Article
Association Between Rest–Activity Rhythm and 27-Hydroxycholesterol (27-OH) in Patients with Amnestic Mild Cognitive Impairment (aMCI)
by Seong Jae Kim, Jung Hie Lee, Jae-Won Jang, Minseo Choi and In Bum Suh
J. Clin. Med. 2025, 14(15), 5481; https://doi.org/10.3390/jcm14155481 - 4 Aug 2025
Viewed by 320
Abstract
Background/Objectives: Rest–activity rhythm (RAR) disturbances can contribute to aging and dementia via metabolic dysregulation. Hydroxycholesterol (OH) is thought to mediate the link between hypercholesterolemia and neurodegeneration. This study compared sleep and RAR parameters between amnestic mild cognitive impairment (aMCI) patients and normal [...] Read more.
Background/Objectives: Rest–activity rhythm (RAR) disturbances can contribute to aging and dementia via metabolic dysregulation. Hydroxycholesterol (OH) is thought to mediate the link between hypercholesterolemia and neurodegeneration. This study compared sleep and RAR parameters between amnestic mild cognitive impairment (aMCI) patients and normal controls (NCs), and examined their associations with plasma 27-OH levels, reflecting peripheral cholesterol metabolism. Methods In total, 18 aMCI patients (76.6 ± 6.1 years) and 21 NCs (70.4 ± 6.7 years) underwent five-day actigraphy and dim light melatonin onset assessment. Plasma 27-OH levels were measured via high-performance liquid chromatography-mass spectrometry. Generalized linear models (GLMs) were used to analyze the relationships between sleep, RAR, and 27-OH levels. Results: The aMCI group had significantly lower 27-OH levels and 27-OH/total cholesterol ratios (p < 0.05). GLM revealed that longer sleep onset latency (SOL) was associated with higher 27-OH levels in aMCI, distinguishing them from NCs. Additionally, in aMCI, longer SOL, lower sleep efficiency (SE), and higher fragmentation index (FI) were associated with an increased 27-OH/total cholesterol ratio (p < 0.05). Higher relative amplitude of RAR was linked to lower 27-OH levels across groups (p < 0.01), but RAR parameters showed no significant association with the 27-OH/total cholesterol ratio. Sleep disturbances, including prolonged SOL, reduced SE, and increased FI, were associated with altered peripheral cholesterol oxygenation in aMCI. Conclusions: Greater RAR amplitude correlated with lower 27-OH levels, regardless of cognitive status. These findings suggest that peripheral cholesterol oxygenation in aMCI is related to both sleep disturbances and circadian rhythm dysregulation, highlighting their role in cholesterol metabolism and neurodegeneration. Full article
Show Figures

Figure 1

19 pages, 3213 KiB  
Article
Comparison and Study on Flavor and Quality Characteristics of Different Grades of Tianshanhong (TSH)
by Shu-Ting Xiao, Xian-Zhou Huang, Jian-Feng Huang, Qing-Yang Wu, Yang Wu, Ting-Ting Deng, Xian-Xian Xu, Hao-Xiang Liu, Xiao-Hui Chen, Shi-Zhong Zheng and Zi-Wei Zhou
Beverages 2025, 11(4), 111; https://doi.org/10.3390/beverages11040111 - 4 Aug 2025
Viewed by 469
Abstract
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, [...] Read more.
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, four grades of TSH were evaluated using national standard sensory methods, revealing that overall quality improved with higher grades. Based on the detection of ultra-performance liquid chromatography–mass spectrometry (UPLC-MS), the content of ester-type catechins was relatively high and decreased with lower grades. A total of 19 amino acids (AAs) were clustered, among them, three amino acids, L-Theanine (L-Thea), Arg, and GABA, showed highly significant correlations with the refreshing taste of TSH. Notably, the content of Arg had the highest correlation with TSH grade, with a coefficient of 0.976 (p < 0.01). According to gas chromatography mass spectrometry (GC-MS) analysis, a total of 861 kinds of volatile compounds were detected, with 282 identified and aroma-active compounds across grades selected using the PLS model. Methyl salicylate and geraniol were particularly notable, showing strong correlations with TSH grades at 0.975 and 0.987 (p < 0.01), respectively. Our findings show that non-volatile and volatile compounds can rationally grade TSH and help understand its flavor quality. Full article
(This article belongs to the Section Tea, Coffee, Water, and Other Non-Alcoholic Beverages)
Show Figures

Figure 1

30 pages, 4423 KiB  
Review
Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
by Gbolahan Alagbe, Klara Urbanova and Olajumoke Alagbe
Processes 2025, 13(8), 2444; https://doi.org/10.3390/pr13082444 - 1 Aug 2025
Viewed by 530
Abstract
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and [...] Read more.
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and kola nuts. It emphasizes the fatty acid profiles, noting that palmitic acid (C16:0) is the predominant saturated fatty acid, while oleic acid (C18:1) and linoleic acid (C18:2) are the most abundant monounsaturated and polyunsaturated fatty acids, respectively. The review also details various analytical techniques employed for extracting and characterizing bioactive compounds, which are crucial for assessing nut quality and health benefits. Methods such as Soxhlet extraction, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), gas chromatography (GC-FID and GC-MS), and high-performance liquid chromatography (HPLC) are highlighted. Furthermore, it discusses scientific evidence linking nut consumption to antioxidant and anti-inflammatory properties, improved cardiovascular health, and a reduced risk of type 2 diabetes, establishing nuts as important components in a healthy diet. This review underscores the role of nuts as functional foods and calls for standardized methodologies in future lipidomic and volatilomic studies. Full article
Show Figures

Figure 1

16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 - 1 Aug 2025
Viewed by 693
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Graphical abstract

18 pages, 2077 KiB  
Article
Impact of Omega-3 and Vitamin D Supplementation on Bone Turnover Markers in Children with Leukemia: Follow-Up During and After Supplementation
by Lourdes Barbosa-Cortés, Sharon B. Morales-Montes, Michelle Maldonado-Alvarado, Jorge A. Martin-Trejo, Salvador Atilano-Miguel, Emmanuel Jiménez-Aguayo, Fabián I. Martínez-Becerril, Víctor M. Cortés-Beltrán, Atzin V. Hernández-Barbosa, Karina A. Solís-Labastida, Jorge Maldonado-Hernández, Benito A. Bautista-Martínez, Azalia Juárez-Moya, Zayra Hernández-Piñón, Juan M. Domínguez-Salgado, Judith Villa-Morales and Israel Domínguez-Calderón
Nutrients 2025, 17(15), 2526; https://doi.org/10.3390/nu17152526 - 31 Jul 2025
Viewed by 377
Abstract
Background/Objective: In patients with acute lymphoblastic leukemia (ALL), it has been demonstrated that the treatment has a negative effect on bone health. The n-3 polyunsaturated fatty acids (LCPUFAs-ω3) may attenuate bone resorption. We evaluated the effects of LCPUFAs-ω3, vitamin D, and [...] Read more.
Background/Objective: In patients with acute lymphoblastic leukemia (ALL), it has been demonstrated that the treatment has a negative effect on bone health. The n-3 polyunsaturated fatty acids (LCPUFAs-ω3) may attenuate bone resorption. We evaluated the effects of LCPUFAs-ω3, vitamin D, and calcium supplementation on bone turnover markers and changes in vitamin D concentrations during 6 weeks of supplementation and during 6 weeks of post-intervention follow-up in pediatric patients with ALL. Methods: Thirty-six pediatric patients with ALL were randomly assigned to the ω-3VDCa group (100 mg/kg/d LCPUFAs-ω3 + 4000 IU vitamin D + 1000 mg calcium) or the VDCa group (4000 IU vitamin D + 1000 mg calcium) for 6 weeks. Blood samples were collected to determine 25(OH)D, PTH, ICTP, and TRAP-5b (biomarkers of bone resorption) and osteocalcin (OC, a biomarker of bone production) levels at baseline, 6 weeks, and 12 weeks after supplementation. The 25(OH)D analysis was performed using ultra-high-performance liquid chromatography coupled to a mass spectrometer, and PTH and bone turnover markers were measured by ELISA. Results: The 25(OH)D concentration increased in both groups (ω3VDCa group: 19.4 ng/mL vs. 44.0 ng/mL, p < 0.0001; VDCa group: 15.3 ng/mL vs. 42.8 ng/mL, p = 0.018) and remained significantly higher at 12 weeks. At 12 weeks, ICTP showed lower concentrations in the ω-3VDCa group than in the VDCa group (0.74 ng/mL vs. 1.05 ng/mL, p = 0.024). Conclusions: Combined omega-3 and 4000 IU vitamin D supplementation for 6 weeks had a positive effect on bone health, as indicated by serum ICTP, with no effect on serum 25(OH)D levels over vitamin D supplementation alone. Full article
(This article belongs to the Special Issue Dietary Supplements and Chronic Diseases)
Show Figures

Figure 1

10 pages, 1225 KiB  
Article
Development of an LC-MS Method for the Analysis of Birch (Betula sp.) Bark Bioactives Extracted with Biosolvents
by Inmaculada Luque-Jurado, Jesús E. Quintanilla-López, Rosa Lebrón-Aguilar, Ana Cristina Soria and María Luz Sanz
Molecules 2025, 30(15), 3181; https://doi.org/10.3390/molecules30153181 - 29 Jul 2025
Viewed by 239
Abstract
Birch (Betula sp.) bark is a well-known natural source of betulin (Bet) and betulinic acid (BAc), both of which have several bioactive properties. The evaluation of the extraction performance, relative to these lupane-type triterpenoids, provided by different biosolvents requires the development of [...] Read more.
Birch (Betula sp.) bark is a well-known natural source of betulin (Bet) and betulinic acid (BAc), both of which have several bioactive properties. The evaluation of the extraction performance, relative to these lupane-type triterpenoids, provided by different biosolvents requires the development of a high-resolution and high-sensitivity liquid chromatography-mass spectrometry (LC-MS) approach that is also compatible with challenging extractants such as natural deep eutectic solvents (NADESs). In this work, an LC-MS method was developed and analytically characterized prior to its application for the quantitation of Bet and BAc in birch bark extracts obtained using conventional solvents (methanol and acetone) and biosolvents (limonene and NADESs). High precision (RSD < 3.3%), sensitivity (LOD: 23 ng mL−1 and 29 ng mL−1 for Bet and BAc, respectively), and accuracy (95–102% recovery) were found for this optimized method, using an acidulated water–methanol mixture as the mobile phase and sodium acetate as an additive. Extraction experiments conducted at 55 °C revealed that the NADESs, particularly thymol:1-octanol (1:1 molar ratio), outperformed the other solvents and were highly effective for the recovery of both triterpenoids (17.50 mg g−1 and 0.92 mg g−1 of Bet and BAc, respectively). This method can also be applied to similar extracts obtained from other biomasses. Full article
(This article belongs to the Special Issue New Advances in Deep Eutectic Solvents, 2nd Edition)
Show Figures

Figure 1

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 314
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

16 pages, 1739 KiB  
Article
Impact of the Thermovinification Practice Combined with the Use of Autochthonous Yeasts on the Fermentation Kinetics of Red Wines
by Islaine Santos Silva, Ana Paula André Barros, Marcos dos Santos Lima, Bruna Carla Agustini, Carolina Oliveira de Souza and Aline Camarão Telles Biasoto
Fermentation 2025, 11(8), 436; https://doi.org/10.3390/fermentation11080436 - 29 Jul 2025
Viewed by 373
Abstract
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research [...] Read more.
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research investigated how combining thermovinification with autochthonous yeast strains influences the fermentation dynamics of Syrah wine. Six treatments were conducted, combining the use of commercial and two autochthonous yeasts with traditional vinification (7-day maceration) and thermovinification (65 °C for 2 h) processes. Sugars and alcohols were quantified during alcoholic fermentation by high-performance liquid chromatography with refractive index detection. Cell viability and kinetic parameters, such as ethanol formation rate and sugar consumption, were also evaluated. The Syrah wine’s composition was characterized by classical wine analyses (OIV procedures). The results showed that cell viability was unaffected by thermovinification. Thermovinification associated with autochthonous yeasts improved the efficiency of alcoholic fermentation. Thermovinified wines also yielded a higher alcohol content (13.9%). Future studies should investigate how thermovinification associated with autochthonous yeasts affects the metabolomic and flavoromic properties of Syrah wine and product acceptability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

12 pages, 659 KiB  
Article
Classification of Apples (Malus × domestica borkh.) According to Geographical Origin, Variety and Production Method Using Liquid Chromatography Mass Spectrometry and Random Forest
by Jule Hansen, Iris Fransson, Robbin Schrieck, Christof Kunert and Stephan Seifert
Foods 2025, 14(15), 2655; https://doi.org/10.3390/foods14152655 - 29 Jul 2025
Viewed by 394
Abstract
Apples are one of the most popular fruits in Germany, valued for their regional availability and health benefits. When deciding which apple to buy, several characteristics are important to consumers, including the taxonomic variety, organic cultivation and regional production. To verify that these [...] Read more.
Apples are one of the most popular fruits in Germany, valued for their regional availability and health benefits. When deciding which apple to buy, several characteristics are important to consumers, including the taxonomic variety, organic cultivation and regional production. To verify that these characteristics are correctly declared, powerful analytical methods are required. In this study, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-ToF-MS) is applied in combination with random forest to 193 apple samples for the analysis of various authentication issues. Accuracies of 93.3, 85.5, 85.6 and 90% were achieved for distinguishing between German and non-German, North and South German, organic and conventional apples and for six different taxonomic varieties. Since the classification models largely use different parts of the data, which is shown by variable selection, this method is very well suited to answer different authentication issues with one analytical approach. Full article
Show Figures

Figure 1

14 pages, 752 KiB  
Article
Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products
by Marta Gaweł, Martyna Płodzik, Rafał Głowacki and Justyna Piechocka
Molecules 2025, 30(15), 3152; https://doi.org/10.3390/molecules30153152 - 28 Jul 2025
Viewed by 337
Abstract
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of [...] Read more.
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of tPro with 0.2 mol/L phosphate buffer pH 6, derivatization with 0.25 mol/L 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT), followed by polytetrafluoroethylene (PTFE) membrane filtration. The chromatographic separation of the stable UV-absorbing 2-S-quinolinium derivative is achieved within 14 min at 25 °C on a Zorbax SB-C18 (150 × 4.6 mm, 5 µm) column using gradient elution. The eluent consists of 0.1 mol/L trichloroacetic acid (TCA), pH 1.7, in a mixture with acetonitrile (ACN) delivered at a flow rate of 1 mL/min. The analyte is quantified by monitoring at 348 nm. The assay linearity was observed within 0.5–125 μmol/L. The limit of quantification (LOQ) was found to be 0.5 μmol/L. The accuracy ranged from 93.22% to 104.31% and 97.38% to 103.48%, while precision varied from 0.30% to 11.23% and 1.13% to 9.64% for intra- and inter-assay measurements, respectively. The method was successfully applied to commercially available on the Polish market pharmaceutical and cosmetic products. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Figure 1

Back to TopTop