Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,092)

Search Parameters:
Keywords = high-latitudes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1721 KiB  
Article
A Novel Integrated Inertial Navigation System with a Single-Axis Cold Atom Interferometer Gyroscope Based on Numerical Studies
by Zihao Chen, Fangjun Qin, Sibin Lu, Runbing Li, Min Jiang, Yihao Wang, Jiahao Fu and Chuan Sun
Micromachines 2025, 16(8), 905; https://doi.org/10.3390/mi16080905 (registering DOI) - 2 Aug 2025
Abstract
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically [...] Read more.
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically explores a numerically simulated integrated inertial navigation system consisting of a single-axis cold atom interferometer gyroscope (CAIG) and a conventional inertial measurement unit (IMU). The system leverages the low bias and drift of the CAIG and the high sampling rate of the conventional IMU to obtain more accurate navigation information. Furthermore, an adaptive gradient ascent (AGA) method is proposed to estimate the variance of the measurement noise online for the Kalman filter. It was found that errors of latitude, longitude, and positioning are reduced by 43.9%, 32.6%, and 32.3% compared with the conventional IMU over 24 h. On this basis, errors from inertial sensor drift could be further reduced by the online Kalman filter. Full article
20 pages, 4489 KiB  
Article
Effects of Large- and Meso-Scale Circulation on Uprising Dust over Bodélé in June 2006 and June 2011
by Ridha Guebsi and Karem Chokmani
Remote Sens. 2025, 17(15), 2674; https://doi.org/10.3390/rs17152674 (registering DOI) - 2 Aug 2025
Abstract
This study investigates the effects of key atmospheric features on mineral dust emissions and transport in the Sahara–Sahel region, focusing on the Bodélé Depression, during June 2006 and 2011. We use a combination of high-resolution atmospheric simulations (AROME model), satellite observations (MODIS), and [...] Read more.
This study investigates the effects of key atmospheric features on mineral dust emissions and transport in the Sahara–Sahel region, focusing on the Bodélé Depression, during June 2006 and 2011. We use a combination of high-resolution atmospheric simulations (AROME model), satellite observations (MODIS), and reanalysis data (ERA5, ECMWF) to examine the roles of the low-level jet (LLJ), Saharan heat low (SHL), Intertropical Discontinuity (ITD), and African Easterly Jet (AEJ) in modulating dust activity. Our results reveal significant interannual variability in aerosol optical depth (AOD) between the two periods, with a marked decrease in June 2011 compared to June 2006. The LLJ emerges as a dominant factor in dust uplift over Bodélé, with its intensity strongly influenced by local topography, particularly the Tibesti Massif. The position and intensity of the SHL also play crucial roles, affecting the configuration of monsoon flow and Harmattan winds. Analysis of wind patterns shows a strong negative correlation between AOD and meridional wind in the Bodélé region, while zonal wind analysis emphasizes the importance of the AEJ and Tropical Easterly Jet (TEJ) in dust transport. Surprisingly, we observe no significant correlation between ITD position and AOD measurements, highlighting the complexity of dust emission processes. This study is the first to combine climatological context and case studies to demonstrate the effects of African monsoon variability on dust uplift at intra-seasonal timescales, associated with the modulation of ITD latitude position, SHL, LLJ, and AEJ. Our findings contribute to understanding the complex relationships between large-scale atmospheric features and dust dynamics in this key source region, with implications for improving dust forecasting and climate modeling efforts. Full article
Show Figures

Figure 1

16 pages, 2326 KiB  
Article
Patterns and Determinants of Ecological Uniqueness in Plant Communities on the Qinghai-Tibetan Plateau
by Liangtao Li and Gheyur Gheyret
Plants 2025, 14(15), 2379; https://doi.org/10.3390/plants14152379 (registering DOI) - 1 Aug 2025
Abstract
The Qinghai-Tibetan Plateau is one of the world’s most prominent biodiversity hotspots. Understanding the spatial patterns of ecological uniqueness in its plant communities is essential for uncovering the mechanisms of community assembly and informing effective conservation strategies. In this study, we analyzed data [...] Read more.
The Qinghai-Tibetan Plateau is one of the world’s most prominent biodiversity hotspots. Understanding the spatial patterns of ecological uniqueness in its plant communities is essential for uncovering the mechanisms of community assembly and informing effective conservation strategies. In this study, we analyzed data from 758 plots across 338 sites on the Qinghai-Tibetan Plateau. For each plot, the vegetation type was classified, and all plant species present, along with their respective abundance or coverage, were recorded in the database. To assess overall compositional variation, community β-diversity was quantified, while a plot-level approach was applied to determine the influence of local environmental conditions and community characteristics on ecological uniqueness. We used stepwise multiple regressions, variation partitioning, and structural equation modeling to identify the key drivers of spatial variation in ecological uniqueness. Our results show that (1) local contributions to β-diversity (LCBD) exhibit significant geographic variation—increasing with longitude, decreasing with latitude, and showing a unimodal trend along the elevational gradient; (2) shrubs and trees contribute more to β-diversity than herbaceous species, and LCBD is strongly linked to the proportion of rare species; and (3) community characteristics, including species richness and vegetation coverage, are the main direct drivers of ecological uniqueness, explaining 36.9% of the variance, whereas climate and soil properties exert indirect effects through their interactions. Structural equation modeling further reveals a coordinated influence of soil, climate, and community attributes on LCBD, primarily mediated through soil nutrient availability. These findings provide a theoretical basis for adaptive biodiversity management on the Qinghai-Tibetan Plateau and underscore the conservation value of regions with high ecological uniqueness. Full article
Show Figures

Figure 1

11 pages, 985 KiB  
Article
Strengthening Western North Pacific High in a Warmer Environment
by Sanghyeon Yun and Namyoung Kang
Climate 2025, 13(8), 162; https://doi.org/10.3390/cli13080162 (registering DOI) - 1 Aug 2025
Abstract
The geographical response of western North Pacific subtropical high (SH) to environmental conditions such as the El Niño-Southern Oscillation (ENSO) and global warming has been one of the main concerns with respect to extreme events induced by tropical convections. By considering observed outgoing [...] Read more.
The geographical response of western North Pacific subtropical high (SH) to environmental conditions such as the El Niño-Southern Oscillation (ENSO) and global warming has been one of the main concerns with respect to extreme events induced by tropical convections. By considering observed outgoing longwave radiation (OLR) as the strength of subtropical high, this study attempts to further understand the geographical response of SH strength to ENSO and global warming. Here, “SH strength” is defined as the inhibition of regional convections under SH environment. A meridional seesaw pattern among SH strength anomalies is found at 130°–175° E. In addition, the La Niña environment with weaker convections at lower latitudes is characterized by farther westward expansion of SH but with a weaker strength. Conversely, the El Niño environment with stronger convections at lower latitudes leads to shrunken SH but with a greater strength. The influence of the seesaw mechanism appears to be modulated by global warming. The western North Pacific subtropical high strengthens overall under warming in both the La Niña and El Niño environments. This suggests that the weakening effect by drier tropics is largely offset by anomalous highs induced by a warming atmosphere. It is most remarkable that the highest SH strengths appear in a warmer El Niño environment. The finding implies that every new El Niño environment may experience the driest atmosphere ever in the subtropics under global warming. The value of this study lies in the fact that OLR effectively illustrates how the ENSO variation and global warming bring the zonally undulating strength of boreal-summer SH. Full article
Show Figures

Figure 1

18 pages, 3060 KiB  
Article
Unveiling the Impact of Climatic Factors on the Distribution Patterns of Caragana spp. in China’s Three Northern Regions
by Weiwei Zhao, Yujia Liu, Yanxia Li, Chunjing Zou and Hideyuki Shimizu
Plants 2025, 14(15), 2368; https://doi.org/10.3390/plants14152368 - 1 Aug 2025
Abstract
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, [...] Read more.
Understanding the impacts of climate change on species’ geographic distributions is fundamental for biodiversity conservation and resource management. As a key plant group for ecological restoration and windbreak and sand fixation in arid and semi-arid ares in China’s Three Northern Regions (Northeast, North, and Northwest China), Caragana spp. exhibit distribution patterns whose regulatory mechanisms by environmental factors remain unclear, with a long-term lack of climatic explanations influencing their spatial distribution. This study integrated 2373 occurrence records of 44 Caragana species in China’s Three Northern Regions with four major environmental variable categories. Using the Biomod2 ensemble model, current and future climate scenario-based suitable habitats for Caragana spp. were predicted. This study innovatively combined quantitative analyses with Kira’s thermal indexes (warmth index, coldness index) and Wenduo Xu’s humidity index (HI) to elucidate species-specific relationships between distribution patterns and hydrothermal climatic constraints. The main results showed that (1) compared to other environmental factors, climate is the key factor affecting the distribution of Caragana spp. (2) The current distribution centroid of Caragana spp. is located in Alxa Left Banner, Inner Mongolia. In future scenarios, the majority of centroids will shift toward lower latitudes. (3) The suitable habitats for Caragana spp. will expand overall under future climate scenarios. High-stress scenarios exhibit greater spatial changes than low-stress scenarios. (4) Hydrothermal requirements varied significantly among species in China’s Three Northern Regions, and 44 Caragana species can be classified into five distinct types based on warmth index (WI) and humidity index (HI). The research findings will provide critical practical guidance for ecological initiatives such as the Three-North Shelterbelt Program and the restoration and management of degraded ecosystems in arid and semi-arid regions under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 7997 KiB  
Article
Comparative Analysis of Habitat Expansion Mechanisms for Four Invasive Amaranthaceae Plants Under Current and Future Climates Using MaxEnt
by Mao Lin, Xingzhuang Ye, Zixin Zhao, Shipin Chen and Bao Liu
Plants 2025, 14(15), 2363; https://doi.org/10.3390/plants14152363 - 1 Aug 2025
Abstract
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) [...] Read more.
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) are prioritized due to CNY 2.6 billion annual ecosystem damages in China. By coupling multi-species comparative analysis with a parameter-optimized Maximum Entropy (MaxEnt) model integrating climate, soil, and topographical variables in China under Shared Socioeconomic Pathways (SSP) 126/245/585 scenarios, we reveal divergent expansion mechanisms (e.g., 247 km faster northward shift in A. palmeri than D. ambrosioides) that redefine invasion corridors in the North China Plain. Under current conditions, the suitable habitats of these species span from 92° E to 129° E and 18° N to 49° N, with high-risk zones concentrated in central and southern China, including the Yunnan–Guizhou–Sichuan region and the North China Plain. Temperature variables (Bio: Bioclimatic Variables; Bio6, Bio11) were the primary contributors based on permutation importance (e.g., Bio11 explained 56.4% for C. argentea), while altitude (e.g., 27.3% for A. palmeri) and UV-B (e.g., 16.2% for A. palmeri) exerted lower influence. Model validation confirmed high accuracy (mean area under the curve (AUC) > 0.86 and true skill statistic (TSS) > 0.6). By the 2090s, all species showed net habitat expansion overall, although D. ambrosioides exhibited net total contractions during mid-century under the SSP126/245 scenarios, C. argentea experienced reduced total suitability during the 2050s–2070s despite high-suitability growth, and A. palmeri and A. spinosus expanded significantly in both total and highly suitable habitat. All species shifted their distribution centroids northward, aligning with warming trends. Overall, these findings highlight the critical role of temperature in driving range dynamics and underscore the need for latitude-specific monitoring strategies to mitigate invasion risks, providing a scientific basis for adaptive management under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 165
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 151
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 3919 KiB  
Article
On the Links Between Tropical Sea Level and Surface Air Temperature in Middle and High Latitudes
by Sergei Soldatenko, Genrikh Alekseev and Yaromir Angudovich
Atmosphere 2025, 16(8), 913; https://doi.org/10.3390/atmos16080913 - 28 Jul 2025
Viewed by 135
Abstract
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with [...] Read more.
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with the latter contributing about 40% to the overall rise in SL. Rising SL indirectly indicates an increase in ocean heat content and, consequently, its surface temperature. Previous studies have found that tropical sea surface temperature (SST) is critical to regulating the Earth’s climate and weather patterns in high and mid-latitudes. For this reason, SST and SL in the tropics can be considered as precursors of both global climate change and the emergence of climate anomalies in extratropical latitudes. Although SST has been used in this capacity in a number of studies, similar research regarding SL had not been conducted until recently. In this paper, we examine the links between SL in the tropical North Atlantic and North Pacific Oceans and surface air temperature (SAT) at mid- and high latitudes, with the aim of assessing the potential of SL as a predictor in forecasting SAT anomalies. To identify similarities between the variability of tropical SL and SST and that of SAT in high- and mid-latitude regions, as well as to estimate possible time lags, we applied factor analysis, clustering, cross-correlation and cross-spectral analyses. The results reveal a structural similarity in the internal variability of tropical SL and extratropical SAT, along with a significant lagged relationship between them, with a time lag of several years. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 241
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

24 pages, 7231 KiB  
Article
Monitoring of Algae Communities on the Littoral of the Barents Sea Using UAV Imagery
by Svetlana V. Kolbeeva, Pavel S. Vashchenko and Veronika V. Vodopyanova
Diversity 2025, 17(8), 518; https://doi.org/10.3390/d17080518 - 26 Jul 2025
Viewed by 237
Abstract
The paper presents the results of a study on littoral algae communities along the Murmansk coast from 2021–2024. The emphasis is on fucus algae and green algae communities as the most abundant ones. For the first time, an annual monitoring of littoral algae [...] Read more.
The paper presents the results of a study on littoral algae communities along the Murmansk coast from 2021–2024. The emphasis is on fucus algae and green algae communities as the most abundant ones. For the first time, an annual monitoring of littoral algae distribution in the bays of the Barents Sea was performed using a set of methods, allowing a better understanding of the dynamics of their biomass. Unlike most classical studies, which only focus on biomass and population structure, this work shows the results of using UAV-based remote sensing in combination with traditional coastal sampling techniques. The features and limitations of this approach in Arctic latitudes are discussed. According to the monitoring results, an increase in fucus algae biomass is observed in the study area, which may be associated with an increase in summer temperatures and water salinity. Fucus serratus and Pelvetia canaliculata populations remain stable. Ulvophycean algae show seasonal peaks of development with abnormally high biomass in areas of anthropogenic impact, which may indicate local eutrophication. The map of algae spatial distribution is presented. The results are important for understanding the structure and functioning of the Arctic ecosystem and for assessing the environmental impact in the region. Full article
Show Figures

Figure 1

10 pages, 2582 KiB  
Article
Analysis of the Relation Between Solar Activity and Parameters of the Sporadic E Layer
by Yabin Zhang, Xiaobao Zheng, Zonghua Ding, Shuji Sun, Jian Wu and Longjiang Chen
Atmosphere 2025, 16(8), 904; https://doi.org/10.3390/atmos16080904 - 24 Jul 2025
Viewed by 176
Abstract
Based on the ionosonde data from stations at different latitudes in high- and low-solar-activity years, the effects of solar activity on the parameters of the Es layer and the foE amplitude spectrum are analyzed. The results show that the influence of solar activity [...] Read more.
Based on the ionosonde data from stations at different latitudes in high- and low-solar-activity years, the effects of solar activity on the parameters of the Es layer and the foE amplitude spectrum are analyzed. The results show that the influence of solar activity on the intensity of the Es layer at different latitude sites is not consistent, and there is no significant agreement conclusion. And the spectral analysis results show that solar activity has little influence on the amplitude spectrum of foEs. But the incidence of Es layer, the height distribution of Es layer during daytime, and the Es layer traces have a negative correlation with solar activity. The research in the paper has certain significance for the study of influencing factors in the formation of the Es layer. Full article
Show Figures

Figure 1

21 pages, 1784 KiB  
Article
Toxic Threats from the Fern Pteridium aquilinum: A Multidisciplinary Case Study in Northern Spain
by L. María Sierra, Isabel Feito, Mª Lucía Rodríguez, Ana Velázquez, Alejandra Cué, Jaime San-Juan-Guardado, Marta Martín, Darío López, Alexis E. Peña, Elena Canga, Guillermo Ramos, Juan Majada, José Manuel Alvarez and Helena Fernández
Int. J. Mol. Sci. 2025, 26(15), 7157; https://doi.org/10.3390/ijms26157157 - 24 Jul 2025
Viewed by 191
Abstract
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, [...] Read more.
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, calling for urgent assessment and monitoring strategies. In this study, we implemented a multidisciplinary approach to evaluate the toxicological and ecological relevance of P. aquilinum through four key actions: (a) quantification of pterosins A and B in young fronds (croziers) using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS); (b) analysis of in vivo genotoxicity of aqueous extracts using Drosophila melanogaster as a model organism; (c) a large-scale survey of local livestock farmers to assess awareness and perceived impact of bracken; and (d) the development and field application of a drone-based mapping tool to assess the spatial distribution of the species at the regional level. Our results confirm the consistent presence of pterosins A and B in croziers, with concentrations ranging from 0.17 to 2.20 mg/g dry weight for PtrB and 13.39 to 257 µg/g for PtrA. Both metabolite concentrations and genotoxicity levels were found to correlate with latitude and, importantly, with each other. All tested samples exhibited genotoxic activity, with notable differences among them. The farmer survey (n = 212) revealed that only 50% of respondents were aware of the toxic risks posed by bracken, indicating a need for targeted outreach. The drone-assisted mapping approach proved to be a promising tool for identifying bracken-dominated areas and provides a scalable foundation for future ecological monitoring and land management strategies. Altogether, our findings emphasize that P. aquilinum is not merely a local concern but a globally relevant toxic species whose monitoring and control demand coordinated scientific and policy-based efforts. Full article
(This article belongs to the Special Issue The Transcendental World of Plant Toxic Compounds)
Show Figures

Figure 1

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 233
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

32 pages, 9845 KiB  
Article
Real-Time Analysis of Millidecade Spectra for Ocean Sound Identification and Wind Speed Quantification
by Mojgan Mirzaei Hotkani, Bruce Martin, Jean Francois Bousquet and Julien Delarue
Acoustics 2025, 7(3), 44; https://doi.org/10.3390/acoustics7030044 - 24 Jul 2025
Viewed by 299
Abstract
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain, [...] Read more.
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain, vessels, fin and blue whales, as well as clicks and whistles from dolphins. Positioned as a foundational tool for implementing the Ocean Sound Essential Ocean Variable (EOV), it contributes to understanding long-term trends in climate change for sustainable ocean health and predicting threats through forecasts. The proposed soundscape classification algorithm, validated using extensive acoustic recordings (≥32 kHz) collected at various depths and latitudes, demonstrates high performance, achieving an average precision of 89% and an average recall of 86.59% through optimized parameter tuning via a genetic algorithm. Here, wind speed is determined using a cubic function with power spectral density (PSD) at 6 kHz and the MASLUW method, exhibiting strong agreement with satellite data below 15 m/s. Designed for compatibility with low-power electronics, the algorithm can be applied to both archival datasets and real-time data streams. It provides a straightforward metric for ocean monitoring and sound source identification. Full article
Show Figures

Figure 1

Back to TopTop