Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,094)

Search Parameters:
Keywords = high-capacity materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 708 KB  
Article
Phenolic Composition and Antioxidant Activity of Myrcianthes hallii Leaf Essential Oil Across Phenological Stages: Application in Nutraceutical Fermented Beverage
by Raluca A. Mihai, Erly J. Melo Heras, Nelson S. Cubi Insuaste, Lisbeth M. Topón Quinga and Rodica D. Catana
Fermentation 2025, 11(11), 648; https://doi.org/10.3390/fermentation11110648 - 14 Nov 2025
Abstract
In the context of natural beverages used for human nutrition, our study explored the potential of Myrcianthes hallii leaves (rich in bioactive compounds) as a raw material for the production of non-traditional craft beer. We hypothesized that the phenological stage affects essential oil [...] Read more.
In the context of natural beverages used for human nutrition, our study explored the potential of Myrcianthes hallii leaves (rich in bioactive compounds) as a raw material for the production of non-traditional craft beer. We hypothesized that the phenological stage affects essential oil yield and bioactivity, which in turn influences the functional properties of fortified beer. In our case, M. hallii leaves collected during the flowering stage yielded the highest amount of essential oil (0.5 v/m/%) and exhibited the greatest concentrations of total phenolics (7.7149 ± 0.02143 mg GAE/mL) and flavonoids (1.6531 ± 0.03355 mg QE/mL), correlating with increased antioxidant capacity. These findings suggest this stage as the most suitable period for harvesting M. hallii leaves for nutraceutical and pharmaceutical applications. This non-traditional beer demonstrated notable antioxidant activity, and sensory analysis revealed high acceptance regarding aroma, taste, and color, supporting its potential as a functional beverage. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
35 pages, 8276 KB  
Article
High-Energy Supercapacitor Constructed by Cerium-Doped Iron Tungstate Cathode Materials with Oxygen Vacancies and Hydrophilic Carbon Nanotube Anode
by Liyuan Shan and Lei Xiong
Coatings 2025, 15(11), 1330; https://doi.org/10.3390/coatings15111330 - 14 Nov 2025
Abstract
To address the worsening energy crisis from rapid fossil fuel consumption, this study synthesized Ce-FeWO4 composites and hydrophilic carbon nanotubes. XRD and other characterizations showed all intermediates had rough, porous nanosheet morphology; Ce-doping formed disordered porous structure in FeWO4, increasing [...] Read more.
To address the worsening energy crisis from rapid fossil fuel consumption, this study synthesized Ce-FeWO4 composites and hydrophilic carbon nanotubes. XRD and other characterizations showed all intermediates had rough, porous nanosheet morphology; Ce-doping formed disordered porous structure in FeWO4, increasing its specific surface area. Three-electrode tests confirmed optimal parameters: 0.5% Ce-doping and 12 h growth. Ce-FeWO4 exhibited a specific capacity of 1875 ± 28 F/g at 1 A/g (based on five parallel samples), and retained 1807 F/g after 3000 cycles (exceeding previous studies) with excellent stability. The Ce-FeWO4//CNTs asymmetric supercapacitor achieved 152 F/g specific capacity, 81.4 Wh/g energy density, and 768 W/kg power density. The simple, efficient, eco-friendly preparation process and the material’s high capacitance and stability offer broad application prospects in the electrode field. Full article
27 pages, 4604 KB  
Article
Post-Fire Behavior of Thin-Plated Unstiffened T-Stubs Connected to Rigid Base
by Yasin Onuralp Özkılıç
Buildings 2025, 15(22), 4113; https://doi.org/10.3390/buildings15224113 - 14 Nov 2025
Abstract
Despite tremendously valuable work on the T-stub, its safety and reliability in post-fire conditions remain a major concern. It is well known that steel is sensitive to high temperatures. Material degradation at high temperatures is likely to cause the T-stub to yield or [...] Read more.
Despite tremendously valuable work on the T-stub, its safety and reliability in post-fire conditions remain a major concern. It is well known that steel is sensitive to high temperatures. Material degradation at high temperatures is likely to cause the T-stub to yield or gradually collapse, potentially leading to the failure of the entire structure. Recent studies have shown that steel joints exhibit a significant change in moment-rotational response post-fire, as the joint’s load–displacement behavior and failure modes change with increasing exposed temperature. However, studies on T-stubs at high post-fire temperatures are very limited. In this study, the aim is to investigate the post-fire load–displacement curves, ductility, plastic, and ultimate capacities of the unstiffened T-stub connected to a rigid base as a function of the exposed temperature. Of the 36 unstiffened T-stubs tested, 30 were subjected to high temperatures. The selected temperature values were 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C. A thin plate of 10 mm was selected for the flange of the T-stub in order to obtain mode 1 behavior. Bolts of M16 and M24 were utilized in order to investigate the effects of bolt diameter on the behavior due to the change in distance of plastic hinges. Furthermore, the distances from a T-stub stem to bolt row (pf) of 40 mm, 60 mm, and 80 mm were selected. As pf values decrease, the plastic capacity increases, while the ultimate displacement capacity and the ductility decrease. A direct relation between pf and yield displacement, and between pf and ultimate capacity, was not detected. As the applied temperature increases, the yield displacement increases and the ductility decreases. No significant change in either the plastic or ultimate capacity was observed up to 400 °C. At higher exposed temperatures, the plastic and ultimate capacity decrease as the applied elevated temperature increases. A significant reduction in the plastic and ultimate capacity was especially observed after post-fire exposure to 1000 °C and 1200 °C. The effects of elevated temperature are more pronounced for the plastic capacity of materials. Reduction factors for both plastic and ultimate capacities were proposed to account for the post-fire effects. The proposed reduction factors can predict the effects of a post-fire environment with high accuracy. The results were compared with AISC 358 and Eurocode 3, and it was revealed that the current standards underestimate the actual capacities. A modified calculation, including a reduction factor, is proposed to obtain more accurate results of unstiffened T-stubs for post-fire conditions. Full article
(This article belongs to the Special Issue Structural Response of Buildings in Fire)
37 pages, 364 KB  
Article
Comparative Framework for Climate-Responsive Selection of Phase Change Materials in Energy-Efficient Buildings
by Javier Martínez-Gómez
Energies 2025, 18(22), 5982; https://doi.org/10.3390/en18225982 - 14 Nov 2025
Abstract
Integrating phase change materials (PCMs) into buildings and HVAC systems improves thermal comfort and energy efficiency. This study presents a climate-responsive methodology for selecting optimal PCMs using a multi-criteria decision-making (MCDM) framework. AHP was employed to determine the relative importance of key thermophysical [...] Read more.
Integrating phase change materials (PCMs) into buildings and HVAC systems improves thermal comfort and energy efficiency. This study presents a climate-responsive methodology for selecting optimal PCMs using a multi-criteria decision-making (MCDM) framework. AHP was employed to determine the relative importance of key thermophysical properties, including melting point (47.5%), latent heat of fusion (25.7%), volumetric latent heat (13.5%), thermal conductivity (6.8%), specific heat capacity (3.3%), and density (3.3%). These weights were applied across five MCDM techniques—COPRAS, VIKOR, TOPSIS, MOORA, and PROMETHEE II—to evaluate 16 PCM alternatives for three representative climate zones: temperate (18 °C), subtropical (23 °C), and tropical hot/desert (28 °C). The results consistently identified n-Heptadecane (C17) as the most suitable PCM for temperate and subtropical climates, while n-Octadecane (C18) and hydrated salts such as CaCl2·6H2O and Na2CO3·10H2O were optimal for tropical zones. Results show that n-Heptadecane (C17) is optimal for temperate and subtropical zones (COPRAS K = 1.00; TOPSIS C = 0.79–0.82; PROMETHEE φ = 0.21–0.22), while n-Octadecane (C18) and hydrated salts such as CaCl2·6H2O and Na2CO3·10H2O perform best in tropical climates (TOPSIS C = 0.85; PROMETHEE φ = 0.26). These PCMs offer high latent heat (up to 254 kJ·kg−1) and volumetric storage (up to 381 MJ·m−3), enabling significant reductions in HVAC loads and improved indoor temperature stability. The convergence of rankings across methods and alignment with existing literature validate the robustness of the proposed approach. This framework supports informed material selection for sustainable building design and can be adapted to other climate-sensitive engineering applications. The framework introduces methodological innovations by explicitly mapping PCM melting points to climate-specific comfort bands, incorporating volumetric latent heat, and validating rankings through cross-method convergence (Spearman ρ > 0.99). Sensitivity analysis confirms robustness against weight perturbations. The approach supports practical PCM selection for both new and retrofit buildings, contributing to EU and US energy goals (e.g., 40% building energy use, DOE’s 50% reduction target). Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
14 pages, 4019 KB  
Article
Study on Electrochemical Performance and Magnesium Storage Mechanism of Na3V2(PO4)3@C Cathode in Mg(TFSI)2/DME Electrolyte
by Jinxing Wang, Peiyang Zhang, Xuan Mou, Jingdong Yang, Jiaxu Wang, Guangsheng Huang and Jingfeng Wang
Energies 2025, 18(22), 5975; https://doi.org/10.3390/en18225975 - 14 Nov 2025
Abstract
Magnesium metal boasts a high theoretical volumetric specific capacity and abundant reserves. Magnesium batteries offer high safety and environmental friendliness. In recent years, magnesium-ion batteries (MIBs) with Mg or Mg alloys as anodes have garnered extensive interest and emerged as promising candidates for [...] Read more.
Magnesium metal boasts a high theoretical volumetric specific capacity and abundant reserves. Magnesium batteries offer high safety and environmental friendliness. In recent years, magnesium-ion batteries (MIBs) with Mg or Mg alloys as anodes have garnered extensive interest and emerged as promising candidates for next-generation competitive energy storage technologies. However, MIBs are plagued by issues such as sluggish desolvation kinetics and slow migration kinetics, which lead to limitations including a limited electrochemical window and poor magnesium storage reversibility. Herein, the sodium vanadium phosphate @ carbon (Na3V2(PO4)3@C, hereafter abbreviated as NVP@C) cathode material was synthesized via a sol–gel method. The electrochemical performance and magnesium storage mechanism of NVP@C in a 0.5 M magnesium bis(trifluoromethanesulfonyl)imide/ethylene glycol dimethyl ether (Mg(TFSI)2/DME) electrolyte were investigated. The as-prepared NVP@C features a pure-phase orthorhombic structure with a porous microspherical morphology. The discharge voltage of NVP@C is 0.75 V vs. activated carbon (AC), corresponding to 3.5 V vs. Mg/Mg2+. The magnesium storage process of NVP@C is tentatively proposed to follow a ‘sodium extraction → magnesium intercalation → magnesium deintercalation’ three-step intercalation–deintercalation mechanism, based on the characterization results of ICP-OES, ex situ XRD, and FTIR. No abnormal phases are generated throughout the process, and the lattice parameter variation is below 0.5%. Additionally, the vibration peaks of PO4 tetrahedrons and VO6 octahedrons shift reversibly, and the valence state transitions between V3+ and V4+/V5+ are reversible. These results confirm the excellent reversibility of the material’s structure and chemical environment. At a current density of 50 mA/g, NVP@C delivers a maximum discharge specific capacity of 62 mAh/g, with a capacity retention rate of 66% after 200 cycles. The observed performance degradation is attributed to the gradual densification of the CEI film during cycling, leading to increased Mg2+ diffusion resistance. This work offers valuable insights for the development of high-voltage MIB systems. Full article
Show Figures

Figure 1

20 pages, 15785 KB  
Article
Cu Doping-Enabled Control of Grain Boundary Fusion and Particle Size in Single-Crystal LiNi0.5Co0.2Mn0.3O2 Cathode Materials
by Lang Xu, Zhipeng Wang, Ya Li, Jie Ding, Xiang Li, Ziqian Wang, Mingjiao Wu, Qiujian Zhang, Mingwu Xiang, Wei Bai, Fangkun Li and Yongshun Liang
Batteries 2025, 11(11), 418; https://doi.org/10.3390/batteries11110418 - 13 Nov 2025
Abstract
Copper (Cu) doping is recognized as an effective strategy to enhance the electrochemical properties of LiNi1−x−yCoxMnyO2 (NCM) cathode materials. However, the influence of Cu2+ doping on particle size and grain boundary fusion remains insufficiently explored. [...] Read more.
Copper (Cu) doping is recognized as an effective strategy to enhance the electrochemical properties of LiNi1−x−yCoxMnyO2 (NCM) cathode materials. However, the influence of Cu2+ doping on particle size and grain boundary fusion remains insufficiently explored. A simple microwave-assisted solution combustion synthesis method was used to introduce Cu2+ into LiNi0.5Co0.2Mn0.3O2 (NCM523), aiming to regulate particle size and grain boundary fusion. The results demonstrate that increasing the Cu2+ doping content promotes particle growth, while an appropriate doping level reduces the degree of grain boundary fusion and cation mixing. Benefiting from these structural improvements, the optimized LiNi0.5Co0.2Mn0.29Cu0.01O2 (Cu–1) cathode exhibits significantly enhanced electrochemical performance, delivering a discharge capacity of 128.6 mAh g−1 after 100 cycles at 0.2 C, which is 32 mAh g−1 higher than value of the undoped sample (96.6 mAh g−1). These findings underscore that tailored Cu2+ doping can effectively optimize the microstructure of NCM523, leading to superior cycling stability, and provide new insights into the design of high-performance NCM cathodes. Full article
(This article belongs to the Special Issue Multiscale Co-Design of Electrode Architectures and Electrolytes)
Show Figures

Graphical abstract

15 pages, 1153 KB  
Article
Investigation of Antioxidant Capacity, Chemical Composition, and Sensory Characteristics Using Camu-Camu Powder in the Production of Fresh Cow’s Cheese
by Mihaela Adriana Tița, Maria Adelina Constantinescu, Cecilia Georgescu, Adriana Maria Canciu, Maria Lidia Iancu and Ovidiu Tița
Appl. Sci. 2025, 15(22), 12071; https://doi.org/10.3390/app152212071 - 13 Nov 2025
Abstract
(1) Background: Research into incorporating plant powders into dairy products is growing because they significantly increase the nutritional value of the finished products, making them a more attractive option for consumers seeking healthier alternatives. The objective of this study is to develop a [...] Read more.
(1) Background: Research into incorporating plant powders into dairy products is growing because they significantly increase the nutritional value of the finished products, making them a more attractive option for consumers seeking healthier alternatives. The objective of this study is to develop a novel dairy product by incorporating camu-camu powder into fresh cow’s cheese. The material has been identified as a promising candidate due to its multiple health benefits and high antioxidant content, particularly vitamin C; (2) Methods: The stability of the product during storage was therefore evaluated by analysing its acidity, pH, dry matter content, water activity, syneresis and water holding capacity. The impact of camu-camu powder on the antioxidant activity of the cheese samples was determined using the DPPH method. A sensory evaluation was conducted to ascertain the potential functional properties and consumer acceptability of the subject; (3) Results: The bioactive compounds present in the powder have been shown to enhance the antioxidant capacity of fresh cheese, with the 2% sample demonstrating the most effective antioxidant performance. From a sensory perspective, the 1.5% sample received the highest ratings from tasters. The 1% sample is distinguished by its notable colour stability during storage. Physicochemical analysis shows that camu-camu powder is a sustainable ingredient that improves the quality and extends the shelf life of the finished product; (4) Conclusions: This information is indispensable for the evaluation of the safety and efficacy of camu-camu powder in dairy products. Moreover, it may serve as a point of departure for future studies involving the development of other food products with bioactive compounds using unconventional raw materials. Full article
Show Figures

Figure 1

20 pages, 4858 KB  
Article
Effect of Ultrasound on the Microbial Flora and Physicochemical Parameters of Yogurt Added to Native Mexican Plants
by Luis M. Carrillo-López, Ismael Ortíz-Aguirre, América Chávez-Martínez, Luis F. Salomé-Abarca, Lorena Luna-Rodríguez, Juan M. Vargas-Romero and Ramón M. Soto-Hernández
Gels 2025, 11(11), 907; https://doi.org/10.3390/gels11110907 - 13 Nov 2025
Abstract
There is a growing trend in food fortification to use natural products to improve quality during production and processing. We study the effect of high-intensity ultrasound (HIU), applied at different processing times to fresh raw cow’s milk supplemented with dried plant material (DPM), [...] Read more.
There is a growing trend in food fortification to use natural products to improve quality during production and processing. We study the effect of high-intensity ultrasound (HIU), applied at different processing times to fresh raw cow’s milk supplemented with dried plant material (DPM), on the gel fermentation kinetics and the physicochemical profile of yogurt during storage. The results showed a significant reduction in milk fermentation with the application of HIU after inoculation (INOC). The counts of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus increased with the use of HIU, producing a synergistic effect in the presence of DPM due to the phenolic acids and flavonoids present. Syneresis was reduced and the water holding capacity (WHC) significantly increased in gels obtained with milk to which DPM had been added and which was sonicated after INOC. This led to the formation of a denser and more homogeneous protein network that retained more serum during storage. The luminosity of gels produced with milk sonicated at 40 °C increased, improving their appearance. However, saturation was reduced, shifting the yellow color to a neutral hue. In gels produced with non-sonicated milk, the fat separated, forming a yellow upper layer. HIU applied after INOC in milk to which DPM had been added reduced the milk processing time, producing stable and better-quality yogurts during refrigerated storage. Full article
Show Figures

Figure 1

13 pages, 1671 KB  
Article
L-Lysine-Modified Lignin for Polishing Alkaline Road-Marking Wash Water: High Uptake of Cationic Dyes with Acid-Enabled Regeneration
by Zeyu Xiong and Peng Jing
Water 2025, 17(22), 3234; https://doi.org/10.3390/w17223234 - 12 Nov 2025
Abstract
Road-marking operations generate alkaline wash water with intense color and soluble cationic additives. A new biomass adsorption material (LML) was developed to address dye pollution in road-marking wash water effectively. Enzymatically hydrolyzed lignin was used as the raw material for the first time. [...] Read more.
Road-marking operations generate alkaline wash water with intense color and soluble cationic additives. A new biomass adsorption material (LML) was developed to address dye pollution in road-marking wash water effectively. Enzymatically hydrolyzed lignin was used as the raw material for the first time. L-lysine was modified to the structure of the lignin benzene ring using a simple one-step synthesis method, which endowed lignin with a large number of active carboxyl and amino functional groups to improve its adsorption capacity. The adsorption performance of LML for methylene blue in water was also investigated. The experimental results show that the LML has a high dye removal rate under alkaline conditions. The fitted adsorption model shows that the saturated adsorption capacity of LML for methylene blue (MB) is 129.4 mg g−1 and malachite green (MG) is 244.9 mg g−1, which is in line with the Langmuir isotherm adsorption model. The adsorption process is endothermic, which means that the adsorption capacity increases with increasing temperature. Kinetic studies showed that the adsorption process reached equilibrium within 120 min following a pseudo-second-order kinetic model. The cycle experiment shows that the removal efficiency of the adsorbent for dyes can still reach 90% after five cycles, indicating a good practical application value for the polishing of road-marking wash water. Full article
Show Figures

Figure 1

13 pages, 6441 KB  
Article
Tetrabromocobalt Phthalocyanine-Functionalized Carbon Nanotubes as a High-Performance Anode for Lithium-Ion Batteries
by Keshavananda Prabhu Channabasavana Hundi Puttaningaiah
Nanomaterials 2025, 15(22), 1713; https://doi.org/10.3390/nano15221713 - 12 Nov 2025
Abstract
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by [...] Read more.
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by molecular functionalizing both single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) with tetrabromocobalt phthalocyanine (CoPc), resulting in CoPc/SWCNT and CoPc/MWCNT hybrid materials. Metal phthalocyanines (MPcs) are recognized for their tunable and redox-active properties. In CoPc, the redox-active metal centers and π-conjugated structure are uniformly attached to the CNT surface through strong π-π interactions. This synergistic combination significantly boosts the lithium-ion (Li-ion) storage capacity by offering numerous coordination sites for Li-ions and enhancing charge transfer kinetics. Electrochemical analysis shows that the CoPc-SWCNT active anode electrode material shows an impressive reversible capacity of 1216 mAh g−1 after 100 cycles at a current density of 0.1 A g−1, substantially surpassing the capacities of pristine CoPc (327 mAh g−1) and a CoPc/MWCNT hybrid (488 mAh g−1). Furthermore, the CoPc/SWCNT anode exhibited exceptional rate capability and outstanding long-term cyclability. These results underscore the effectiveness of non-covalent functionalization with SWCNTs in enhancing the electrical conductivity, structural stability, and active site utilization of CoPc, positioning CoPc/SWCNT hybrids as a highly promising anode material for high-performance Li-ion storage. Full article
Show Figures

Graphical abstract

19 pages, 2855 KB  
Article
Structural, Adsorptive, and Antibacterial Properties of a Novel Silver (Diethyldithiocarbamate)-Decorated Reduced Graphene Oxide Nanocomposite for Sustainable Wastewater Treatment
by Adel Sayari, Hichem Chouayekh, Slim Smaoui, Wajdi Ayadi, Faten M. Ali Zainy, Ahmed S. Badr El-din, Abeer H. Aljadaani, Aida Hmida-Sayari and Amr A. Yakout
Nanomaterials 2025, 15(22), 1709; https://doi.org/10.3390/nano15221709 - 12 Nov 2025
Abstract
Eco-friendly silver nanoparticle systems are highly effective due to their large surface area and strong adsorption capacity. In this study, a novel silver (diethyldithiocarbamate)-decorated reduced graphene oxide nanocomposite (Ag(DDTC)@rGO) was synthesized via a simple green method, yielding a stable and monodispersed material. SEM [...] Read more.
Eco-friendly silver nanoparticle systems are highly effective due to their large surface area and strong adsorption capacity. In this study, a novel silver (diethyldithiocarbamate)-decorated reduced graphene oxide nanocomposite (Ag(DDTC)@rGO) was synthesized via a simple green method, yielding a stable and monodispersed material. SEM and HRTEM analyses revealed uniform anchoring of the Ag(DDTC) complex on rGO, producing a coherent nanocomposite with strong physicochemical coupling. The Ag(DDTC)@rGO nanocomposite exhibited a high Brunauer–Emmett–Teller (BET) surface area (289 m2 g−1) with an average pore diameter of 45 nm, confirming the mesoporous nature of the composite. FTIR spectra showed characteristic bands of rGO and DDTC ligands, with new peaks at 620–640 cm−1 confirming the successful anchoring of silver–diethyldithiocarbamate species onto rGO via Ag–S and Ag–O bond formation. Raman spectroscopy further confirmed the multilayered rGO structure after Ag(DDTC) incorporation. X-ray diffraction (XRD) identified a broad hybrid amorphous–crystalline pattern, favorable for catalytic and sensing functions. The superior malachite green adsorption capacity of Ag(DDTC)@rGO was attributed to synergistic electrostatic, π–π stacking, hydrogen bonding, and silver-mediated interactions. Furthermore, antibacterial assays demonstrated significant inhibition of P. aeruginosa ATCC 9027 and S. enterica ATCC 14028, further enhanced by mild heat activation (40–50 °C) that significantly improved the surface activation of silver nanoparticles. The multifunctional Ag(DDTC)@rGO nanocomposite exhibits strong adsorption and antibacterial properties, highlighting its potential for sustainable wastewater treatment and environmental remediation applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

27 pages, 2553 KB  
Article
Sustainable Dye Removal Using Date Stones and Adsorption Process Optimization: Factorial Design, Kinetics, and Isotherm Analysis
by Lassaad Mechi, Souad Rezma, Malak Kahloul, Jalila Chékir, Hajer Chemingui, Hanen Azaza, Abdulmohsen K. D. AlSukaibi and Neila Saidi
Water 2025, 17(22), 3229; https://doi.org/10.3390/w17223229 - 12 Nov 2025
Abstract
This study aims to present the preparation of date stone activated carbon (DSAC) through physical activation with carbon dioxide. The Brunauer–Emmett–Teller (BET) technique, Boehm titrations, elemental analysis, Raman and Fourier-transform infrared (FTIR) spectroscopy have been used to characterize the raw material (date stone), [...] Read more.
This study aims to present the preparation of date stone activated carbon (DSAC) through physical activation with carbon dioxide. The Brunauer–Emmett–Teller (BET) technique, Boehm titrations, elemental analysis, Raman and Fourier-transform infrared (FTIR) spectroscopy have been used to characterize the raw material (date stone), date stone activated carbon (DSAC) produced, Congo Red (CR) and to investigate the adsorption phenomena. The study of the DSAC porous material revealed the dominance of micropores with a specific surface area greater than 535.9 m2 g−1 and an approximate volume value equal to 0.208 cm3 g−1. The Langmuir model predicted an adsorption capacity of approximately 27.77 mg g−1, while a 90% removal efficiency for CR dye was achieved under neutral pH conditions. Thermodynamic analysis confirmed that the adsorption of CR on DSAC has a spontaneous (ΔG° < 0) and exothermic (ΔH° < 0) character. The adsorption mechanism of CR on DSAC was proposed and discussed, based on the determination of electrostatic interactions being identified as a critical factor that controls the adsorption phenomenon of CR on DSAC. A 23 full factorial design was implemented to systematically investigate the effects of three critical parameters (temperature, adsorbent dosage, and pH) on the adsorption performance. Statistical analysis indicated that all three primary factors significantly influenced the results. The square correlation coefficient of the model (R2-sq of 97.26%) was in good agreement with the statistical model. The variable is considered statistically significant when the p-value is lower than 0.05. These findings, supported by experimental data, strongly indicate that DSAC possesses remarkable potential as a sustainable and effective bio-adsorbent for wastewater remediation applications capable of removing diverse contaminants with high efficiency. Full article
(This article belongs to the Special Issue Advanced Hydrogel for Water Treatment (2nd Edition))
Show Figures

Figure 1

22 pages, 346 KB  
Article
Antioxidant Properties and Antinutritional Components of Flowers from Five Pumpkin Species
by Małgorzata Stryjecka, Tomasz Cebulak, Barbara Krochmal-Marczak and Anna Kiełtyka-Dadasiewicz
Antioxidants 2025, 14(11), 1353; https://doi.org/10.3390/antiox14111353 - 12 Nov 2025
Viewed by 14
Abstract
The contents of total polyphenols, flavonoids, phenolic acids, anthocyanins, and carotenoids were determined using spectrophotometric and chromatographic methods, alongside antioxidant activity: 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), Cupric Reducing Antioxidant Capacity (CUPRAC), and hydroxyl radical scavenging assays). Additionally, the levels of antinutritional [...] Read more.
The contents of total polyphenols, flavonoids, phenolic acids, anthocyanins, and carotenoids were determined using spectrophotometric and chromatographic methods, alongside antioxidant activity: 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), Cupric Reducing Antioxidant Capacity (CUPRAC), and hydroxyl radical scavenging assays). Additionally, the levels of antinutritional compounds (tannins, phytates, oxalates, alkaloids, and saponins) were assessed in the flowers of five pumpkin species: giant pumpkin, summer squash, butternut squash, fig-leaf gourd, and cushaw squash (Cucurbita maxima, C. pepo, C. moschata, C. ficifolia, and C. argyrosperma). The results revealed significant interspecific variation in both bioactive and antinutritional compounds. Giant pumpkin flowers exhibited the highest content of polyphenols and phenolic acids, fig-leaf gourd flowers were the richest in carotenoids, whereas butternut squash flowers had the highest anthocyanin levels. The strongest antioxidant activity was observed in giant pumpkin flowers, which can be attributed to their high phenolic and flavonoid content. Despite the presence of moderate amounts of antinutritional compounds, pumpkin flowers can be considered a valuable edible raw material with nutraceutical potential. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 3rd Edition)
21 pages, 3086 KB  
Review
Polymer-Based Artificial Solid Electrolyte Interphase Layers for Li- and Zn-Metal Anodes: From Molecular Engineering to Operando Visualization
by Jae-Hee Han and Joonho Bae
Polymers 2025, 17(22), 2999; https://doi.org/10.3390/polym17222999 - 11 Nov 2025
Viewed by 217
Abstract
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how [...] Read more.
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how these designs are now evaluated against operando readouts rather than post-mortem snapshots. We group the related molecular strategies into three classes: (i) side-chain/ionomer chemistry (salt-philic, fluorinated, zwitterionic) to increase cation selectivity and manage local solvation; (ii) dynamic or covalently cross-linked networks to absorb microcracks and maintain coverage during plating/stripping; and (iii) polymer–ceramic hybrids that balance modulus, wetting, and ionic transport characteristics. We then benchmark these choices against metal-specific constraints—high reductive potential and inactive Li accumulation for Li, and pH, water activity, corrosion, and hydrogen evolution reaction (HER) for Zn—showing why a universal preparation method is unlikely. A central element is a system of design parameters and operando metrics that links material parameters to readouts collected under bias, including the nucleation overpotential (ηnuc), interfacial impedance (charge transfer resistance (Rct)/SEI resistance (RSEI)), morphology/roughness statistics from liquid-cell or cryogenic electron microscopy (Cryo-EM), stack swelling, and (for Li) inactive-Li inventory. By contrast, planar plating/stripping and HER suppression are primary success metrics for Zn. Finally, we outline parameters affecting these systems, including the use of lean electrolytes, the N/P ratio, high areal capacity/current density, and pouch-cell pressure uniformity, and discuss closed-loop workflows that couple molecular design with multimodal operando diagnostics. In this view, polymer artificial SEIs evolve from curated “recipes” into predictive, transferable interfaces, paving a path from coin-cell to prototype-level Li- and Zn-metal batteries. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Figure 1

18 pages, 2112 KB  
Article
Efficient Pb(II) Adsorption by Natural Mugaldzhar Diatomite: Isotherm, Kinetic, and Thermodynamic Analysis
by Araylim Nurgain, Meruyert Nazhipkyzy, Gamzenur Özsin, Aizhan A. Zhaparova and Esin Apaydın-Varol
J. Compos. Sci. 2025, 9(11), 625; https://doi.org/10.3390/jcs9110625 - 11 Nov 2025
Viewed by 145
Abstract
Heavy metal pollution remains one of the major environmental challenges due to the persistence and toxicity of metals such as Pb(II). This study investigates the potential of natural diatomite from Mugaldzhar, Kazakhstan, as a low-cost and sustainable sorbent for lead removal from aqueous [...] Read more.
Heavy metal pollution remains one of the major environmental challenges due to the persistence and toxicity of metals such as Pb(II). This study investigates the potential of natural diatomite from Mugaldzhar, Kazakhstan, as a low-cost and sustainable sorbent for lead removal from aqueous solutions. The effects of key parameters, including sorbent dosage, particle size, contact time, temperature, and initial Pb(II) concentration, were systematically examined. Adsorption experiments revealed a maximum adsorption capacity of 74.9 mg/g at 45 °C and an initial Pb(II) concentration of 800 mg/L. The adsorption behavior followed the pseudo-second-order kinetic model, indicating a chemisorption mechanism, while isotherm analysis showed a transition from Langmuir to Freundlich type with increasing temperature. Thermodynamic data confirmed the spontaneous and endothermic nature of the process. These results demonstrate that unmodified natural diatomite exhibits high efficiency for Pb(II) removal, emphasizing its suitability as an eco-friendly and cost-effective material for water purification and environmental remediation. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

Back to TopTop