Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = high speed countercurrent chromatography (HSCCC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3852 KiB  
Article
Screening and Isolating Acetylcholinesterase Inhibitors from Olea europaea L. Fruit Using Ultrafiltration–Liquid Chromatography Coupled with High-Speed Counter-Current Chromatography
by Xingcui Wang, Yingshan Zhang, Jules Muhire, Duolong Di, Xinyi Huang and Dong Pei
Separations 2025, 12(4), 96; https://doi.org/10.3390/separations12040096 - 12 Apr 2025
Viewed by 442
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition and one of the most prevalent types of dementia in older adults. Currently, the primary drugs used to treat AD are acetylcholinesterase (AChE) inhibitors. The development of natural substances has become a research hotspot due [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative condition and one of the most prevalent types of dementia in older adults. Currently, the primary drugs used to treat AD are acetylcholinesterase (AChE) inhibitors. The development of natural substances has become a research hotspot due to the high number of adverse effects of synthetic drugs. In this study, a new assay based on ultrafiltration–liquid chromatography–high-speed counter-current chromatography (UF-HPLC-HSCCC) was developed for the rapid screening and identification of AChE inhibitors from Olea europaea L. fruit. In this research, we screened and isolated two AChE inhibitors from O. europaea fruit extracts, identified by EI-MS and NMR as secologanoside and oleuroside-11-methyl ester. These compounds were identified for the first time from O. europaea and found to possess AChE inhibitory activity using an in vitro AChE inhibition assay and molecular docking. The IC50 values of the two compounds were 0.76 ± 0.04 mM and 1.08 ± 0.05 mM. The results demonstrated that secologanoside showed better AChE inhibition activity than oleuroside-11-methyl ester, suggesting that this compound is a promising AChE inhibitor. At the same time, the results showed that the combination of UF-HPLC- HSCCC provides a powerful tool for screening and isolating AChE inhibitors in complex samples. Full article
Show Figures

Figure 1

16 pages, 3296 KiB  
Article
Bioassay-Guide Preparative Separation of Hypoglycemic Components from Gynura divaricata (L.) DC by Conventional and pH-Zone Refining Countercurrent Chromatography
by Zetao Shen, Jing Xu, Lijiao Wen, Lu Yin, Xueli Cao, Hairun Pei and Xi Zhao
Foods 2025, 14(4), 578; https://doi.org/10.3390/foods14040578 - 10 Feb 2025
Cited by 1 | Viewed by 730
Abstract
Gynura divaricata (L.) DC is a long-used medicinal and edible plant in China folk. Its hyperglycemic effects have garnered increasing public attention in recent years. This study revealed that the ethyl acetate (EtOAc) and butanol (BuOH) partition fractions of G. divaricata crude extract [...] Read more.
Gynura divaricata (L.) DC is a long-used medicinal and edible plant in China folk. Its hyperglycemic effects have garnered increasing public attention in recent years. This study revealed that the ethyl acetate (EtOAc) and butanol (BuOH) partition fractions of G. divaricata crude extract exhibited significantly higher α-glucosidase inhibition activity and enhanced glucose uptake ability compared to other fractions. Guided by the hypoglycemic bioassay, these two fractions were subjected to isolation of active compounds using high-speed countercurrent chromatography (HSCCC). A two-phase solvent system composed of hexane-methyl tert-butyl ether (MtBE)-methanol-0.1% TFA water was employed for the separation of the EtOAc fraction by conventional HSCCC through a gradient elution strategy. Five major compounds were obtained and identified as chlorogenic acid (1), 3,4-dicaffeoylquinic acid (2), 3,5-dicaffeoylquinic acid (3), 4,5-dicaffeoylquinic acid (4), and kaempferol-3-O-β-D-glucopyranoside (5) by ESI-MS, 1HNMR, and 13CNMR. The chlorogenic acid and the three dicaffeoylquinic acids were found to display higher inhibitory activities against α-glucosidase compared to the flavonoid. Considering their acidic nature, pH-zone-refining CCC (PHZCCC) was then applied for further scale-up separation using a solvent system MtBE: n-butanol: acetonitrile: water with trifluoroacetic acid (TFA) as a retainer and ammonium hydroxide (NH4OH) as an eluter. A significantly higher yield of chlorogenic acid was obtained from the BuOH fraction by PZRCCC. Molecular docking between the caffeoylquinic acids and α-glucosidase confirmed their hypoglycemic activities. This study demonstrates that CCC is a powerful tool for preparative separation of active constituents in natural products. This research presents a novel and effective method for the preparative isolation of hypoglycemic compounds from Gynura divaricata. Full article
Show Figures

Figure 1

17 pages, 2867 KiB  
Article
Phytochemical Profile and Biological Activity of the Ethanol Extracts from the Aerial Parts of Adonis tianschanica (Adolf.) Lipsch. Growing in Kazakhstan
by Saule Orynbekova, Wirginia Kukula-Koch, Zuriyadda Sakipova, Bashaer Alsharif, Beibhinn Rafferty, Talgat Nurgozhin, Zoya Allambergenova, Piotr Dreher, Kazimierz Głowniak and Fabio Boylan
Molecules 2024, 29(23), 5754; https://doi.org/10.3390/molecules29235754 - 5 Dec 2024
Viewed by 1379
Abstract
Adonis tianschanica is a lesser-known plant species belonging to the genus Adonis that grows in Kazakhstan. The aim of this study was to characterize the composition of the ethanolic, water, and hydroethanolic extracts from the aerial parts of A. tianschanica by HPLC-ESI-QTOF-MS/MS to [...] Read more.
Adonis tianschanica is a lesser-known plant species belonging to the genus Adonis that grows in Kazakhstan. The aim of this study was to characterize the composition of the ethanolic, water, and hydroethanolic extracts from the aerial parts of A. tianschanica by HPLC-ESI-QTOF-MS/MS to isolate the major compound isoquercitrin by HSCCC (High-Speed Counter-Current Chromatography) and to determine the cytotoxicity and anti-inflammatory potential of the extracts produced with this plant. Fingerprinting of the analyzed extracts showed the presence of a multitude of metabolites comprising polyphenols, organic acids, and coumarins, and only trace quantities of cardiac glycosides in the analyzed samples. Flavonoids were certainly the best-represented group, with kaempferol, quercetin, and their derivatives as the major components of the extracts. Key findings in this paper were that the ethanol: water (50:50 v/v) extract of A. tianschanica and its major compound isoquercitrin were able to reduce the production of NO induced by LPS, in addition to demonstrating anti-inflammatory effects by reducing cytokines such as IL-6, TNF-α, and IL-1β. Full article
Show Figures

Figure 1

13 pages, 2466 KiB  
Article
HSCCC Straightforward Fast Preparative Method for Isolation of Two Major Cytotoxic Withanolides from Athenaea fasciculata (Vell.) I.M.C. Rodrigues & Stehmann
by André Mesquita Marques, Lavínia de Carvalho Brito and Maria Raquel Figueiredo
Plants 2024, 13(21), 3039; https://doi.org/10.3390/plants13213039 - 30 Oct 2024
Cited by 1 | Viewed by 1178
Abstract
Athenaea fasciculata belongs to the Solanaceae family and is a promising source of cytotoxic withanolides known as aurelianolides A and B. In the last years, the pharmacological studies of these aurelianolides on different leukemia cell lines have stimulated new studies on their potential [...] Read more.
Athenaea fasciculata belongs to the Solanaceae family and is a promising source of cytotoxic withanolides known as aurelianolides A and B. In the last years, the pharmacological studies of these aurelianolides on different leukemia cell lines have stimulated new studies on their potential as alternative candidates for new lead anticancer drugs. However, the obtention of these two pure compounds by traditional preparative is a costly and long time-consuming process, which is performed in several steps. This study aimed to propose a straightforward approach for isolating aurelianolides A and B using high-speed countercurrent chromatography (HSCCC). In this study, among 10 different solvent systems, the system composed of n-hexane/ethyl acetate/methanol/water 3:6:2:1 (v/v/v/v) was chosen for optimization. This HEMWat system was optimized to 4:8:2:4 (v/v/v/v) and chosen for HSCCC separation in a tail-to-head elution mode. After the HSCCC scale-up procedure, a withanolides mixture (200.0 mg) was separated within 160 min in a single-step purification process. In total, 78.9 mg of aurelianolide A (up to 95.0% purity) and 54.3 mg of aurelianolide B (up to 88.5% purity) was obtained by this fast sequential liquid–liquid partition process. The isolated withanolides were identified by 1H and 13C NMR spectroscopy (this method has proven to be faster and more efficient than classical procedures (CC and Prep-TLC)). Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 5276 KiB  
Article
Separation and Biological Activities of the Main Compounds from the Bark of Myrica rubra Siebold & Zucc
by Tianyang Hao, Lingyang Fan, Yiyue Chang, Hui Yang and Kai He
Separations 2024, 11(1), 4; https://doi.org/10.3390/separations11010004 - 20 Dec 2023
Cited by 2 | Viewed by 2103
Abstract
Myrica rubra (Lour.) Siebold & Zucc bark is a traditional natural medicine used by the people of the Dong minority in western Hunan in China. In this study, the main compounds in Myrica rubra bark including epigallocatechin gallate, myricetrin, myricetin, taraxerol, myricanol, and [...] Read more.
Myrica rubra (Lour.) Siebold & Zucc bark is a traditional natural medicine used by the people of the Dong minority in western Hunan in China. In this study, the main compounds in Myrica rubra bark including epigallocatechin gallate, myricetrin, myricetin, taraxerol, myricanol, and 11-O-acetylmyricanol were separated using both silica gel column chromatography and high-speed countercurrent chromatography (HSCCC). Notably, it is the first report of discovering 11-O-acetylmyricanol from Myrica rubra bark. The results of the bioactivity studies suggested that epigallocatechin gallate showed the highest α-glucosidase inhibitory activity, while myricetin exhibited the highest reactive oxygen species (ROS) scavenging ability in zebrafish embryos. Intriguingly, myricanol exhibited strong apoptosis-inducing activity on HepG2 cells, and further studies revealed that myricanol was capable of promoting the cleavage of caspase 3, 8, and 9, then resulting in the apoptosis in HepG2 cells. The findings of the present study have important implications for the separation of the main compounds in Myrica rubra and will provide credence to the ethnomedicinal application of the isolated compounds against cardiovascular disease and cancer. Full article
(This article belongs to the Section Chromatographic Separations)
Show Figures

Figure 1

14 pages, 2676 KiB  
Article
Target-Guided Isolation and Purification of Antioxidants from Urtica laetevirens Maxim. by HSCCC Combined with Online DPPH-HPLC Analysis
by Aijing Li, Mencuo La, Huichun Wang, Jianzhong Zhao, Yao Wang, Ruisha Mian, Fangfang He, Yuhan Wang, Tingqin Yang and Denglang Zou
Molecules 2023, 28(21), 7332; https://doi.org/10.3390/molecules28217332 - 29 Oct 2023
Cited by 1 | Viewed by 1861
Abstract
Urtica laetevirens Maxim. is used extensively in traditional Chinese medicine (TCM) for its potent antioxidative properties. In this study, three antioxidants were purified from U. laetevirens. using HSCCC guided by online DPPH-HPLC analysis. Firstly, the online DPPH-HPLC analysis was performed to profile out [...] Read more.
Urtica laetevirens Maxim. is used extensively in traditional Chinese medicine (TCM) for its potent antioxidative properties. In this study, three antioxidants were purified from U. laetevirens. using HSCCC guided by online DPPH-HPLC analysis. Firstly, the online DPPH-HPLC analysis was performed to profile out the antioxidant active molecules in U. laetevirens. The ultrasonic-assisted extraction conditions were optimized by response surface methodology and the results showed the targeted antioxidant active molecules could be well enriched under the optimized extraction conditions. Then, the antioxidant active molecules were separated by high-speed countercurrent chromatography ethyl acetate/n-butanol/water (2:3:5, v/v/v) as the solvent system. Finally, the three targets including 16.8 mg of Isovitexin, 9.8 mg of Isoorientin, and 26.7 mg of Apigenin-6,8-di-C-β-d-glucopyranoside were obtained from 100 mg of sample. Their structures were identified by 1H NMR spectroscopy. Full article
(This article belongs to the Special Issue Antioxidants in Herbal Medicine and Natural Products)
Show Figures

Figure 1

13 pages, 1966 KiB  
Article
Anti-Inflammatory Effect of Ebractenoid F, a Major Active Compound of Euphorbia ebracteolata Hayata, through Inhibition of Nuclear Factor-κB Activation
by Jaemoo Chun, Sang Yeon Mah and Yeong Shik Kim
Plants 2023, 12(15), 2845; https://doi.org/10.3390/plants12152845 - 1 Aug 2023
Cited by 2 | Viewed by 1738
Abstract
Euphorbia ebracteolata Hayata (Euphorbiaceae family) is a perennial plant that is widely distributed in Korea, Japan, and China. Its roots contain bioactive diterpenes that have anti-inflammatory properties. However, the anti-inflammatory mechanisms are not yet fully understood. This study aimed to identify the most [...] Read more.
Euphorbia ebracteolata Hayata (Euphorbiaceae family) is a perennial plant that is widely distributed in Korea, Japan, and China. Its roots contain bioactive diterpenes that have anti-inflammatory properties. However, the anti-inflammatory mechanisms are not yet fully understood. This study aimed to identify the most active anti-inflammatory compound from the roots of E. ebracteolata Hayata, using bioassay-guided fractionation and a combinative method of high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (HPLC). Then, we investigated its anti-inflammatory mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Ebractenoid F was identified as the most potent bioactive compound of E. ebracteolata Hayata. Ebractenoid F significantly decreased nitric oxide (NO) production and nuclear factor-κB (NF-κB) activation induced by LPS in RAW 264.7 macrophages. Moreover, ebractenoid F decreased the degradation of inhibitory κB-α, the nuclear translocation of the p65 and p50 subunits of NF-κB, and the expression of NF-κB downstream genes. Furthermore, ebractenoid F inhibited the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK), in LPS-stimulated RAW 264.7 cells. In conclusion, ebractenoid F exerts the most potent anti-inflammatory effect by suppressing NF-κB-mediated NO production in LPS-stimulated RAW 264.7 cells. Ebractenoid F may be a useful therapeutic compound for the prevention or treatment of inflammation-associated diseases. Full article
(This article belongs to the Special Issue Anti-Inflammatory Bioactivities in Plant Extracts)
Show Figures

Figure 1

12 pages, 1477 KiB  
Article
Separation of Flavonoids and Purification of Chlorogenic Acid from Bamboo Leaves Extraction Residues by Combination of Macroporous Resin and High-Speed Counter-Current Chromatography
by Yifeng Zhou, Meixu Chen, Xinyi Huo, Qilin Xu, Linlin Wu and Liling Wang
Molecules 2023, 28(11), 4443; https://doi.org/10.3390/molecules28114443 - 30 May 2023
Cited by 8 | Viewed by 3050
Abstract
Flavonoids are major active small-molecule compounds in bamboo leaves, which can be easily obtained from the bamboo leaves extraction residues (BLER) after the polysaccharides extraction. Six macroporous resins with different properties were screened to prepare and enrich isoorientin (IOR), orientin (OR), vitexin (VI), [...] Read more.
Flavonoids are major active small-molecule compounds in bamboo leaves, which can be easily obtained from the bamboo leaves extraction residues (BLER) after the polysaccharides extraction. Six macroporous resins with different properties were screened to prepare and enrich isoorientin (IOR), orientin (OR), vitexin (VI), and isovitexin (IVI) from BLER, and the XAD-7HP resin with the best adsorption and desorption performance was selected for further evaluation. Based on the static adsorption experiments, the experimental results showed that the adsorption isotherm fitted well with the Langmuir isotherm model, and the adsorption process was better explained by the pseudo-second-order kinetic model. After the dynamic trial of resin column chromatography, 20 bed volume (BV) of upload sample and 60% ethanol as eluting solvent was used in a lab scale-up separation, and the results demonstrated that the content of four flavonoids could be increased by 4.5-fold, with recoveries between 72.86 and 88.21%. In addition, chlorogenic acid (CA) with purity of 95.1% was obtained in water-eluted parts during dynamic resin separation and further purified by high-speed countercurrent chromatography (HSCCC). In conclusion, this rapid and efficient method can provide a reference to utilize BLER to produce high-value-added food and pharmaceutical products. Full article
Show Figures

Figure 1

15 pages, 3583 KiB  
Article
Efficient Combination of Complex Chromatography, Molecular Docking and Enzyme Kinetics for Exploration of Acetylcholinesterase Inhibitors from Poria cocos
by Tong Wu, Wanchao Hou, Chunming Liu, Sainan Li and Yuchi Zhang
Molecules 2023, 28(3), 1228; https://doi.org/10.3390/molecules28031228 - 27 Jan 2023
Cited by 13 | Viewed by 2830
Abstract
Poria cocos (P. cocos) is a traditional Chinese medicinal product with the same origin as medicine and food. It has diuretic, anti-inflammatory and liver protection properties, and has been widely used in a Chinese medicine in the treatment of Alzheimer’s disease (AD). This [...] Read more.
Poria cocos (P. cocos) is a traditional Chinese medicinal product with the same origin as medicine and food. It has diuretic, anti-inflammatory and liver protection properties, and has been widely used in a Chinese medicine in the treatment of Alzheimer’s disease (AD). This study was conducted to explore the activity screening, isolation of acetylcholinesterase inhibitors (AChEIs), and in vitro inhibiting effect of P. cocos. The aim was to develop a new extraction process optimization method based on the Matlab genetic algorithm combined with a traditional orthogonal experiment. Moreover, bio−affinity ultrafiltration combined with molecular docking was used to screen and evaluate the activity of the AChEIs, which were subsequently isolated and purified using high-speed counter−current chromatography (HSCCC) and semi−preparative high-performance liquid chromatography (semi−preparative HPLC). The change in acetylcholinesterase (AChE) activity was tested using an enzymatic reaction kinetics experiment to reflect the inhibitory effect of active compounds on AChE and explore its mechanism of action. Five potential AChEIs were screened via bio−affinity ultrafiltration. Molecular docking results showed that they had good binding affinity for the active site of AChE. Meanwhile, the five active compounds had reversible inhibitory effects on AChE: Polyporenic acid C and Tumulosic acid were non-competitive inhibitors; 3−Epidehydrotumulosic acid was a mixed inhibitor; and Pachymic acid and Dehydrotrametenolic acid were competitive inhibitors. This study provided a basis for the comprehensive utilization of P. cocos and drug development for the treatment of AD. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

9 pages, 937 KiB  
Communication
A Neglected Issue: Stationary Phase Retention Determination of Classic High-Speed Counter-Current Chromatography Solvent Systems
by Sha Li, Tiandan Li, Xiaochao Hu, Yong Yang, Yangyi Huang and Kai He
Separations 2022, 9(11), 357; https://doi.org/10.3390/separations9110357 - 8 Nov 2022
Cited by 3 | Viewed by 2069
Abstract
Obtaining an ideal solvent system for target compounds is still an obstacle to the wide application of high-speed counter-current chromatography (HSCCC). The partition coefficient and retention of the stationary phase are two key parameters for solvent system selection. The retention of the stationary [...] Read more.
Obtaining an ideal solvent system for target compounds is still an obstacle to the wide application of high-speed counter-current chromatography (HSCCC). The partition coefficient and retention of the stationary phase are two key parameters for solvent system selection. The retention of the stationary phase of the solvent system is roughly judged by settling time using a test tube, which is subjective and inaccurate. In this study, we demonstrated that high-resolution separation of HSCCC is tightly connected with the retention of the stationary phase. Notably, unlike the in vitro test of settling time, we investigated the retention of the stationary phase of classical biphasic solvent systems by a TBE300C HSCCC apparatus. Our results revealed that settling time is not always inversely proportional to the retention of the stationary phase. The n-hexane–ethylacetate–methanol–water solvent systems showed the highest correlation coefficient of settling time and retention of the stationary phase (r = −0.91, n = 16). N-heptane–n-butanol–acetonitrile–water solvent system showed the lowest correlation coefficient (r = −0.26, n = 7). These results may be helpful for HSCCC solvent system selection and accelerate the application of this technique. Full article
(This article belongs to the Special Issue Novel Applications of Separation Technology)
Show Figures

Graphical abstract

24 pages, 2793 KiB  
Article
Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves
by Qian Gao, Zongmin Wei, Yun Liu, Fang Wang, Shuting Zhang, Carmo Serrano, Lingxi Li and Baoshan Sun
Molecules 2022, 27(3), 678; https://doi.org/10.3390/molecules27030678 - 20 Jan 2022
Cited by 23 | Viewed by 4361
Abstract
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using [...] Read more.
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves. Full article
(This article belongs to the Special Issue Chromatographic Science of Natural Products II)
Show Figures

Graphical abstract

12 pages, 2940 KiB  
Article
Anti-Inflammatory Activity of Four Triterpenoids Isolated from Poriae Cutis
by Lijia Zhang, Mengzhou Yin, Xi Feng, Salam A. Ibrahim, Ying Liu and Wen Huang
Foods 2021, 10(12), 3155; https://doi.org/10.3390/foods10123155 - 20 Dec 2021
Cited by 16 | Viewed by 4191
Abstract
In this study, triterpenoid compounds from Poriae Cutis were separated by high-speed countercurrent chromatography (HSCCC) and identified using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) and nuclear magnetic resonance (NMR). The in vitro anti-inflammatory activities of the purified triterpenoids on [...] Read more.
In this study, triterpenoid compounds from Poriae Cutis were separated by high-speed countercurrent chromatography (HSCCC) and identified using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) and nuclear magnetic resonance (NMR). The in vitro anti-inflammatory activities of the purified triterpenoids on RAW 264.7 cells were also investigated. Triterpenoids, poricoic acid B, poricoic acid A, dehydrotrametenolic acid, and dehydroeburicoic acid were obtained; their levels of purity were 90%, 92%, 93%, and 96%, respectively. The results indicated that poricoic acid B had higher anti-inflammatory activity than those of poricoic acid A by inhibiting the generation of NO in lipopolysaccharide (LPS)-induced RAW 264.7 cells. However, dehydrotrametenolic acid and dehydroeburicoic acid had no anti-inflammatory activity. In addition, the production of cytokines (TNF-α, IL-1β, and IL-6) in cells treated with poricoic acid B decreased in a dose-dependent manner in the concentration range from 10 to 40 μg/mL. The results provide evidence for the use of Poriae Cutis as a natural anti-inflammatory agent in medicines and functional foods. Full article
Show Figures

Figure 1

21 pages, 3442 KiB  
Article
Separation and Identification of Antioxidants and Aldose Reductase Inhibitors in Lepechinia meyenii (Walp.) Epling
by Guanglei Zuo, Kang-Hoon Je, Yanymee N. Guillen Quispe, Kyong-Oh Shin, Hyun Yong Kim, Kang Hyuk Kim, Paul H. Gonzales Arce and Soon Sung Lim
Plants 2021, 10(12), 2773; https://doi.org/10.3390/plants10122773 - 15 Dec 2021
Cited by 10 | Viewed by 3540
Abstract
We previously reported that Lepechinia meyenii (Walp.) Epling has antioxidant and aldose reductase (AR) inhibitory activities. In this study, L. meyenii was extracted in a 50% MeOH and CH2Cl2/MeOH system. The active extracts of MeOH and 50% MeOH were [...] Read more.
We previously reported that Lepechinia meyenii (Walp.) Epling has antioxidant and aldose reductase (AR) inhibitory activities. In this study, L. meyenii was extracted in a 50% MeOH and CH2Cl2/MeOH system. The active extracts of MeOH and 50% MeOH were subjected to fractionation, followed by separation using high-speed counter-current chromatography (HSCCC) and preparative HPLC. Separation and identification revealed the presence of caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and butyl rosmarinate. Of these, rosmarinic acid, methyl rosmarinate, and butyl rosmarinate possessed remarkable antioxidant and AR inhibitory activities. The other compounds were less active. In particular, rosmarinic acid is the key contributor to the antioxidant and AR inhibitory activities of L. meyenii; it is rich in the MeOH extract (333.84 mg/g) and 50% MeOH extract (135.41 mg/g) of L. meyenii and is especially abundant in the EtOAc and n-BuOH fractions (373.71–804.07 mg/g) of the MeOH and 50% MeOH extracts. The results clarified the basis of antioxidant and AR inhibitory activity of L. meyenii, adding scientific evidence supporting its traditional use as an anti-diabetic herbal medicine. The HSCCC separation method established in this study can be used for the preparative separation of rosmarinic acid from natural products. Full article
(This article belongs to the Special Issue Polyphenols in Plants)
Show Figures

Graphical abstract

11 pages, 1808 KiB  
Article
Silver Ion-Complexation High-Speed Countercurrent Chromatography Coupled with Prep-HPLC for Separation of Sesquiterpenoids from Germacrene A Fermentation Broth
by Huanzhu Zhao, Xiangyun Song, Iftikhar Ali, Manzoor Hussain, Andleeb Mehmood, Baraa Siyo, Qianshan Gao, Li Cui, Shahid Aziz, Hidayat Hussain, Wenya Ma, Dawei Qin and Daijie Wang
Fermentation 2021, 7(4), 230; https://doi.org/10.3390/fermentation7040230 - 14 Oct 2021
Cited by 2 | Viewed by 2829
Abstract
A silver ion high-speed counter-current chromatography ([Ag+]-HSCCC) was developed to separate and purify five sesquiterpenoids from germacrene A fermentation broth. The solvent system was consisted of n-hexane-methanol-silver nitrate (3 mol/L) solution (10:9.5:0.5, v/v). By employing this chromatographic [...] Read more.
A silver ion high-speed counter-current chromatography ([Ag+]-HSCCC) was developed to separate and purify five sesquiterpenoids from germacrene A fermentation broth. The solvent system was consisted of n-hexane-methanol-silver nitrate (3 mol/L) solution (10:9.5:0.5, v/v). By employing this chromatographic protocol, five sesquiterpenoids named β-elemene (1; 54.1 mg), germacrene A (2; 28.5 mg), γ-selinene (3; 4.6 mg), β-selinene (4; 3.4 mg), and α-selinene (5; 1.3 mg) were obtained successfully from 500 mg extracted crude sample with purities of 97.1%, 95.2%, 98.2%, 96.3% and 98.5%, respectively, combined with preparative HPLC. The results reveal that the addition of metal ion in biphasic solvent system significantly improved the HSCCC separation factor of sesquiterpenoids. Meanwhile, our study also provided an alternate approach to separate the compounds with less polarity, also geometrical isomers and various natural product classes. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 3.0)
Show Figures

Figure 1

12 pages, 1837 KiB  
Article
Combined Ultrahigh Pressure Extraction and High-Speed Counter-Current Chromatography for Separation and Purification of Three Glycoside Compounds from Dendrobium officinale Protocorm
by Wei Zhang, Yingjie Zhang, Jinying Wang, Wenjuan Duan and Feng Liu
Molecules 2021, 26(13), 3934; https://doi.org/10.3390/molecules26133934 - 28 Jun 2021
Cited by 3 | Viewed by 2448
Abstract
As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium candidum are of great value due to their high yield and low cost. In this work, three glycoside compounds, β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were [...] Read more.
As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium candidum are of great value due to their high yield and low cost. In this work, three glycoside compounds, β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were extracted and isolated by ultrahigh pressure extraction (UPE) coupled with high-speed counter-current chromatography (HSCCC) from PLBs of D. officinale. First, the target compounds were optimized and prepared with 50% ethanol solution at a 1:30 (g/mL) solid/liquid ratio in 2 min under 300 MPa by UPE. Then, the crude extract was chromatographed with a silica gel column, and primary separation products were obtained. In addition, the products (150 mg) were separated by HSCCC under the solvent system of MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v), yielding 31.43 mg of compound I, 10.21 mg of compound II, and 24.75 mg of compound III. Their structures were further identified by ESI-MS, 1H NMR, and 13C NMR. The antioxidant results showed that the three compounds expressed moderate effects on the DPPH· scavenging effect. Compound II had the best antioxidant capacity and its IC50 value was 0.0497 mg/mL. Full article
Show Figures

Figure 1

Back to TopTop