Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,677)

Search Parameters:
Keywords = high performance liquid chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 11936 KB  
Article
Development of Functional Msalais Wines Rich in Amadori Compounds by Yeast Fermentation
by Jiachuan Yang, Liling Wang, Yuelin Li, Qiuye Xie, Bin Wang, Xuewei Shi, Yi He and Huilin Tan
Foods 2025, 14(20), 3471; https://doi.org/10.3390/foods14203471 (registering DOI) - 11 Oct 2025
Abstract
Msalais is a type of wine made by a series of processes such as boiling and fermentation from Hotan red grape juice. The Maillard reaction occurs during the boiling of the grape juice. The Amadori compound is a product of the early stage [...] Read more.
Msalais is a type of wine made by a series of processes such as boiling and fermentation from Hotan red grape juice. The Maillard reaction occurs during the boiling of the grape juice. The Amadori compound is a product of the early stage of the Maillard reaction, which has physiological activities such as antioxidation, anti-hypertension, and anti-hyperglycemia. The purpose of this study was to develop Msalais rich in Amadori compounds by utilizing the fermentative capabilities of different yeasts. The optimal fermentation process was obtained by response surface optimization, with the key parameters as follows: Saccharomyces cerevisiae Y4 and Wickerhamomyces anomalus Y2 (as the fermenting yeasts), fermentation temperature of 28 °C, fermentation time of 14 days, yeast inoculation amount of 2% (V/V), and ratio of Saccharomyces cerevisiae to non-Saccharomyces cerevisiae of 2:1. At the same time, HPLC-ELSD was used to detect Amadori compounds in the product of this optimal fermentation process. The contents of Fru-Pro and Fru-Asp in the optimal fermentation process were 0.2867 ± 0.0115 g/L and 0.0203 ± 0.0014 g/L, respectively, which were 0.0702 g/L and 0.026 g/L higher than those of commercially available commercial Msalais (0.2165 ± 0.0022 g/L and 0.0177 ± 0.0008 g/L, respectively). With the increase in the content of Amadori compounds, the antioxidant activity was significantly improved. The DPPH free radical scavenging ability was 116.37 ± 1.79 μmol Trolox/sample, which was 53.01 μmol Trolox/L sample higher than that of commercial Msalais. The ABTS free radical scavenging ability was 142.51 ± 1.98 μmol Trolox/L sample, which was 68.23 μmol Trolox/L sample higher than that of commercial Msalais. The total oxygen free radical absorption capacity was 132.74 ± 6.36 μmol Trolox/L sample, which was 60.12 μmol Trolox/L higher than that of the commercial Msalais. Compared with traditional Msalais produced by natural fermentation, the quality of Msalais fermented by specific yeasts has been significantly improved. These results provide a reliable basis for the fermentation of Msalais by specific yeasts and its quality optimization. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

13 pages, 2506 KB  
Article
Untargeted Metabolomics Reveals Distinct Serum Metabolic Profiles in Avian Influenza Occupational Exposure Populations
by Shuoqin Mao, Lei Wang, Jing Su, Caihua Long, Muti Mahe, Zhenguo Gao and Jia Liu
Metabolites 2025, 15(10), 663; https://doi.org/10.3390/metabo15100663 (registering DOI) - 11 Oct 2025
Abstract
Background and Objectives: Avian influenza poses a continuous public health threat, particularly to individuals with occupational exposure to poultry such as farm workers, live animal market employees, and processing plant staff. This study aimed to investigate the systemic metabolic effects of such exposure [...] Read more.
Background and Objectives: Avian influenza poses a continuous public health threat, particularly to individuals with occupational exposure to poultry such as farm workers, live animal market employees, and processing plant staff. This study aimed to investigate the systemic metabolic effects of such exposure and to identify potential biomarkers for early detection and health risk assessment. Materials and Methods: An untargeted liquid chromatography–mass spectrometry (LC-MS)-based metabolomics approach was applied to analyze serum samples from occupationally exposed individuals and healthy controls. Multivariate statistical analysis, pathway enrichment, and topology analysis were performed to identify significantly altered metabolites and metabolic pathways. The least absolute shrinkage and selection operator (LASSO) algorithm was employed to select key metabolites. Results: Multivariate statistical analysis revealed a clear separation between the exposure group and control, suggesting distinct metabolic profiles between the two populations. Pathway analysis indicated significant alterations in alanine, aspartate, and glutamate metabolism, as well as tryptophan metabolism, which are closely linked to immune regulation, energy metabolism, and host–pathogen interactions. LASSO feature selection and subsequent manual verification identified 17 key metabolites with strong discriminative power. Furthermore, lipidomic profiling revealed a pronounced increase in lysophosphatidylcholine (LPC) levels and a concurrent decrease in phosphatidylcholine (PC) species in exposed individuals. Conclusions: This study reveals metabolic disruptions associated with occupational avian influenza exposure and identifies potential serum biomarkers related to immune and lipid metabolism. These findings provide novel insights into host responses to avian influenza exposure and may support early detection and health risk assessment in high-risk occupational populations. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

18 pages, 577 KB  
Article
Impact of Xenobiotic Detoxification Gene Polymorphisms on Steady-State Plasma Concentrations of Apixaban and the Development of Hemorrhagic Complications in Older Patients with Non-Valvular Atrial Fibrillation
by Andrey P. Kondrakhin, Sherzod P. Abdullaev, Ivan V. Sychev, Pavel O. Bochkov, Svetlana N. Tuchkova, Karin B. Mirzaev, Maksim L. Maksimov and Dmitry A. Sychev
Genes 2025, 16(10), 1179; https://doi.org/10.3390/genes16101179 - 10 Oct 2025
Abstract
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with a fivefold increase in stroke risk. Direct oral anticoagulants (DOACs), including apixaban, are now the preferred therapy for stroke prevention in patients with non-valvular AF (NVAF). However, interindividual [...] Read more.
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with a fivefold increase in stroke risk. Direct oral anticoagulants (DOACs), including apixaban, are now the preferred therapy for stroke prevention in patients with non-valvular AF (NVAF). However, interindividual variability in drug response and safety remains a major challenge, particularly in elderly patients with comorbidities and polypharmacy. Genetic polymorphisms in drug-metabolizing enzymes and transporters may contribute to variability in apixaban exposure and bleeding risk. This study aimed to evaluate the association of polymorphisms in ABCB1, CYP3A4, and CYP3A5 with steady-state plasma concentrations of apixaban (Cssmin) and hemorrhagic complications in elderly patients with NVAF. Methods: This cross-sectional study included 197 patients (mean age 83 ± 8 years; 67% women) with NVAF treated with apixaban (5 mg twice daily). Genotyping of ABCB1 (rs1045642, rs2032582, rs1128503), CYP3A4*22 (rs35599367), and CYP3A5*3 (rs776746) was performed using allele-specific real-time PCR. Cssmin of apixaban was determined by high-performance liquid chromatography coupled with tandem mass spectrometry. Associations with bleeding events were evaluated. Results: Bleeding events were recorded in 40 patients (20.3%). An association signal was observed for ABCB1 rs1045642, where carriers of the CC genotype had a higher risk of bleeding compared with alternative alleles (OR = 2.805; 95% CI: 1.326–5.935; p = 0.006). After correction for multiple testing, the association remained significant only under the log-additive model (OR = 1.93 per C allele; 95% CI: 1.17–3.20; q = 0.0275; p_adj = 0.044), while recessive and codominant effects did not withstand Bonferroni adjustment. No significant associations were observed for rs2032582, rs1128503, CYP3A4*22, or CYP3A5*3. None of the studied polymorphisms, including rs1045642, significantly affected Cssmin. Concomitant therapy, particularly with antiarrhythmic drugs and statins (rosuvastatin), also increased bleeding risk. Conclusions: The findings highlight the potential contribution of ABCB1 rs1045642 and specific drug–drug interactions to the risk of hemorrhagic complications in elderly NVAF patients receiving apixaban. Full article
(This article belongs to the Special Issue Pharmacogenomics and Personalized Treatment)
Show Figures

Figure 1

17 pages, 4029 KB  
Article
Exploring the Mechanisms of n-Butanol Extract from Tibetan Medicine Biebersteinia heterostemon in Improving Type 2 Diabetes Based on Network Pharmacology and Cellular Experiments
by Shengwen Chen, Mengting Zeng, Xiuxiu Shen and Benyin Zhang
Int. J. Mol. Sci. 2025, 26(20), 9866; https://doi.org/10.3390/ijms26209866 - 10 Oct 2025
Abstract
An integrative approach combining network pharmacology, molecular docking, and cellular assays was used to elucidate the potential mechanisms by which the n-butanol extract of Biebersteinia heterostemon ameliorates type 2 diabetes mellitus (T2DM). Chemical constituents of the n-butanol extract were identified via [...] Read more.
An integrative approach combining network pharmacology, molecular docking, and cellular assays was used to elucidate the potential mechanisms by which the n-butanol extract of Biebersteinia heterostemon ameliorates type 2 diabetes mellitus (T2DM). Chemical constituents of the n-butanol extract were identified via ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry. Active compounds and T2DM-related targets were retrieved from public databases, and intersecting targets were identified. Protein–protein interaction (PPI) networks were constructed using the STRING database, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed via the DAVID database. A comprehensive “drug–compound–target–disease–pathway” network was established, and molecular docking was conducted to evaluate binding affinities of key compounds to core targets. Functional validation was performed in insulin-resistant cell models. Network pharmacology analysis identified 37 active constituents within the extract and 222 overlapping targets associated with T2DM. GO enrichment indicated involvement in protein phosphorylation, MAPK cascade activation, and negative regulation of apoptosis. Key signaling pathways included PI3K/AKT and lipid and atherosclerosis pathways. Molecular docking revealed strong binding affinities (binding energies ≤ −9.3 kcal·mol−1) between core compounds—such as cheilanthifoline, glabridin, acetylcorynoline, skullcapflavone II, liquiritigenin, and dinatin—and pivotal targets including GAPDH, AKT1, TNF, SRC, EGFR, and PPARγ. In vitro experiments demonstrated that the extract significantly enhanced glucose uptake and glycogen synthesis in insulin-resistant cells, while suppressing oxidative stress and the expression of pro-inflammatory mediators such as TNF-α, MMP9, and IL-6. Collectively, B. heterostemon shows potential as an effective intervention for T2DM by targeting key molecular pathways, improving insulin sensitivity, and mitigating oxidative stress and inflammation in insulin-resistant cells. Full article
Show Figures

Figure 1

18 pages, 1035 KB  
Article
Enzymatic Hydrolysis of Porcine Blood as a Strategy to Obtain a Peptide-Rich Functional Ingredient
by Cristina Moreno-Mariscal, Federico Moroni, Jaume Pérez-Sánchez, Leticia Mora and Fidel Toldrá
Int. J. Mol. Sci. 2025, 26(20), 9863; https://doi.org/10.3390/ijms26209863 - 10 Oct 2025
Abstract
The sustainable revalorization of porcine blood is crucial due to the large volumes daily generated in slaughterhouses. The aim of this study was to obtain a novel ingredient rich in free amino acids and bioactive peptides from the sequential hydrolysis of porcine blood. [...] Read more.
The sustainable revalorization of porcine blood is crucial due to the large volumes daily generated in slaughterhouses. The aim of this study was to obtain a novel ingredient rich in free amino acids and bioactive peptides from the sequential hydrolysis of porcine blood. Porcine blood was hydrolyzed with Alcalase 4.0 L and Protana™ Prime enzymes, followed by molecular weight fractionation (<10 kDa) and spray-drying. The antioxidant, hypoglycemic, and anti-inflammatory bioactivities of the resulting hydrolysate (PBSH) were studied in vitro. Further fractionation by reversed-phase high-performance liquid chromatography (RP-HPLC) was performed to isolate the most bioactive fraction based on polarity. Peptides from fraction 1 (F1) were identified using LC-MS/MS and analyzed in silico. Finally, some peptides were synthesized, and their bioactivity was subsequently assessed. PBSH hydrolysate showed antioxidant activity with IC50 values of 2.09, 135.05, and 26.73 mg/mL for ABTS, FRAP, and DPPH assays, respectively. Additionally, PBSH exhibited hypoglycemic, anti-inflammatory, and immunomodulatory potential through the inhibition of DPP-IV (82.78%), NEP (84.72%), TACE (50.79%), and MGL (69.08%) enzymes at a concentration of 20, 20, 100, and 20 mg/mL, respectively. Peptides PDDFNPS, FPPKPKD, DNPIPK, GHLDDLPG, and GDL were identified in the most polar and bioactive fraction (F1) and proved a synergistic hypoglycemic effect at a concentration of 1 mmol/L. The peptide PDDFNPS exhibited multifunctional properties with 56.43% inhibition of DPP-IV and 83.54% inhibition of NEP. PBSH resulted in a novel functional ingredient for animal feed as it contains a variety of identified bioactive peptides and a high amount of free amino acids. Full article
Show Figures

Figure 1

15 pages, 2231 KB  
Article
Hydroxamic Acid Isolated from Maize Roots Exhibits Potent Antimicrobial Activity Against Pathogenic Escherichia coli in Broiler Chickens
by Qudrat Ullah, Shakoor Ahmad, Sarzamin Khan, Ijaz Ahmad, Samiullah Khan, Rajwali Khan and Farhan Anwar Khan
Microbiol. Res. 2025, 16(10), 222; https://doi.org/10.3390/microbiolres16100222 - 9 Oct 2025
Viewed by 137
Abstract
Restrictions on adding antibiotics to animal diets have posed challenges in managing gut pathogens, emphasizing the significance of effective non-antibiotic growth promoters to maintain animal health and productivity. This study assessed the efficacy of hydroxamic acid (HA), derived from local maize varieties, as [...] Read more.
Restrictions on adding antibiotics to animal diets have posed challenges in managing gut pathogens, emphasizing the significance of effective non-antibiotic growth promoters to maintain animal health and productivity. This study assessed the efficacy of hydroxamic acid (HA), derived from local maize varieties, as a non-antibiotic growth promoter in broilers. Among 10 different maize varieties, the Azam variety yielded the highest HA concentration (35 ± 7 μg/g of roots), as quantified by high-performance liquid chromatography (HPLC). In vitro antimicrobial assays demonstrated the lowest minimum inhibitory concentration (MIC) of 0.022 mg for Azam-derived HA against pathogenic E. coli. To further assess in vivo efficacy, 108 birds were allocated at random to six treatment groups. The treatments include birds fed a basal diet without an E. coli challenge (negative control); an antibiotic-treated group challenged with E. coli and treated with enrofloxacin at a dosage of 5 milligrams (mg) per kilogram (kg), administered orally once daily from day 5 post-infection (dpi) for 7 consecutive days (standard); broilers challenged with E. coli and supplemented with a basal diet with HA at concentrations of 1, 10, or 100 mg/kg of feed from 5 dpi for one week (HA 1 mg, HA 10 mg, and HA 100 mg, respectively); and broilers challenged with E. coli without enrofloxacin/HA (positive control). The results demonstrated that birds fed a diet supplemented with the HA-100 mg improved the body weight (BW) and feed conversion ratio (FCR) compared to the positive control group. There were no significant differences (p > 0.05) observed for BW and FCR observed for the broilers fed on the standard and HA 100 mg groups. The addition of HA at 100 mg improved (p < 0.05) the hemoglobin (Hb) and packed cell volume (PCV) and reduced (p < 0.05) levels of malondialdehyde (MDA) compared to positive control group. A significantly low carcass weight (p < 0.05) was shown for positive control birds compared to other groups. Our findings indicate that maize-derived HA presents a phytogenic alternative to antibiotics by controlling enteric pathogens and improving health and performance affected by E. coli infection in broilers. Full article
Show Figures

Graphical abstract

15 pages, 5685 KB  
Article
Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores
by Tamás Hofmann, Eszter Visi-Rajczi and Levente Albert
Forests 2025, 16(10), 1557; https://doi.org/10.3390/f16101557 - 9 Oct 2025
Viewed by 63
Abstract
Despite the long history of beech (Fagus sylvatica L.) red heartwood research, there has been no experimental proof on the structure of the chromophores yet. For the first time, using high-performance liquid chromatography/diode array detection/multistage electrospray ionization mass spectrometry, it was evidenced [...] Read more.
Despite the long history of beech (Fagus sylvatica L.) red heartwood research, there has been no experimental proof on the structure of the chromophores yet. For the first time, using high-performance liquid chromatography/diode array detection/multistage electrospray ionization mass spectrometry, it was evidenced that red heartwood chromophores are water/methanol solvent extractable high molecular weight (400–2200 Da) compounds, which are polymerized, transformed, and oxidized products of (epi)catechin and taxifolin. Acid soluble non-extractable polyphenols (flavonoids, tannins) were not evidenced in the cell wall structure, while alkaline soluble compounds (ferulic acid, dehydrodiferulic acid, p-coumaric acid) have been identified for the first time from the sapwood/red heartwood boundary tissues: these supposedly play a role in the structural reinforcement of the cell wall structure and in the antioxidant protection and have a lesser role in color formation. Results on the structure of chromophores and on cell wall composition may enhance color homogenization technologies and contribute to a better utilization of red-heartwooded timber in the future. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

10 pages, 937 KB  
Article
Investigation of Ethanol and Isopropanol as Greener Alternatives to Acetonitrile in the RP-HPLC Purification of Histone Tail Peptides Bearing Acylation-Type Post-Translational Modifications
by Yordan Hayat and Zeynep Kanlidere
Separations 2025, 12(10), 275; https://doi.org/10.3390/separations12100275 - 9 Oct 2025
Viewed by 137
Abstract
Background: Histone post-translational modifications (PTMs) play a pivotal role in the regulation of chromatin structure and gene expression, making them key targets in structural and epigenetic research. Synthetic histone peptides bearing specific PTMs are essential tools for elucidating the molecular mechanisms of histone [...] Read more.
Background: Histone post-translational modifications (PTMs) play a pivotal role in the regulation of chromatin structure and gene expression, making them key targets in structural and epigenetic research. Synthetic histone peptides bearing specific PTMs are essential tools for elucidating the molecular mechanisms of histone function and protein–histone interactions. Methods: We synthesized histone H4 tail peptides containing site-specific lysine modifications using solid-phase peptide synthesis (SPPS). The correct synthesis of the peptides was confirmed by their molecular weights using a mass spectrometer. Results: An improved high-performance liquid chromatography (HPLC) method was developed to efficiently separate peptides with one modification difference. In alignment with green chemistry principles, we evaluated ethanol and isopropanol as an alternative organic solvent to acetonitrile in the mobile phase. The optimized HPLC method using acetonitrile enabled effective resolution of closely related peptide species, providing peptides suitable for downstream applications requiring high purities such as structural biology. Conclusions: This study presents a strategy for the purification of histone PTM peptides, emphasizing both analytical performance and sustainability. Further investigation must be undergone to develop high-precision purification using green chemicals. Full article
Show Figures

Graphical abstract

19 pages, 2107 KB  
Article
Genotypic Variation and Genetic Control of Phenolic Compounds and Antioxidant Activity in Shanlan Upland Rice Landrace
by Lin Zhang, Jing Yu, Bowen Deng, Yi Peng, Yafang Shao and Jinsong Bao
Int. J. Mol. Sci. 2025, 26(19), 9800; https://doi.org/10.3390/ijms26199800 - 8 Oct 2025
Viewed by 134
Abstract
Shanlan rice, a unique drought-resistant rice germplasm resource in Hainan Province, China, holds significant potential for rice genetic improvement and breeding innovation. However, its genetic diversity and significance in rice breeding remain inadequately explored. This study conducted a comprehensive analysis of phenolic acid [...] Read more.
Shanlan rice, a unique drought-resistant rice germplasm resource in Hainan Province, China, holds significant potential for rice genetic improvement and breeding innovation. However, its genetic diversity and significance in rice breeding remain inadequately explored. This study conducted a comprehensive analysis of phenolic acid profiles and antioxidant properties in the brown rice of 84 Shanlan rice accessions. It was revealed that colored Shanlan rice accessions exhibited significantly higher total phenolic content (249.00–2408.33 mg gallic acid equivalents per 100 g of rice flour (mg GAE/100 g)) and antioxidant capacity (DPPH: 680.39–809.63 micromoles of Trolox equivalent per 100 g (μmol TE/100 g); ABTS: 529.93–1917.77 μmol TE/100 g) compared to white-grained varieties. High-performance liquid chromatography (HPLC) analysis identified eight phenolic acids in the bound fractions, among which the sinapic acid (55.08 μg/g) and vanillic acid (11.72 μg/g) were predominant, accounting for over 60% of total bound phenolic acid content. A genome-wide association study (GWAS) identified 84 significant loci associated with these phenolic-related traits. A major quantitative trait locus (QTL) on chromosome 7 for free phenolic content, total phenolic content, flavonoids, and DPPH activity was co-located at the Rc gene locus, a key regulator of red pericarp pigmentation and proanthocyanidin biosynthesis. Haplotype analysis identified ten haplotypes in Rc, with the haplotype H002 showing the highest antioxidant capacity. Another QTL on chromosome 11 was associated with p-coumaric, vanillic, and sinapic acids, although no significant difference was observed in haplotype analysis. These results highlight Rc as a key genetic factor underlying antioxidant properties in rice, while other loci require further validation. This research provides a foundation for breeding health-benefit, drought-tolerant rice cultivars using Hainan’s unique germplasm. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
17 pages, 4770 KB  
Article
Salt Equilibria and Protein Glycation in Young Child Formula
by Wenfu Chen, Wenzhu Yin, Xiumei Tao, Dasong Liu, Thom Huppertz, Xiaoming Liu and Peng Zhou
Foods 2025, 14(19), 3445; https://doi.org/10.3390/foods14193445 - 8 Oct 2025
Viewed by 261
Abstract
Young child formula (YCF) products are important sources of nutrients for children 1–3 years of age. Salt equilibria and protein glycation are two of the crucial aspects affecting nutritional properties and digestive behaviors of YCF, but detailed insights into these two aspects of [...] Read more.
Young child formula (YCF) products are important sources of nutrients for children 1–3 years of age. Salt equilibria and protein glycation are two of the crucial aspects affecting nutritional properties and digestive behaviors of YCF, but detailed insights into these two aspects of YCF products remains limited. This study analyzed the distribution of salts and the level of protein glycation in 25 commercial YCF products from the retail market in China. The YCF products were reconstituted (12 g of powder per 100 g of water) and the distribution of calcium and phosphorus between the sedimentable (at 200× g), protein-associated and soluble (10 kDa-permeable) fractions were determined. Blocked lysine and 5-hydroxymethylfurfural were analyzed using reversed-phase high-performance liquid chromatography. Varying proportions of calcium (3.0–39.3%) and phosphorus (1.2–29.8%) were sedimentable for the products. Notable proportions of calcium (28.9–62.7%) and phosphorus (27.4–57.9%) were associated with the proteins. The remainder of the calcium (24.9–41.4%) and phosphorus (34.2–62.1%) were soluble. When expressing the protein-associated calcium as a function of casein, i.e., casein mineralization, large differences (~1.7 fold) were found among products. Variation in blocked lysine (7.4–19.2% of total lysine) and 5-hydroxymethylfurfural contents (3.0–7.0 mg/100 g protein) among products was also observed, suggesting notable differences in heat-load during processing. This study revealed notable variation in salt distribution and protein glycation among the YCF products. These findings underscore the critical need for manufacturers to optimize formulation and processing approaches, e.g., using milk with a low level of casein mineralization and using milk protein sources as concentrated liquid rather than powder to reduce protein glycation, to improve nutritional properties of the products. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

14 pages, 598 KB  
Article
Development and Validation of an HPLC-PDA Method for NMN Quantification in Commercial Pet Foods
by Yuxin Meng, Chujun Li, Tao Lan, Lihong Wang and Jingxuan Zhang
Appl. Sci. 2025, 15(19), 10797; https://doi.org/10.3390/app151910797 - 8 Oct 2025
Viewed by 198
Abstract
Given NMN’s (Nicotinamide mononucleotide, NMN) potential pet health benefits and wide use in pet foods, the lack of standardized detection methods hinders quality control. This study developed and validated a simple, rapid HPLC (High-Performance Liquid Chromatography, HPLC) method for NMN determination in pet [...] Read more.
Given NMN’s (Nicotinamide mononucleotide, NMN) potential pet health benefits and wide use in pet foods, the lack of standardized detection methods hinders quality control. This study developed and validated a simple, rapid HPLC (High-Performance Liquid Chromatography, HPLC) method for NMN determination in pet foods. The method showed good linearity (5–500 μg/mL), LOD (1.0 mg/kg), LOQ (2.0 mg/kg), precision, stability, reproducibility, and spiked recoveries (97.3–109%, RSD < 6.0%). And most tested commercial samples met the standards. This method is simple, efficient, and accurate, supporting pet food NMN detection, quality control, regulation, and pet health protection. Full article
(This article belongs to the Special Issue Animal Nutrition: Latest Advances and Prospects)
Show Figures

Figure 1

27 pages, 6239 KB  
Article
Pro-Angiogenic and Wound-Healing Potential of Bioactive Polysaccharides Extracted from Moroccan Algae Osmundea pinnatifida
by Zakaria Boujhoud, Malek Eleroui, Amal Feki, Hajer Ben Saad, Marwa Kraiem, Ibtissam Youlyouz Marfak, Sanah Essayagh, Said Hilali, Riadh Badraoui, Hatem Kallel, Jean Marc Pujo, Ibtissem Ben Amara and Abderraouf Hilali
Life 2025, 15(10), 1564; https://doi.org/10.3390/life15101564 - 7 Oct 2025
Viewed by 288
Abstract
Various therapeutic approaches have been explored to speed up wound healing, with angiogenesis being a crucial factor in this process and skin repair. This study shows that a polysaccharide extracted from the red alga Osmundea pinnatifida (PSOP) can promote angiogenesis and accelerate healing. [...] Read more.
Various therapeutic approaches have been explored to speed up wound healing, with angiogenesis being a crucial factor in this process and skin repair. This study shows that a polysaccharide extracted from the red alga Osmundea pinnatifida (PSOP) can promote angiogenesis and accelerate healing. The structural properties of PSOP were investigated using various techniques, including scanning electron microscopy, X-ray diffraction, Fourier–transform infrared spectroscopy, ultraviolet–-visible spectroscopy, and high-performance liquid chromatography coupled with a refractive index detector. Additionally, the in vitro antioxidant activity of PSOP was evaluated using the reducing power assay, total antioxidant capacity measurement, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging tests. The PSOP extract exhibited significant pro-angiogenic effects in the avian chorioallantoic membrane model. Furthermore, the efficacy of PSOP-based hydrogels for wound healing was assessed in vivo using an excision wound model in Wistar rats. The results indicated accelerated wound healing, increased collagen deposition, and enhanced tissue regeneration. Computational studies suggest that the observed wound healing and pro-angiogenic effects may be attributed to the affinity of the PSOP units for cyclooxygenase-2 and vascular endothelial growth factor. These findings support the potential use of PSOP as a bioactive agent in wound care. Full article
Show Figures

Figure 1

15 pages, 3066 KB  
Article
Optimal Extraction of Antioxidants, Flavonoids, and Phenolic Acids from the Leaves of Apocynum venetum L. by Response Surface Methodology with Integrated Chemical Profiles and Bioactivity Evaluation
by Rulan Qin, Jinhang Song, Qiang Wang, Yingli Guan and Chongning Lv
Molecules 2025, 30(19), 4006; https://doi.org/10.3390/molecules30194006 - 7 Oct 2025
Viewed by 247
Abstract
The leaves of Apocynum venetum L. (A. venetum L.) are a functional food that plays an important role in antioxidation due to its high content of flavonoids and phenolic acids. Therefore, the extraction process of leaves of A. venetum L. is closely [...] Read more.
The leaves of Apocynum venetum L. (A. venetum L.) are a functional food that plays an important role in antioxidation due to its high content of flavonoids and phenolic acids. Therefore, the extraction process of leaves of A. venetum L. is closely related to their activity. In this study, ultra-high-performance liquid chromatography (UHPLC) coupled with diode array detector (DAD), electrospray ionization (ESI), and quadrupole time-of-flight mass spectrometry (QTOF/MS) techniques has been established for qualitative and quantitative analysis of three phenolic acids and six flavonoids in the leaves of A. venetum L. Ultrasonic-assisted extraction conditions for the maximum recovery of phenolic and flavonoid compounds with a high antioxidation effect were optimized by response surface methodology (RSM). The optimum extraction conditions were as follows: ethanol concentration 64%, extraction time 20 min, and liquid-to-solid ratio 16:1 mL/g. The yields of three phenolic acids and six flavonoids under the optimal process were found to be 8.932 ± 0.091 and 20.530 ± 0.198 mg/g, respectively, which matched with those predicted (8.751 and 20.411 mg/g) within a 95% confidence level. Antioxidant activities based on ABTS and DPPH assays showed that the optimal extracts had strong activities compared with those of conventional reflux extraction methods. Moreover, the contribution of total and individual phenolic acids and flavonoids to antioxidant activity was also estimated by Pearson correlation analysis. Full article
Show Figures

Figure 1

12 pages, 806 KB  
Article
Stability Studies of Clonazepam 2.5 mg/mL Oral Solution and 1 mg/mL Parenteral Solution in Pre-Filled Polypropylene Syringes
by Juan Carlos Ruiz Ramirez, Icram Talsi Hamdani, Laura Bermúdez Gazquez, Alice Charlotte Viney and José M. Alonso Herreros
Pharmaceutics 2025, 17(10), 1302; https://doi.org/10.3390/pharmaceutics17101302 - 7 Oct 2025
Viewed by 167
Abstract
Background: Clonazepam is a benzodiazepine drug indicated in all clinical forms of epileptic seizures, various forms of myoclonic seizures, myoclonus and other abnormal movements. At present, it is classified as a hazardous drug requiring special precautions for personnel at reproductive risk, according to [...] Read more.
Background: Clonazepam is a benzodiazepine drug indicated in all clinical forms of epileptic seizures, various forms of myoclonic seizures, myoclonus and other abnormal movements. At present, it is classified as a hazardous drug requiring special precautions for personnel at reproductive risk, according to a technical document produced by the Spanish National Institute for Safety and Health at Work (INSST), in collaboration with the Spanish Society of Hospital Pharmacy (SEFH). The commercial solutions of clonazepam, for oral and parenteral administration, are supplied by laboratories in glass containers. Repacking in pre-filled polypropylene (PP) syringes, made in the pharmacy service, and in aseptic conditions, may facilitate its administration and reduce the risks to the health or safety of nursing personnel. Nevertheless, there is a lack of stability studies of clonazepam in pre-filled PP syringes. Objectives: To evaluate the physicochemical stability of commercial clonazepam 2.5 mg/mL oral solution and 1 mg/mL parenteral solution repackaged in pre-filled PP syringes under various storage conditions. Methods: A rapid, linear, precise and sensitive high-performance liquid chromatography (HPLC) method for chemical stability studies of Clonazepam 1 mg/mL (parenteral use) and 2.5 mg/mL (oral use) in solution was implemented after repackaging in pre-filled PP syringes. The studies were conducted by measuring concentrations of oral and parenteral clonazepam in pre-filled syringes, at various time points, over 30 days in several different storage conditions: oral clonazepam protected from light in refrigerator and at controlled room temperature exposed to ambient light; parenteral clonazepam protected from light in a refrigerator and at controlled room temperature protected or unprotected from light. Visual aspects and pH change as well as crystal formation were checked to determine physical stability. Results: The degradation of the active ingredient in all groups was less than 10% after 30 days. No evidence of crystal formation, pH and visual aspect changes were observed. Conclusions: Clonazepam 1 mg/mL parenteral solution and 2.5 mg/mL oral solution in pre-filled PP syringes are stable for up to 30 days in the tested conditions. The centralized repackaging of clonazepam in pre-filled PP syringes, connected to a closed safety system, in the pharmacy service, reduces drug manipulation by nursing staff decreasing the risk of occupational exposure. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
17 pages, 1178 KB  
Article
A Machine-Learning-Based Prediction Model for Total Glycoalkaloid Accumulation in Yukon Gold Potatoes
by Saipriya Ramalingam, Diksha Singla, Mainak Pal Chowdhury, Michele Konschuh and Chandra Bhan Singh
Foods 2025, 14(19), 3431; https://doi.org/10.3390/foods14193431 - 7 Oct 2025
Viewed by 265
Abstract
Potatoes are the most extensively cultivated vegetable crop in Canada and rank as the fifth largest primary agricultural commodity. Given their diverse end uses and significant market value, particularly in processed forms, ensuring consistent quality from harvest to consumption is of critical importance. [...] Read more.
Potatoes are the most extensively cultivated vegetable crop in Canada and rank as the fifth largest primary agricultural commodity. Given their diverse end uses and significant market value, particularly in processed forms, ensuring consistent quality from harvest to consumption is of critical importance. Total glycoalkaloids (TGA) are nitrogen-containing secondary metabolites that are known to accumulate in the tuber as an effect of greening in-field or elsewhere in the supply chain. In this study, 210 Yukon Gold (YG) potatoes were exposed to a constant light source to green over a period of 14 days and sampled in 7-day intervals. The samples were scanned using a short-wave infrared (SWIR) hyperspectral imaging camera in the 900–2500 nm wavelength range. Once individually scanned, pixel-wise spectral data was extracted and averaged for each tuber and matched with its respective ground truth TGA values which were obtained using a High-Performance Liquid Chromatography (HPLC) system. Prediction models using the partial least squares regression technique were developed from the extracted hyperspectral data and reference TGA values. Wavelength selection techniques such as competitive adaptive re-weighted sampling (CARS) and backward elimination (BE) were deployed to reduce the number of contributing wavelengths for practical applications. The best model resulted in a correlation coefficient of cross-validation (R2cv) of 0.72 with a root mean square error of cross-validation (RMSEcv) of 51.50 ppm. Full article
Show Figures

Figure 1

Back to TopTop