Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,697)

Search Parameters:
Keywords = high image quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1396 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 (registering DOI) - 1 Aug 2025
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
22 pages, 24173 KiB  
Article
ScaleViM-PDD: Multi-Scale EfficientViM with Physical Decoupling and Dual-Domain Fusion for Remote Sensing Image Dehazing
by Hao Zhou, Yalun Wang, Wanting Peng, Xin Guan and Tao Tao
Remote Sens. 2025, 17(15), 2664; https://doi.org/10.3390/rs17152664 (registering DOI) - 1 Aug 2025
Abstract
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm [...] Read more.
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm for vision tasks, showing great promise due to their computational efficiency and robust capacity to model global dependencies. However, most existing learning-based dehazing methods lack physical interpretability, leading to weak generalization. Furthermore, they typically rely on spatial features while neglecting crucial frequency domain information, resulting in incomplete feature representation. To address these challenges, we propose ScaleViM-PDD, a novel network that enhances an SSM backbone with two key innovations: a Multi-scale EfficientViM with Physical Decoupling (ScaleViM-P) module and a Dual-Domain Fusion (DD Fusion) module. The ScaleViM-P module synergistically integrates a Physical Decoupling block within a Multi-scale EfficientViM architecture. This design enables the network to mitigate haze interference in a physically grounded manner at each representational scale while simultaneously capturing global contextual information to adaptively handle complex haze distributions. To further address detail loss, the DD Fusion module replaces conventional skip connections by incorporating a novel Frequency Domain Module (FDM) alongside channel and position attention. This allows for a more effective fusion of spatial and frequency features, significantly improving the recovery of fine-grained details, including color and texture information. Extensive experiments on nine publicly available remote sensing datasets demonstrate that ScaleViM-PDD consistently surpasses state-of-the-art baselines in both qualitative and quantitative evaluations, highlighting its strong generalization ability. Full article
Show Figures

Figure 1

24 pages, 23817 KiB  
Article
Dual-Path Adversarial Denoising Network Based on UNet
by Jinchi Yu, Yu Zhou, Mingchen Sun and Dadong Wang
Sensors 2025, 25(15), 4751; https://doi.org/10.3390/s25154751 (registering DOI) - 1 Aug 2025
Abstract
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a [...] Read more.
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a novel three-module architecture for image denoising, comprising a generator, a dual-path-UNet-based denoiser, and a discriminator. The generator creates synthetic noise patterns to augment training data, while the dual-path-UNet denoiser uses multiple receptive field modules to preserve fine details and dense feature fusion to maintain global structural integrity. The discriminator provides adversarial feedback to enhance denoising performance. This dual-path adversarial training mechanism addresses the limitations of traditional methods by simultaneously capturing both local details and global structures. Experiments on the SIDD, DND, and PolyU datasets demonstrate superior performance. We compare our architecture with the latest state-of-the-art GAN variants through comprehensive qualitative and quantitative evaluations. These results confirm the effectiveness of noise removal with minimal loss of critical image details. The proposed architecture enhances image denoising capabilities in complex noise scenarios, providing a robust solution for applications that require high image fidelity. By enhancing adaptability to various types of noise while maintaining structural integrity, this method provides a versatile tool for image processing tasks that require preserving detail. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 21956 KiB  
Article
Evaluating Image Quality Metrics as Loss Functions for Image Dehazing
by Rareș Dobre-Baron, Adrian Savu-Jivanov and Cosmin Ancuți
Sensors 2025, 25(15), 4755; https://doi.org/10.3390/s25154755 (registering DOI) - 1 Aug 2025
Abstract
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio [...] Read more.
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). However, disparities between rankings given by these metrics and those given by human evaluators have encouraged the development of improved image quality assessment (IQA) metrics that are a better fit for this purpose. These methods have been previously used solely for quality assessments and not as objectives in the training of neural networks for high-level vision tasks, despite the potential improvements that may come about by directly optimizing for desired metrics. This paper examines the adequacy of ten recent IQA metrics, compared with standard loss functions, within two trained dehazing neural networks, with observed broad improvement in their performance. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
24 pages, 5578 KiB  
Article
Adaptive Covariance Matrix for UAV-Based Visual–Inertial Navigation Systems Using Gaussian Formulas
by Yangzi Cong, Wenbin Su, Nan Jiang, Wenpeng Zong, Long Li, Yan Xu, Tianhe Xu and Paipai Wu
Sensors 2025, 25(15), 4745; https://doi.org/10.3390/s25154745 (registering DOI) - 1 Aug 2025
Abstract
In a variety of UAV applications, visual–inertial navigation systems (VINSs) play a crucial role in providing accurate positioning and navigation solutions. However, traditional VINS struggle to adapt flexibly to varying environmental conditions due to fixed covariance matrix settings. This limitation becomes especially acute [...] Read more.
In a variety of UAV applications, visual–inertial navigation systems (VINSs) play a crucial role in providing accurate positioning and navigation solutions. However, traditional VINS struggle to adapt flexibly to varying environmental conditions due to fixed covariance matrix settings. This limitation becomes especially acute during high-speed drone operations, where motion blur and fluctuating image clarity can significantly compromise navigation accuracy and system robustness. To address these issues, we propose an innovative adaptive covariance matrix estimation method for UAV-based VINS using Gaussian formulas. Our approach enhances the accuracy and robustness of the navigation system by dynamically adjusting the covariance matrix according to the quality of the images. Leveraging the advanced Laplacian operator, detailed assessments of image blur are performed, thereby achieving precise perception of image quality. Based on these assessments, a novel mechanism is introduced for dynamically adjusting the visual covariance matrix using a Gaussian model according to the clarity of images in the current environment. Extensive simulation experiments across the EuRoC and TUM VI datasets, as well as the field tests, have validated our method, demonstrating significant improvements in navigation accuracy of drones in scenarios with motion blur. Our algorithm has shown significantly higher accuracy compared to the famous VINS-Mono framework, outperforming it by 18.18% on average, as well as the optimization rate of RMS, which reaches 65.66% for the F1 dataset and 41.74% for F2 in the field tests outdoors. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

24 pages, 3553 KiB  
Article
A Hybrid Artificial Intelligence Framework for Melanoma Diagnosis Using Histopathological Images
by Alberto Nogales, María C. Garrido, Alfredo Guitian, Jose-Luis Rodriguez-Peralto, Carlos Prados Villanueva, Delia Díaz-Prieto and Álvaro J. García-Tejedor
Technologies 2025, 13(8), 330; https://doi.org/10.3390/technologies13080330 (registering DOI) - 1 Aug 2025
Abstract
Cancer remains one of the most significant global health challenges due to its high mortality rates and the limited understanding of its progression. Early diagnosis is critical to improving patient outcomes, especially in skin cancer, where timely detection can significantly enhance recovery rates. [...] Read more.
Cancer remains one of the most significant global health challenges due to its high mortality rates and the limited understanding of its progression. Early diagnosis is critical to improving patient outcomes, especially in skin cancer, where timely detection can significantly enhance recovery rates. Histopathological analysis is a widely used diagnostic method, but it is a time-consuming process that heavily depends on the expertise of highly trained specialists. Recent advances in Artificial Intelligence have shown promising results in image classification, highlighting its potential as a supportive tool for medical diagnosis. In this study, we explore the application of hybrid Artificial Intelligence models for melanoma diagnosis using histopathological images. The dataset used consisted of 506 histopathological images, from which 313 curated images were selected after quality control and preprocessing. We propose a two-step framework that employs an Autoencoder for dimensionality reduction and feature extraction of the images, followed by a classification algorithm to distinguish between melanoma and nevus, trained on the extracted feature vectors from the bottleneck of the Autoencoder. We evaluated Support Vector Machines, Random Forest, Multilayer Perceptron, and K-Nearest Neighbours as classifiers. Among these, the combinations of Autoencoder with K-Nearest Neighbours achieved the best performance and inference time, reaching an average accuracy of approximately 97.95% on the test set and requiring 3.44 min per diagnosis. The baseline comparison results were consistent, demonstrating strong generalisation and outperforming the other models by 2 to 13 percentage points. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Medical Image Analysis)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

22 pages, 10557 KiB  
Article
The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection
by Dong Dai, Zhenyu Wang, Hao Huang, Xu Mao, Yehong Liu, Hao Li and Du Chen
Agriculture 2025, 15(15), 1649; https://doi.org/10.3390/agriculture15151649 - 31 Jul 2025
Abstract
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization [...] Read more.
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization method for addressing such a challenge. Both static and scanning experiments were performed on a developed mobile and non-destructive microwave detection system to quantify the MC of wheat and then locate abnormal moisture regions. For quantifying the wheat’s MC, a dual-parameter wheat MC prediction model with the random forest (RF) algorithm was constructed, achieving a high accuracy (R2 = 0.9846, MSE = 0.2768, MAE = 0.3986). MC scanning experiments were conducted by synchronized moving waveguides; the maximum absolute error of MC prediction was 0.565%, with a maximum relative error of 3.166%. Furthermore, both one- and two-dimensional localizing methods were proposed for localizing abnormal moisture regions. The one-dimensional method evaluated two approaches—attenuation value and absolute attenuation gradient—using computer simulation technology (CST) modeling and scanning experiments. The experimental results confirmed the superior performance of the absolute gradient method, with a center detection error of less than 12 mm in the anomalous wheat moisture region and a minimum width detection error of 1.4 mm. The study performed two-dimensional antenna scanning and effectively imaged the high-MC regions using phase delay analysis. The imaging results coincide with the actual locations of moisture anomaly regions. This study demonstrated a promising solution for accurately localizing the wheat’s abnormal/high-moisture regions with the use of an emerging microwave transmission method. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

12 pages, 3315 KiB  
Article
NeRF-RE: An Improved Neural Radiance Field Model Based on Object Removal and Efficient Reconstruction
by Ziyang Li, Yongjian Huai, Qingkuo Meng and Shiquan Dong
Information 2025, 16(8), 654; https://doi.org/10.3390/info16080654 (registering DOI) - 31 Jul 2025
Abstract
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study [...] Read more.
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study introduces a 3D scene reconstruction and rendering strategy based on implicit neural representation through the efficient and removable neural radiation fields model (NeRF-RE). Leveraging neural radiance fields (NeRF), the model incorporates a multi-resolution hash grid and proposal network to improve training efficiency and modeling accuracy, while integrating a segment-anything model to safeguard public privacy. Take the crabapple tree, extensively utilized in urban garden design across temperate regions of the Northern Hemisphere. A dataset comprising 660 images of crabapple trees exhibiting three distinct geometric forms is collected to assess the NeRF-RE model’s performance. The results demonstrated that the ‘harvest gold’ crabapple scene had the highest reconstruction accuracy, with PSNR, LPIPS and SSIM of 24.80 dB, 0.34 and 0.74, respectively. Compared to the Mip-NeRF 360 model, the NeRF-RE model not only showed an up to 21-fold increase in training efficiency for three types of crabapple trees, but also exhibited a less pronounced impact of dataset size on reconstruction accuracy. This study reconstructs real scenes with high fidelity using virtual reality technology. It not only facilitates people’s personal enjoyment of the beauty of natural gardens at home, but also makes certain contributions to the publicity and promotion of urban landscapes. Full article
(This article belongs to the Special Issue Extended Reality and Its Applications)
Show Figures

Figure 1

25 pages, 21958 KiB  
Article
ESL-YOLO: Edge-Aware Side-Scan Sonar Object Detection with Adaptive Quality Assessment
by Zhanshuo Zhang, Changgeng Shuai, Chengren Yuan, Buyun Li, Jianguo Ma and Xiaodong Shang
J. Mar. Sci. Eng. 2025, 13(8), 1477; https://doi.org/10.3390/jmse13081477 - 31 Jul 2025
Abstract
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge [...] Read more.
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge Fusion Module (EFM) is designed, which integrates the Sobel operator into depthwise separable convolution. Through a dual-branch structure, it realizes effective fusion of edge features and spatial features, significantly enhancing the ability to recognize targets with blurred boundaries. Secondly, a Self-Calibrated Dual Attention (SCDA) Module is constructed. By means of feature cross-calibration and multi-scale channel attention fusion mechanisms, it achieves adaptive fusion of shallow details and deep-rooted semantic content, improving the detection accuracy for small-sized targets and targets with elaborate shapes. Finally, a Location Quality Estimator (LQE) is introduced, which quantifies localization quality using the statistical characteristics of bounding box distribution, effectively reducing false detections and missed detections. Experiments on the SIMD dataset show that the mAP@0.5 of ESL-YOLO reaches 84.65%. The precision and recall rate reach 87.67% and 75.63%, respectively. Generalization experiments on additional sonar datasets further validate the effectiveness of the proposed method across different data distributions and target types, providing an effective technical solution for side-scan sonar image target detection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 22884 KiB  
Data Descriptor
An Open-Source Clinical Case Dataset for Medical Image Classification and Multimodal AI Applications
by Mauro Nievas Offidani, Facundo Roffet, María Carolina González Galtier, Miguel Massiris and Claudio Delrieux
Data 2025, 10(8), 123; https://doi.org/10.3390/data10080123 - 31 Jul 2025
Abstract
High-quality, openly accessible clinical datasets remain a significant bottleneck in advancing both research and clinical applications within medical artificial intelligence. Case reports, often rich in multimodal clinical data, represent an underutilized resource for developing medical AI applications. We present an enhanced version of [...] Read more.
High-quality, openly accessible clinical datasets remain a significant bottleneck in advancing both research and clinical applications within medical artificial intelligence. Case reports, often rich in multimodal clinical data, represent an underutilized resource for developing medical AI applications. We present an enhanced version of MultiCaRe, a dataset derived from open-access case reports on PubMed Central. This new version addresses the limitations identified in the previous release and incorporates newly added clinical cases and images (totaling 93,816 and 130,791, respectively), along with a refined hierarchical taxonomy featuring over 140 categories. Image labels have been meticulously curated using a combination of manual and machine learning-based label generation and validation, ensuring a higher quality for image classification tasks and the fine-tuning of multimodal models. To facilitate its use, we also provide a Python package for dataset manipulation, pretrained models for medical image classification, and two dedicated websites. The updated MultiCaRe dataset expands the resources available for multimodal AI research in medicine. Its scale, quality, and accessibility make it a valuable tool for developing medical AI systems, as well as for educational purposes in clinical and computational fields. Full article
Show Figures

Figure 1

33 pages, 14330 KiB  
Article
Noisy Ultrasound Kidney Image Classifications Using Deep Learning Ensembles and Grad-CAM Analysis
by Walid Obaid, Abir Hussain, Tamer Rabie and Wathiq Mansoor
AI 2025, 6(8), 172; https://doi.org/10.3390/ai6080172 - 31 Jul 2025
Abstract
Objectives: This study introduces an automated classification system for noisy kidney ultrasound images using an ensemble of deep neural networks (DNNs) with transfer learning. Methods: The method was tested using a dataset with two categories: normal kidney images and kidney images with stones. [...] Read more.
Objectives: This study introduces an automated classification system for noisy kidney ultrasound images using an ensemble of deep neural networks (DNNs) with transfer learning. Methods: The method was tested using a dataset with two categories: normal kidney images and kidney images with stones. The dataset contains 1821 normal kidney images and 2592 kidney images with stones. Noisy images involve various types of noises, including salt and pepper noise, speckle noise, Poisson noise, and Gaussian noise. The ensemble-based method is benchmarked with state-of-the-art techniques and evaluated on ultrasound images with varying quality and noise levels. Results: Our proposed method demonstrated a maximum classification accuracy of 99.43% on high-quality images (the original dataset images) and 99.21% on the dataset images with added noise. Conclusions: The experimental results confirm that the ensemble of DNNs accurately classifies most images, achieving a high classification performance compared to conventional and individual DNN-based methods. Additionally, our method outperforms the highest-achieving method by more than 1% in accuracy. Furthermore, our analysis using Gradient-weighted Class Activation Mapping indicated that our proposed deep learning model is capable of prediction using clinically relevant features. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Figure 1

20 pages, 2854 KiB  
Article
Trait-Based Modeling of Surface Cooling Dynamics in Olive Fruit Using Thermal Imaging and Mixed-Effects Analysis
by Eddy Plasquy, José M. Garcia, Maria C. Florido and Anneleen Verhasselt
Agriculture 2025, 15(15), 1647; https://doi.org/10.3390/agriculture15151647 - 30 Jul 2025
Abstract
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled [...] Read more.
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled cooling conditions. Surface temperature was recorded using infrared thermal imaging, and morphological and compositional traits were quantified. Temperature decay was modeled using Newton’s Law of Cooling, extended with a quadratic time term to capture nonlinear trajse thectories. A linear mixed-effects model was fitted to log-transformed, normalized temperature data, incorporating trait-by-time interactions and hierarchical random effects. The results confirmed that fruit weight, specific surface area (SSA), and specific heat capacity (SHC) are key drivers of cooling rate variability, consistent with theoretical expectations, but quantified here using a trait-based statistical model applied to olive fruit. The quadratic model consistently outperformed standard exponential models, revealing dynamic effects of traits on temperature decline. Residual variation at the group level pointed to additional unmeasured structural influences. This study demonstrates that olive fruit cooling behavior can be effectively predicted using interpretable, trait-dependent models. The findings offer a quantitative basis for optimizing postharvest cooling protocols and are particularly relevant for maintaining quality under high-temperature harvest conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

14 pages, 871 KiB  
Article
Evaluation of Deviations Produced by Soft Tissue Fitting in Virtually Planned Orthognathic Surgery
by Álvaro Pérez-Sala, Pablo Montes Fernández-Micheltorena, Miriam Bobadilla, Ricardo Fernández-Valadés Gámez, Javier Martínez Goñi, Ángela Villanueva, Iñigo Calvo Archanco, José Luis Del Castillo Pardo de Vera, José Luis Cebrián Carretero, Carlos Navarro Cuéllar, Ignacio Navarro Cuellar, Gema Arenas, Ana López López, Ignacio M. Larrayoz and Rafael Peláez
Appl. Sci. 2025, 15(15), 8478; https://doi.org/10.3390/app15158478 (registering DOI) - 30 Jul 2025
Abstract
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital [...] Read more.
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital assessment using computer-aided design (CAD) and computer-aided manufacturing (CAM) tools enhances surgical predictability. However, limitations in soft tissue simulation often require surgeon input to optimize aesthetic results and minimize surgical impact. This study aimed to evaluate the accuracy of virtual surgery planning (VSP) by analyzing the relationship between planning deviations and surgical satisfaction. A single-center, retrospective study was conducted on 16 patients who underwent OS at San Pedro University Hospital of La Rioja. VSP was based on CT scans using Dolphin Imaging software (v12.0, Patterson Dental, St. Paul, MN, USA) and surgeries were guided by VSP-designed occlusal splints. Outcomes were assessed using the Orthognathic Quality of Life (OQOL) questionnaire and deviations were measured through pre- and postoperative imaging. The results showed high satisfaction scores and good overall outcomes, despite moderate deviations from the virtual plan in many cases, particularly among Class II patients. A total of 63% of patients required VSP modifications due to poor soft tissue fitting, with 72% of these being Class II DFDs. Most deviations involved less maxillary advancement than planned, while maintaining optimal occlusion. This suggests that VSP may overestimate advancement needs, especially in Class II cases. No significant differences in satisfaction were observed between patients with low (<2 mm) and high (>2 mm) deviations. These findings support the use of VSP as a valuable planning tool for OS. However, surgeon experience remains essential, especially in managing soft tissue behavior. Improvements in soft tissue prediction are needed to enhance accuracy, particularly for Class II DFDs. Full article
(This article belongs to the Special Issue Intelligent Medicine and Health Care, 2nd Edition)
Show Figures

Figure 1

29 pages, 3731 KiB  
Article
An Automated Method for Identifying Voids and Severe Loosening in GPR Images
by Ze Chai, Zicheng Wang, Zeshan Xu, Ziyu Feng and Yafeng Zhao
J. Imaging 2025, 11(8), 255; https://doi.org/10.3390/jimaging11080255 - 30 Jul 2025
Abstract
This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity [...] Read more.
This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity of internal waveforms, a set of discriminative features is constructed. Based on these features, we develop the FKS-GPR dataset, a high-quality, manually annotated GPR dataset collected from real road environments, covering diverse and complex background conditions. Compared to datasets based on simulations, FKS-GPR offers higher practical relevance. An improved ACF-YOLO network is then designed for automatic detection, and the experimental results show that the proposed method achieves superior accuracy and robustness, validating its effectiveness and engineering applicability. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

Back to TopTop