Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,653)

Search Parameters:
Keywords = high antioxidant diet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2316 KiB  
Article
Effect of Callistemon citrinus Phytosomes on Oxidative Stress in the Brains of Rats Fed a High-Fat–Fructose Diet
by Oliver Rafid Magaña-Rodríguez, Luis Gerardo Ortega-Pérez, Aram Josué García-Calderón, Luis Alberto Ayala-Ruiz, Jonathan Saúl Piñón-Simental, Asdrubal Aguilera-Méndez, Daniel Godínez-Hernández and Patricia Rios-Chavez
Biomolecules 2025, 15(8), 1129; https://doi.org/10.3390/biom15081129 - 5 Aug 2025
Viewed by 22
Abstract
Callistemon citrinus has shown antioxidant and anti-inflammatory properties in certain tissues. However, its impact on the brain remains unproven. This study investigates the effect of C. citrinus extract and phytosomes on the oxidative status of the brains of rats fed a high-fat–fructose diet [...] Read more.
Callistemon citrinus has shown antioxidant and anti-inflammatory properties in certain tissues. However, its impact on the brain remains unproven. This study investigates the effect of C. citrinus extract and phytosomes on the oxidative status of the brains of rats fed a high-fat–fructose diet (HFD). Fifty-four male Wistar rats were randomly divided into nine groups (n = 6). Groups 1, 2, and 3 received a standard chow diet; Group 2 also received the vehicle, and Group 3 was supplemented with C. citrinus extract (200 mg/kg). Groups 4, 5, 6, 7, 8, and 9 received a high-fat diet (HFD). Additionally, groups 5, 6, 7, 8, and 9 were supplemented with orlistat at 5 mg/kg, C. citrinus extract at 200 mg/kg, and phytosomes loaded with C. citrinus at doses of 50, 100, and 200 mg/kg, respectively. Administration was oral for 16 weeks. Antioxidant enzymes, biomarkers of oxidative stress, and fatty acid content in the brain were determined. A parallel artificial membrane permeability assay (PAMPA) was employed to identify compounds that can cross the intestinal and blood–brain barriers. The HFD group (group 4) increased body weight and adipose tissue, unlike the other groups. The brain fatty acid profile showed slight variations in all of the groups. On the other hand, group 4 showed a decrease in the activities of antioxidant enzymes SOD, CAT, and PON. It reduced GSH level, while increasing GPx activity as well as MDA, 4-HNE, and AOPP levels. C. citrinus extract and phytosomes restore the antioxidant enzyme activities and mitigate oxidative stress in the brain. C. citrinus modulates oxidative stress in brain tissue through 1.8-cineole and α-terpineol, which possess antioxidant and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Natural Bioactives as Leading Molecules for Drug Development)
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Viewed by 298
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 184
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

30 pages, 4423 KiB  
Review
Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
by Gbolahan Alagbe, Klara Urbanova and Olajumoke Alagbe
Processes 2025, 13(8), 2444; https://doi.org/10.3390/pr13082444 - 1 Aug 2025
Viewed by 362
Abstract
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and [...] Read more.
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and kola nuts. It emphasizes the fatty acid profiles, noting that palmitic acid (C16:0) is the predominant saturated fatty acid, while oleic acid (C18:1) and linoleic acid (C18:2) are the most abundant monounsaturated and polyunsaturated fatty acids, respectively. The review also details various analytical techniques employed for extracting and characterizing bioactive compounds, which are crucial for assessing nut quality and health benefits. Methods such as Soxhlet extraction, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), gas chromatography (GC-FID and GC-MS), and high-performance liquid chromatography (HPLC) are highlighted. Furthermore, it discusses scientific evidence linking nut consumption to antioxidant and anti-inflammatory properties, improved cardiovascular health, and a reduced risk of type 2 diabetes, establishing nuts as important components in a healthy diet. This review underscores the role of nuts as functional foods and calls for standardized methodologies in future lipidomic and volatilomic studies. Full article
Show Figures

Figure 1

20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 - 31 Jul 2025
Viewed by 292
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Graphical abstract

24 pages, 7353 KiB  
Article
Characterization and Application of Synergistically Degraded Chitosan in Aquafeeds to Promote Immunity, Antioxidative Status, and Disease Resistance in Nile Tilapia (Oreochromis niloticus)
by Thitirat Rattanawongwiboon, Natthapong Paankhao, Wararut Buncharoen, Nantipa Pansawat, Benchawan Kumwan, Pakapon Meachasompop, Phunsin Kantha, Tanavan Pansiri, Theeranan Tangthong, Sakchai Laksee, Suwinai Paankhao, Kittipong Promsee, Mongkhon Jaroenkittaweewong, Pattra Lertsarawut, Prapansak Srisapoome, Kasinee Hemvichian and Anurak Uchuwittayakul
Polymers 2025, 17(15), 2101; https://doi.org/10.3390/polym17152101 - 31 Jul 2025
Viewed by 373
Abstract
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/ [...] Read more.
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/v) H2O2, yielding low-viscosity, colloidally stable nanoparticles with Mw ranging from 10 to 13 kDa. Five diets were formulated: a control, NCS at 0.50%, and RCS at 0.025%, 0.050%, and 0.075%. No adverse effects on growth were observed, confirming safety. Immune gene expression (e.g., ifng1, nfκb, tnf), antioxidant markers (e.g., reduced MDA, increased GSH and GR), and nonspecific humoral responses (lysozyme, IgM, and bactericidal activity) were significantly enhanced in the NCS-0.50, RCS-0.050, and RCS-0.075 groups. Notably, these benefits were achieved with RCS at 10-fold lower concentrations than NCS. Following challenge with Edwardsiella tarda, fish fed RCS-0.050 and RCS-0.075 diets exhibited the highest survival rates and relative percent survival, highlighting robust activation of innate and adaptive immunity alongside redox defense. These results support the use of low-Mw RCS as a biologically potent, cost-effective alternative to traditional high-Mw chitosan in functional aquafeeds. RCS-0.050 and RCS-0.075 show strong potential as immunonutritional agents to enhance fish health and disease resistance in aquaculture. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

17 pages, 1908 KiB  
Article
BDE-47 Disrupts Gut Microbiota and Exacerbates Prediabetic Conditions in Mice: Therapeutic Potential of Grape Exosomes and Antioxidants
by Zaoling Liu, Fang Cao, Aerna Qiayimaerdan, Nilupaer Aisikaer, Zulipiya Zunong, Xiaodie Ma and Yale Yu
Toxics 2025, 13(8), 640; https://doi.org/10.3390/toxics13080640 - 29 Jul 2025
Viewed by 222
Abstract
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions [...] Read more.
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions in mitigating these effects. Objectives: To determine whether BDE-47 exposure induces diabetogenic dysbiosis in prediabetic mice and to assess whether dietary interventions, such as grape exosomes and an antioxidant cocktail, can restore a healthy microbiota composition and mitigate diabetes risk. Methods: In this study, a prediabetic mouse model was established in 54 male SPF-grade C57BL/6J mice through a combination of high-sugar and high-fat diet feeding with streptozotocin injection. Oral glucose tolerance tests (OGTT) were conducted on day 7 and day 21 post-modeling to assess the establishment of the model. The criteria for successful model induction were defined as fasting blood glucose levels below 7.8 mmol/L and 2 h postprandial glucose levels between 7.8 and 11.1 mmol/L. Following confirmation of model success, a 3 × 3 factorial design was applied to allocate the experimental animals into groups based on two independent factors: BDE-47 exposure and exosome intervention. The BDE-47 exposure factor consisted of three dose levels—none, high-dose, and medium-dose—while the exosome intervention factor included three modalities—none, Antioxidant Nutrients Intervention, and Grape Exosomes Intervention. Fresh fecal samples were collected from mice two days prior to sacrifice. Cecal contents and segments of the small intestine were collected and transferred into 1.5 mL cryotubes. All sequences were clustered into operational taxonomic units (OTUs) based on defined similarity thresholds. To compare means across multiple groups, a two-way analysis of variance (ANOVA) was employed. The significance level was predefined at α = 0.05, and p-values < 0.05 were considered statistically significant. Bar charts and line graphs were generated using GraphPad Prism version 9.0 software, while statistical analyses were performed using SPSS version 20.0 software. Results: The results of 16S rDNA sequencing analysis of the microbiome showed that there was no difference in the α diversity of the intestinal microbiota in each group of mice (p > 0.05), but there was a difference in the Beta diversity (p < 0.05). At the gate level, the abundances of Proteobacteria, Campylobacterota, Desulfobacterota, and Fusobacteriota in the medium-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Patellar bacteria was lower than that of the model control group (p < 0.05). The abundances of Proteobacteria and Campylobacterota in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Planctomycetota and Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Campylobacterota in the grape exosome group was higher than that of the model control group (p < 0.05). The abundance of Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Firmicutes and Fusobacteriota in the antioxidant nutrient group was higher than that of the model control group (p < 0.05). However, the abundance of Verrucomicrobiota and Patescibacteria was lower than that of the model control group (p < 0.05). At the genus level, the abundances of Bacteroides and unclassified Lachnospiraceae in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Lachnospiraceae NK4A136_group and Lactobacillus was lower than that of the model control group (p < 0.05). The abundance of Veillonella and Helicobacter in the medium-dose BDE-7 group was higher than that in the model control group (p < 0.05), while the abundance of Lactobacillus was lower (p < 0.05). The abundance of genera such as Lentilactobacillus and Faecalibacterium in the grape exosome group was higher than that in the model control group (p < 0.05). The abundance of Alloprevotella and Bacteroides was lower than that of the model control group (p < 0.05). In the antioxidant nutrient group, the abundance of Lachnospiraceae and Hydrogenophaga was higher than that in the model control group (p < 0.05). However, the abundance of Akkermansia and Coriobacteriaceae UCG-002 was significantly lower than that of the model control group (p < 0.05). Conclusions: BDE-47 induces diabetogenic dysbiosis in prediabetic mice, which is reversible by dietary interventions. These findings suggest that microbiota-targeted strategies may effectively mitigate the diabetes risk associated with environmental pollutant exposure. Future studies should further explore the mechanisms underlying these microbiota changes and the long-term health benefits of such interventions. Full article
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
A Natural Polyphenol, Chlorogenic Acid, Attenuates Obesity-Related Metabolic Disorders in Male Rats via miR-146a-IRAK1-TRAF6 and NRF2-Mediated Antioxidant Pathways
by Rashid Fahed Alenezi, Adel Abdelkhalek, Gehad El-Sayed, Ioan Pet, Mirela Ahmadi, El Said El Sherbini, Daniela Pușcașiu and Ahmed Hamed Arisha
Biomolecules 2025, 15(8), 1086; https://doi.org/10.3390/biom15081086 - 27 Jul 2025
Viewed by 320
Abstract
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, [...] Read more.
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, administered at 10 mg and 100 mg/kg/day for the last 4 weeks of a 12-week HFD protocol. Both CGA doses reduced body weight gain, abdominal circumference, and visceral fat accumulation, with the higher dose showing greater efficacy. CGA improved metabolic parameters by lowering fasting glucose and insulin and enhancing lipid profiles. CGA suppressed orexigenic genes (Agrp, NPY) and upregulated anorexigenic genes (POMC, CARTPT), suggesting appetite regulation in the hypothalamus. In abdominal white adipose tissue (WAT), CGA boosted antioxidant defenses (SOD, CAT, GPx, HO-1), reduced lipid peroxidation (MDA), and suppressed pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-1β, while increasing the anti-inflammatory cytokine IL-10. CGA modulated inflammatory signaling via upregulation of miR-146a and inhibition of IRAK1, TRAF6, and NF-κB. It also reduced apoptosis by downregulating p53, Bax, and Caspase-3, and restoring Bcl-2. These findings demonstrate that short-term CGA administration effectively reverses multiple HFD-induced impairments, highlighting its potential as an effective therapeutic for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Activities of Phytochemicals)
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Tartary Buckwheat Flavonoids and 25-Hydroxyvitamin D3 Mitigate Fatty Liver Syndrome in Laying Hens: Association with Cecal Microbiota Remodeling and Lipid Metabolic Homeostasis
by Dongdong Li, Binlong Chen, Yi Zhang, Zengwen Huang, Zhiqiu Huang, Xi Chen, Caiyun Sun, Yunxia Qi, Yaodong Hu, Ting Chen and Silu Wang
Animals 2025, 15(15), 2210; https://doi.org/10.3390/ani15152210 - 27 Jul 2025
Viewed by 358
Abstract
The objective of this experiment was to investigate the effects of tartary buckwheat flavonoids (TBF) and 25-hydroxyvitamin D3 (25-OHD) on fatty liver syndrome (FLS) in laying hens. A total of 450 35-wk-old Lohmann laying hens were selected and randomly divided into five [...] Read more.
The objective of this experiment was to investigate the effects of tartary buckwheat flavonoids (TBF) and 25-hydroxyvitamin D3 (25-OHD) on fatty liver syndrome (FLS) in laying hens. A total of 450 35-wk-old Lohmann laying hens were selected and randomly divided into five groups, with six replicates per treatment and 15 laying hens in each replicate. The control group was fed a corn-soybean meal basal diet. The FLS group was fed a high- energy–low-protein (HELP) diet, and the other three experimental groups were fed HELP diets supplemented with 60 mg/kg TBF, 69 μg/kg 25-OHD, and 60 mg/kg TBF plus 69 μg/kg 25-OHD, respectively. The experiment lasted 8 weeks. The results demonstrated that feeding laying hens with a HELP diet led to a significant accumulation of fat in their livers, liver enlargement and yellowing, as well as a decline in liver antioxidant capacity and an aggravation of inflammation. TBF alone, 25-OHD alone, and their combination had no effect on the laying performance of laying hens fed with a HELP diet. However, 25-OHD significantly enhanced the albumin content, eggshell strength, and eggshell thickness of eggs (p < 0.05). Compared with the HELP group, TBF, 25-OHD, or their combination reduced serum LDL-C and TG (p < 0.05). The combined treatment further lowered serum NEFA and MDA, enhanced liver SOD activity (p < 0.05), and unlike TBF alone (which reduced hepatic TG) or 25-OHD alone (which decreased liver index), reduced both liver index and hepatic TG (p < 0.05). Liver gene expression analysis showed that combined TBF and 25-OHD significantly inhibited the expression of fat synthesis-related genes (ACC, FAS, GPAT1, ChREBP1, LXRα, SREBP-1C, SREBP-2, FABP) as well as inflammation-related genes (IL-6, TNF-α, NF-κB, TLR4) (p < 0.05). At the phylum level of the cecal microbiota, TBF increased the abundance of Bacteroidota (p < 0.05), and combined TBF and 25-OHD tended to increase the abundance of Firmicutes_D. At the genus level, TBF increased the abundance of Phocaeicola_A (p < 0.05). Furthermore, TBF, 25-OHD, or their combination reduced the abundance of Faecalibacterium (p < 0.05). These findings suggest that combined TBF and 25-OHD mitigates FLS in laying hens potentially through remodeling gut microbiota and maintaining lipid metabolic homeostasis. Full article
Show Figures

Figure 1

25 pages, 3460 KiB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 464
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

17 pages, 4120 KiB  
Article
Albumin Reduces Hepatic Steatosis and Inflammation in High-Fat-Diet-Fed Mice
by Claire Rennie, Sheila Donnelly and Kristine McGrath
Int. J. Mol. Sci. 2025, 26(15), 7156; https://doi.org/10.3390/ijms26157156 - 24 Jul 2025
Viewed by 220
Abstract
There are currently no approved therapeutic treatments targeting metabolic dysfunction-associated steatotic liver disease (MASLD). Albumin, a liver-produced plasma protein with anti-inflammatory and antioxidant properties, is reduced in advanced liver disease. Considering the role of chronic obesity-induced inflammation in MASLD pathogenesis, we investigated whether [...] Read more.
There are currently no approved therapeutic treatments targeting metabolic dysfunction-associated steatotic liver disease (MASLD). Albumin, a liver-produced plasma protein with anti-inflammatory and antioxidant properties, is reduced in advanced liver disease. Considering the role of chronic obesity-induced inflammation in MASLD pathogenesis, we investigated whether albumin administration could prevent disease progression to metabolic dysfunction-associated steatohepatitis (MASH). MASLD was induced in mice using a high-fat and high-cholesterol (PC) treatment for 8 weeks, followed by treatment with bovine serum albumin (BSA; 0.8 mg/kg) every three days for another 8 weeks. This regimen prevented time-dependent weight gain, regardless of diet, with 57% and 27% reductions in mice fed a standard chow (Std Chow) or PC diet, respectively. Further, supplementation reduced nuclear factor kappa B (NF-κB) activation by 2.8-fold (p = 0.0328) in PC-fed mice, consistent with albumin’s known anti-inflammatory properties. Unexpectedly, albumin also reduced hepatic neutral lipid accumulation and circulating non-esterified fatty acids. While PC-fed mice did not exhibit full progression to MASH, albumin treatment significantly increased hepatic matrix metalloproteinase-2 expression, suggesting the inhibition of early fibrotic signalling. While further studies are needed to elucidate the underlying mechanisms, these findings offer new insight into the potential of albumin, either alone or in combination with other therapies, to reduce hepatic steatosis in MASLD. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

19 pages, 1771 KiB  
Article
Neutral Sodium Humate Modulates Growth, Slaughter Traits, Antioxidant Status, and Gut Health in Yellow-Feathered Broilers
by Junran Lv, Mingzhu Cen, Benkuan Li, Xin Feng, Hongyu Cai and Huihua Zhang
Animals 2025, 15(14), 2142; https://doi.org/10.3390/ani15142142 - 19 Jul 2025
Viewed by 403
Abstract
In this study, we explored the dose-dependent effects of neutral sodium humate (NSH) on the growth performance, slaughter traits, antioxidant capacity, and intestinal health of yellow-feathered broilers. A total of 240 one-day-old male yellow-feathered broilers were randomly allocated into three groups, with each [...] Read more.
In this study, we explored the dose-dependent effects of neutral sodium humate (NSH) on the growth performance, slaughter traits, antioxidant capacity, and intestinal health of yellow-feathered broilers. A total of 240 one-day-old male yellow-feathered broilers were randomly allocated into three groups, with each group consisting of four replicates containing 20 birds per replicate. The control group (Blank) received a basal diet, while the NSH-L and NSH-H groups were provided with the same basal diet included with neutral sodium humate at concentrations of 0.15% and 0.3%, respectively. The results indicate that dietary inclusion of neutral sodium humate at both low (NSH-L) and high (NSH-H) doses significantly increased the body weight and leg muscle yield of yellow-feathered broilers and improved meat quality (p < 0.05). Furthermore, NSH inclusion effectively reduced serum total cholesterol levels and elevated total protein concentration (p < 0.05). In addition, NSH significantly improved duodenal and ileal morphology (e.g., increased villus height and reduced crypt depth), strengthened intestinal barrier integrity (p < 0.05), and enhanced antioxidant capacity (p < 0.05). Notably, the high-dose NSH group (NSH-H) demonstrated significantly greater enhancements in intestinal and barrier integrity compared to the low-dose group (NSH-L). Microbiome analysis revealed that, compared to the Blank group, both the NSH-L and NSH-H groups exhibited significant shifts in cecal microbiota composition, including increased abundance of Bacteroidota and Rikenellaceae_RC9_gut_group and reduced abundance of Euryarchaeota and Methanobrevibacter. Collectively, these findings demonstrate that neutral sodium humate acts as a multifunctional feed additive in yellow-feathered broilers, enhancing productivity and gut health. The study provides a theoretical foundation for the scientific application of neutral sodium humate in broiler production. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

17 pages, 1035 KiB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Viewed by 795
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

37 pages, 911 KiB  
Review
Expression of Free Radicals and Reactive Oxygen Species in Endometriosis: Current Knowledge and Its Implications
by Jeongmin Lee, Seung Geun Yeo, Jae Min Lee, Sung Soo Kim, Jin-Woo Lee, Namhyun Chung and Dong Choon Park
Antioxidants 2025, 14(7), 877; https://doi.org/10.3390/antiox14070877 - 17 Jul 2025
Viewed by 439
Abstract
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we [...] Read more.
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we conducted a comprehensive literature review using Cochrane Libraries, EMBASE, Google Scholar, PubMed, and SCOPUS databases. Of 30 qualifying papers ultimately reviewed, 28 reported a significant contribution of ROS to the pathogenesis of endometriosis, while two found no association. The presence of ROS in endometriosis is associated with infertility, irregular menstrual cycles, painful menstruation, and chronic pelvic discomfort. Among individual ROS types studied, hydrogen peroxide was most frequently investigated, followed by lipid peroxides and superoxide radicals. Notable polymorphisms associated with ROS in endometriosis include those for AT-rich interactive domain 1A (ARID1A) and quinone oxidoreductase 1 (NQO1) isoforms. Key enzymes for ROS scavenging and detoxification include superoxide dismutase, glutathione, and glutathione peroxidase. Effective inhibitors of ROS related to endometriosis are vitamins C and E, astaxanthin, fatty acid-binding protein 4, cerium oxide nanoparticles (nanoceria), osteopontin, sphingosine 1-phosphate, N-acetyl-L-cysteine, catalase, and a high-antioxidant diet. Elevated levels of ROS and free radicals are involved in the pathogenesis of endometriosis, suggesting that targeting these molecules could offer potential therapeutic strategies. Full article
Show Figures

Figure 1

21 pages, 1008 KiB  
Article
The Study of Approaches to Modeling Oxidative Stress in Male Wistar Rats: The Comparative Analysis of Diet-Induced, Chemically Induced, and Physiologically Induced Models
by Yuliya Sidorova, Nikita Petrov, Nadezhda Biryulina, Ilya Sokolov, Anastasiya Balakina, Nikita Trusov and Alla Kochetkova
Int. J. Mol. Sci. 2025, 26(14), 6872; https://doi.org/10.3390/ijms26146872 - 17 Jul 2025
Viewed by 205
Abstract
Oxidative stress can be caused by bad nutrition, psychoemotional stress, or other external influences in everyday life. The aim of this study is to develop and verify biological models using male Wistar rats that allow reproducing oxidative stress in vivo, in particular: food [...] Read more.
Oxidative stress can be caused by bad nutrition, psychoemotional stress, or other external influences in everyday life. The aim of this study is to develop and verify biological models using male Wistar rats that allow reproducing oxidative stress in vivo, in particular: food (diet with high cholesterol and fructose content), medical (injection of CCl4), and physiological (immobilization stress). Diet with 1% cholesterol and fructose had the greatest impact on the antioxidant status of animals: a significant increase in serum malondialdehyde (by 1.8 times) and superoxide dismutase (by 2.4 times) as well as a significant decrease in the Cat gene expression by 35% were shown. The immobilization led only to a significant decrease in serum lipid peroxides by 29%. A single intraperitoneal administration of CCl4 was accompanied by a significant increase in the blood lipid peroxides (by 1.3 times) and catalase (by 1.6 times), as well as a significant decrease in the Cat mRNA by 33% and Gpx1 by 48%. The obtained data can be used to study the effectiveness of drugs, biologically active food supplements and functional nutrition in vivo. Full article
(This article belongs to the Special Issue Oxygen Variations, 2nd Edition)
Show Figures

Figure 1

Back to TopTop