Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = heteropolyacid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6879 KiB  
Article
Heteropolyacid-Based Poly(Ionic Liquid) Catalyst for Ultra-Deep and Recyclable Oxidative Desulfurization of Fuels
by Mengyue Chen, Tianqi Huang, Shuang Tong, Chao Wang and Ming Zhang
Catalysts 2025, 15(7), 622; https://doi.org/10.3390/catal15070622 - 24 Jun 2025
Viewed by 407
Abstract
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction [...] Read more.
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction parameters (e.g., temperature, catalyst dosage, and O/S molar ratio) were systematically investigated, as well as the catalytic mechanism. The typical sample C8-PIL@PW exhibited exceptional oxidative desulfurization (ODS) performance, achieving a sulfur removal of 99.2% for dibenzothiophene (DBT) without any organic solvent as extractant. Remarkably, the sulfur removal could still retain 89% after recycling five times without regeneration. This study provides a sustainable and high-efficiency catalyst for ODS, offering insights into fuel purification strategies. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Figure 1

24 pages, 3339 KiB  
Article
Mesostructured Silica–Zirconia–Tungstophosphoric Acid Composites as Catalyst in Calcium Channel Blocker Nifedipine Synthesis
by Edna X. Aguilera, Ángel G. Sathicq, Alexis Sosa, Marcelo C. Murguía, José J. Martínez, Luis R. Pizzio and Gustavo P. Romanelli
Catalysts 2025, 15(6), 537; https://doi.org/10.3390/catal15060537 - 28 May 2025
Viewed by 608
Abstract
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending [...] Read more.
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending on the reaction conditions. The materials were synthesized via the sol–gel method and characterized by N2 adsorption–desorption isotherms, infrared spectroscopy (FT-IR), 31P solid-state nuclear magnetic resonance (NMR-MAS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), and potentiometric titration. The characterization results from the XPS spectra showed that as the Si/Zr ratio drops, the Si-O-Si signal size decreases, while the Zr-O signal size increases. Characterization by titration indicated that an increase in the total acidity of the material, resulting from support modification with tungstophosphoric acid (H3PW12O40, TPA), enhances the reaction yield. The catalytic activity in the solvent-free Hantzsch reaction was evaluated under thermal heating and microwave irradiation. The experiments conducted at 80 °C achieved a maximum yield of 57% after 4 h of reaction using the Si20Zr80TPA30 catalyst (50 mg), while by microwave heating, the yield significantly improved, reaching 77% in only 1 h of reaction. This catalyst exhibited stability and reusability without significant loss of activity up to the third cycle. Depending on the type of material and the reaction conditions, it is possible to modify the selectivity of the reaction, obtaining a 1,2-dihydropyridine isomeric to nifedipine. Reaction intermediates and other minor secondary products that may be formed in the process were also evaluated. Full article
Show Figures

Graphical abstract

21 pages, 3238 KiB  
Systematic Review
A Review for the Design and Optimization of Catalysts: The Use of Statistics as a Powerful Tool for Literature Analysis
by Tatiana Martinez, Laura Stephania Lavado Romero, D. Estefania Rodriguez and Jahaziel Amaya
Chemistry 2025, 7(3), 74; https://doi.org/10.3390/chemistry7030074 - 1 May 2025
Cited by 1 | Viewed by 1050
Abstract
In this study, a statistical analysis of results reported in the literature was conducted through a 2n experimental design on the synthesis of bifunctional catalysts used in the production of lighter fuels, aiming for optimization while considering factors such as support (bentonite [...] Read more.
In this study, a statistical analysis of results reported in the literature was conducted through a 2n experimental design on the synthesis of bifunctional catalysts used in the production of lighter fuels, aiming for optimization while considering factors such as support (bentonite and vermiculite), acidity modifier (zirconium and cerium), metal (tungsten and molybdenum), metal content (5% and 10%), promoter (nickel and cobalt), and heteropolyacids (tungstophosphoric acid and molybdophosphoric acid), identifying their influence on textural properties and catalytic performance. Regarding the textural properties, vermiculite proved to be the most favorable support due to its high porosity. It was also established that the implemented metals impart positive characteristics to the catalysts due to their various properties; however, incorporating large amounts led to an adverse effect by clogging the pores. Catalytic performance was analyzed in isomerization and cracking reactions, which were enhanced by the use of cerium due to the presence of Brønsted acid sites and molybdenum for its stability. In this way, the statistical analysis conducted in this study was crucial for identifying the influence of key factors on the textural properties and catalytic performance of bifunctional catalysts. Using a 2n experimental design allowed for a systematic evaluation of variables reported in the literature, such as support, acidity modifiers, metals, metal content, promoters, and heteropolyacids. Full article
(This article belongs to the Section Catalysis)
Show Figures

Figure 1

30 pages, 3225 KiB  
Article
Obtention and Products Distribution of Bioliquid from Catalytic Pyrolysis of Tomato Plant Waste
by José L. Buitrago, Leticia J. Méndez, Juan J. Musci, Juan A. Cecilia, Daniel Ballesteros-Plata, Enrique Rodríguez-Castellón, Mónica L. Casella, Luis R. Pizzio and Ileana D. Lick
Catalysts 2025, 15(4), 388; https://doi.org/10.3390/catal15040388 - 17 Apr 2025
Viewed by 615
Abstract
The use of tomato plant residues (i.e., stems, leaves, etc.) as a substrate for catalytic pyrolysis of biomass was investigated. A comprehensive study was conducted to investigate the impact of catalysts on the performance of different pyrolysis fractions (i.e., gas, biosolid, waxes, and [...] Read more.
The use of tomato plant residues (i.e., stems, leaves, etc.) as a substrate for catalytic pyrolysis of biomass was investigated. A comprehensive study was conducted to investigate the impact of catalysts on the performance of different pyrolysis fractions (i.e., gas, biosolid, waxes, and bioliquid) as well as the distribution of products within the bioliquid. The catalysts employed in this study were derived from two distinct types of zirconia. The first type was synthesized by a conventional sol-gel method, while the second type was prepared with a modified method aimed at improving the presence of mesopores. This modification involved the incorporation of Pluronic 123. These materials were designated ZrO2 and ZrO2P25, respectively. Both types of zirconia were used as supports for tungstophosphoric acid (H3PW12O40, TPA), a heteropolyacid with a Keggin structure, in the preparation of catalysts with strong acid sites. The results demonstrated that the bioliquid yield of the non-catalytic fast pyrolysis of tomato plant waste was approximately 23% and that the obtained bioliquid contained a wide variety of molecules, which were detected and quantified by GC-MS. In the presence of the catalysts, both the bioliquid yield and the distribution of bioliquid products were substantially modified. Furthermore, the possible sugar degradation pathways leading to the formation of the molecules present in the pyrolytic bioliquids were thoroughly examined. The results obtained from this study indicate that the physicochemical characteristics of the catalysts, specifically their pore size and acidity, have a significant impact on the selectivity of the catalytic processes towards valuable molecules, including anhydro-sugars and furanic derivatives such as furfural and furfuryl alcohol. Full article
Show Figures

Graphical abstract

14 pages, 2872 KiB  
Article
Silicotungstate- or Phosphotungstate-Catalyzed Glycerol Esterification with Acetic Acid: A Comparison of Zinc and Tin Salts
by Marcio Jose da Silva, Cesar Macedo Oliveira, Pedro Henrique da Silva Andrade and Neide Paloma Gonçalves Lopes
Reactions 2025, 6(1), 19; https://doi.org/10.3390/reactions6010019 - 7 Mar 2025
Viewed by 893
Abstract
In this work, tin and zinc salts of silicotungstic and phosphotungstic acids were synthesized, characterized, and tested as catalysts for esterification reactions of glycerol with acetic acid (HOAc) to produce glycerol esters such as monoacetyl glycerol (MAG), which are used as additives in [...] Read more.
In this work, tin and zinc salts of silicotungstic and phosphotungstic acids were synthesized, characterized, and tested as catalysts for esterification reactions of glycerol with acetic acid (HOAc) to produce glycerol esters such as monoacetyl glycerol (MAG), which are used as additives in the pharmaceutical and food industries and in the manufacturing of explosives, or, in the case of di- or triacetyl glycerol (DAG and TAG), green bioadditives for diesel or gasoline. The activity of metal-exchanged salts (Zn, Sn) in H3PW12O40 and H4SiW12O40 heteropolyacids was evaluated in esterification reactions at room temperature. Among the catalysts tested, Sn2/3PW12O40 was the most active and selective toward the glycerol esters. The process’s selectivity can be controlled by changes to reaction conditions. The maximum selectivitiesy of DAG and TAG were 60% and 30%, respectively, using a 1:3 molar ratio of glycerol/HOAc and a Sn3/2PW12O40/673 K catalyst load of 0.4 mol%. Under these conditions, a glycerol conversion rate of 95% was observed and selectivity towards DAG and TAG was observed at 60% and 30%, respectively. The results were achieved after an 8 h reaction at a temperature of 333 K. The Sn3/2PW12O40/673 K catalyst demonstrated the highest efficiency, which was attributed to its higher degree of acidity. Full article
Show Figures

Graphical abstract

16 pages, 6218 KiB  
Article
A Study of the Catalytic System H3PW12O40/Quaternary Phosphonium Salts for the Epoxidation of Fatty Acid Methyl Esters—The Effect of the Molar Ratio of Hydrogen Peroxide to the Double Bond
by Marlena Musik, Ewa Janus and Robert Pełech
Molecules 2025, 30(5), 1109; https://doi.org/10.3390/molecules30051109 - 28 Feb 2025
Viewed by 567
Abstract
In the present work, the epoxidation of fatty acid methyl esters (biodiesel or FAMEs) with an iodine number of 96.4 g/100 g and containing approximately 11% palmitic acid, 4% stearic acid, 51% oleic acid, 25% linoleic acid, and 5% linolenic acid was studied [...] Read more.
In the present work, the epoxidation of fatty acid methyl esters (biodiesel or FAMEs) with an iodine number of 96.4 g/100 g and containing approximately 11% palmitic acid, 4% stearic acid, 51% oleic acid, 25% linoleic acid, and 5% linolenic acid was studied with an aqueous H2O2 solution and different quaternary phosphonium salts (QPSs) combined with the phosphotungstic heteropolyacid (HPA) H3PW12O40 in a biphasic system. The effect of the molar ratio of H2O2:C=C on the epoxidation of FAMEs was investigated. The effect of the molar ratio of H2O2:C=C on the epoxy number (EN) and iodine number (IN) was measured. Multiple regression analysis methods were used to determine the regression model describing the influence of the various independent variables. In the results obtained, it was found that the highest yields were obtained for [P6][Phosf]. The optimum conditions for the epoxidation process with the systems used were a time range of 30 ± 4 min and a H2O2/double bond molar ratio in the range of 1.8 ± 0.2. The formation of epoxidised fatty acid methyl esters (E-FAMEs) was confirmed by FT-IR, 1H NMR and 13C NMR analyses. In the FT-IR spectrum of the E-FAMEs, epoxy ring vibration signals were identified at 826 cm−1. In the 1H NMR spectrum, signals appeared in the range of 3.25–3.00 ppm, corresponding to epoxy ring formation in biodiesel, and in the range of 60–55 ppm in the 13C NMR spectrum. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 2nd Edition)
Show Figures

Graphical abstract

19 pages, 8834 KiB  
Article
Protective Properties of Silane Composite Coatings Modified with Poly(3,4-ethylenedioxythiophene) with Heteropolyacid on X20Cr13 and 41Cr4 Steel
by Aleksandra Kucharczyk-Kotlewska, Lidia Adamczyk, Krzysztof Miecznikowski and Agata Dudek
Materials 2024, 17(24), 6177; https://doi.org/10.3390/ma17246177 - 18 Dec 2024
Viewed by 681
Abstract
This paper describes the methodology of the preparation and analyses of the structure and anticorrosion properties of silane coatings modified with poly(3,4-ethylenedioxythiophene) (PEDOT) with phosphododecamolybdic acid (PMo12). Protective coatings, consisting of vinyltrimethoxysilane (VTMS), PEDOT powder with PMo12 admixture (at different [...] Read more.
This paper describes the methodology of the preparation and analyses of the structure and anticorrosion properties of silane coatings modified with poly(3,4-ethylenedioxythiophene) (PEDOT) with phosphododecamolybdic acid (PMo12). Protective coatings, consisting of vinyltrimethoxysilane (VTMS), PEDOT powder with PMo12 admixture (at different concentrations), and ethanol, were deposited on X20Cr13 and 41Cr4 steels by immersion. The physicochemical properties of these silane coatings (e.g., surface morphology, thickness, roughness, and adhesion to the substrate) were elucidated using a digital microscope, a Fourier transform infrared spectrophotometer with attenuated total reflectance, and various electrochemical diagnostic techniques. Protective properties were assessed in acidified sulfate solutions with and without chloride ions (pH 2). Experimental results have shown that this coating displayed the effective protection of steel against general and pitting corrosion, stabilized the corrosion potential in the passive state, and provided barrier protection. Full article
Show Figures

Figure 1

31 pages, 18864 KiB  
Review
The Heteropolyacid-Catalyzed Conversion of Biomass Saccharides into High-Added-Value Products and Biofuels
by Márcio Jose da Silva and Pedro Henrique da Silva Andrade
Processes 2024, 12(11), 2587; https://doi.org/10.3390/pr12112587 - 18 Nov 2024
Viewed by 1333
Abstract
The industrial processes used to produce paper and cellulose generate many lignocellulosic residues. These residues are usually burned to produce heat to supply the energy demands of other processes, increasing greenhouse gas emissions and resulting in a high environmental impact. Instead of burning [...] Read more.
The industrial processes used to produce paper and cellulose generate many lignocellulosic residues. These residues are usually burned to produce heat to supply the energy demands of other processes, increasing greenhouse gas emissions and resulting in a high environmental impact. Instead of burning these lignocellulosic residues, they can be converted into saccharides, which are feedstock for high-value products and biofuels. Keggin heteropolyacids are efficient catalysts for obtaining saccharides from cellulose and hemicellulose and converting them into bioproducts or biofuel. Furfural, 5-hydroxymethylfurfural, levulinic acid, and alkyl levulinates are important platform molecules obtained from saccharides and raw materials in the biorefinery processes used to produce fine chemicals and biofuels. This review discusses the significant progress achieved in the development of the processes based on heteropolyacid-catalyzed reactions to convert biomass and their residues into furfural, 5-hydroxymethylfurfural, levulinic acid, and alkyl levulinates in homogeneous and heterogeneous reaction conditions. The different modifications that can be performed to a Keggin HPA structure, such as the replacement of the central atom (P or Si) with B or Al, the doping of the heteropolyanion with metal cations, and a proton exchange with metal or organic cations, as well as their impact on the catalytic activity of HPAs, are detailed and discussed herein. Full article
Show Figures

Figure 1

13 pages, 2374 KiB  
Article
Cross-Linked Polyvinylimidazole Complexed with Heteropolyacid Clusters for Deep Oxidative Desulfurization
by Zhuoyi Ren, Jiangfen Sheng, Qibin Yuan, Yizhen Su, Linhua Zhu, Chunyan Dai and Honglei Zhao
Molecules 2024, 29(17), 4238; https://doi.org/10.3390/molecules29174238 - 6 Sep 2024
Cited by 1 | Viewed by 1041
Abstract
The combustion of fuel with high sulfur concentrations produces a large number of sulfur oxides (SOx), which have a range of negative effects on human health and life. The preparation of catalysts with excellent performance in the oxidative desulfurization (ODS) process [...] Read more.
The combustion of fuel with high sulfur concentrations produces a large number of sulfur oxides (SOx), which have a range of negative effects on human health and life. The preparation of catalysts with excellent performance in the oxidative desulfurization (ODS) process is highly effective for reducing SOx production. In this paper, cross-linked polyvinylimidazole (VE) was successfully created using a simple ontology aggregation method, after which a catalyst of polyvinylimidazolyl heteropolyacid clusters (VE-HPA) was prepared by adding heteropolyacid clusters. Polyvinylimidazolyl-phosphotungstic acid (VE-HPW) showed an outstanding desulfurization performance, and the desulfurization efficiency reached 99.68% in 60 min at 50 °C with H2O2 as an oxidant. Additionally, the catalyst exhibited recyclability nine consecutive times and remained stable, with a removal rate of 98.60%. The reaction mechanism was eventually proposed with the assistance of the free radical capture experiment and GC-MS analysis. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

27 pages, 3430 KiB  
Article
Effect of TiO2 on Acidity and Dispersion of H3PW12O40 in Bifunctional Cu-ZnO(Al)-H3PW12O40/TiO2 Catalysts for Direct Dimethyl Ether Synthesis
by Elena Millán Ordóñez, Noelia Mota Toledo, Bertrand Revel, Olivier Lafon and Rufino M. Navarro Yerga
Catalysts 2024, 14(7), 435; https://doi.org/10.3390/catal14070435 - 8 Jul 2024
Cited by 1 | Viewed by 1289
Abstract
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, [...] Read more.
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, different types of TiO2 were used as a support to study the effect of changes in the structure of the TiO2 support on the acidity and dispersion of HPW. Various TiO2 supports with different structural and surface characteristics have been studied and the results indicate that: (i) the crystallinity and crystallite size of the primary particles of the HPW units depend on the TiO2 support; (ii) the pore size distribution of the TiO2 support affects the surface segregation of the heteropolyacids; and (iii) changes in the supported HPW acid catalysts do not significantly alter the crystal structure of the CuO and ZnO phases after contact with CZA in bifunctional catalysts. The activity results indicate that the variation in the intrinsic activity of the Cu-ZnOx centers in the bifunctional catalysts for direct DME synthesis is minimal due to the limited alteration of the crystal structure of the centers. Full article
(This article belongs to the Special Issue Polyoxometalates (POMs) as Catalysts for Biomass Conversion)
Show Figures

Graphical abstract

18 pages, 7628 KiB  
Review
Furfural and Levulinic Acid: Synthesis of Platform Molecules from Keggin Heteropolyacid-Catalyzed Biomass Conversion Reactions
by Marcio Jose da Silva, Alana Alves Rodrigues and Daniel Carreira Batalha
Reactions 2024, 5(2), 361-378; https://doi.org/10.3390/reactions5020019 - 9 Jun 2024
Cited by 3 | Viewed by 2005
Abstract
Among the different polyoxometalate compounds, Keggin heteropolyacids have been extensively used as catalysts in several acid-catalyzed reactions, due to their strong strength of Bronsted acidity. These metal–oxygen clusters have a highly versatile structure that allows their conversion to derivatives, which are catalysts that [...] Read more.
Among the different polyoxometalate compounds, Keggin heteropolyacids have been extensively used as catalysts in several acid-catalyzed reactions, due to their strong strength of Bronsted acidity. These metal–oxygen clusters have a highly versatile structure that allows their conversion to derivatives, which are catalysts that are much more efficient than their precursors, with a greater catalytic activity in a plethora of reactions of industrial interest. Particularly, due to the inevitable exhaustion of fossil sources, reactions to valorize biomass have attracted significant attention, since it is a precious renewable raw material that can provide fine chemicals or fuels, minimizing our dependence on petroproducts. Biorefinery processes can produce platform molecules to achieve this goal. In this review, the recent advances achieved in the development of routes to converting biomass feedstocks to levulinic acid and furfural, which are valuable ingredients in biorefinery processes, using Keggin heteropolyacid catalysts were assessed. Full article
Show Figures

Graphical abstract

14 pages, 3300 KiB  
Article
Cs4PMo11VO40-Catalyzed Glycerol Ketalization to Produce Solketal: An Efficient Bioadditives Synthesis Method
by Márcio José da Silva and Cláudio Júnior Andrade Ribeiro
Processes 2024, 12(5), 854; https://doi.org/10.3390/pr12050854 - 24 Apr 2024
Cited by 2 | Viewed by 1677
Abstract
In this work, a series of vanadium-substituted phosphomolybdic acids were synthesized and tested as the catalysts for the synthesis of solketal, a green fuel bioadditive, from the condensation reaction of glycerol with acetone. The objective was to demonstrate that an easily synthesizable solid [...] Read more.
In this work, a series of vanadium-substituted phosphomolybdic acids were synthesized and tested as the catalysts for the synthesis of solketal, a green fuel bioadditive, from the condensation reaction of glycerol with acetone. The objective was to demonstrate that an easily synthesizable solid catalyst can efficiently promote glycerol condensation with acetone at room temperature. The activity of pristine heteropolyacid (i.e., H3PMo12O40) and its vanadium-substituted cesium salts (Cs3+nPMo12-nVnO40; n = 0–3) was evaluated in condensation reactions carried out at room temperature. Among the catalysts tested, Cs4PMo11VO40 was the most active and selective towards a five-member ring solketal isomer (dioxolane). A high yield of solketal (i.e., 95% conversion and 95% selectivity to solketal) was achieved in glycerol condensation with acetone at room temperature within a short reaction time (2 h). The influence of the main reaction parameters, such as the acetone–glycerol molar ratio, catalyst load, and reaction temperatures, was investigated. The greatest activity of the Cs4PMo11VO40 catalyst was correlated to its greatest acidity. Full article
Show Figures

Figure 1

12 pages, 1508 KiB  
Article
Heteropolyacids@Silica Heterogeneous Catalysts to Produce Solketal from Glycerol Acetalization
by Catarina N. Dias, Isabel C. M. S. Santos-Vieira, Carlos R. Gomes, Fátima Mirante and Salete S. Balula
Nanomaterials 2024, 14(9), 733; https://doi.org/10.3390/nano14090733 - 23 Apr 2024
Cited by 3 | Viewed by 2064
Abstract
The composites of heteropolyacids (H3PW12, H3PMo12) incorporated into amine-functionalized silica materials were used for the first time as heterogeneous catalysts in the valorization of glycerol (a major waste from the biodiesel industry) through acetalization reaction [...] Read more.
The composites of heteropolyacids (H3PW12, H3PMo12) incorporated into amine-functionalized silica materials were used for the first time as heterogeneous catalysts in the valorization of glycerol (a major waste from the biodiesel industry) through acetalization reaction with acetone. The polyoxotungstate catalyst H3PW12@AptesSBA-15 exhibited higher catalytic efficiency than the phosphomolybdate, achieving 97% conversion and 97% of solketal selectivity, after 60 min at 25 °C, or 91% glycerol conversion and the same selectivity, after 5 min, performing the reaction at 60 °C. A correlation between catalytic performance and catalyst acidity is presented here. Furthermore, the stability of the solid catalyst was investigated and discussed. Full article
Show Figures

Figure 1

11 pages, 6451 KiB  
Article
Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film
by Tiehong Song, Jinyao Li, Qiyuan Deng and Yanjiao Gao
Molecules 2023, 28(22), 7605; https://doi.org/10.3390/molecules28227605 - 15 Nov 2023
Cited by 5 | Viewed by 1832
Abstract
A novel photochromic heteropolyacid-based composite film consisting of phosphomolybdic acid (PMoA), ZnO, and polyvinylpyrrolidone (PVP) was fabricated by a sol–gel process. The microstructure and photochromic properties of the PMoA/ZnO/PVP were characterized via Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron [...] Read more.
A novel photochromic heteropolyacid-based composite film consisting of phosphomolybdic acid (PMoA), ZnO, and polyvinylpyrrolidone (PVP) was fabricated by a sol–gel process. The microstructure and photochromic properties of the PMoA/ZnO/PVP were characterized via Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible spectroscopy (UV-Vis). The FTIR spectra showed that the basic structures of ZnO and PVP, and the Keggin structure of PMoA in the PMoA/ZnO/PVP composite film, had not been destroyed during the preparation. The TEM images demonstrated that ZnO presented a rod-like structure, while PMoA was spherical, and many PMoA balls adhered to the surface of the ZnO rods. The XPS spectra of Mo 3d indicated that the valency of Mo atoms in the PMoA/ZnO/PVP was changed by visible light exposure. After visible light irradiation, the PMoA/ZnO/PVP varied from slight yellow to blue, while undergoing an opposite color change upon heating. The discoloration mechanism of the PMoA/ZnO/PVP was consistent with the photoelectron transfer mechanism. Full article
Show Figures

Figure 1

17 pages, 3407 KiB  
Article
Phosphotungstic Wells-Dawson Heteropolyacid as Potential Catalyst in the Transesterification of Waste Cooking Oil
by Paula S. Mateos, Claudia B. Ruscitti, Mónica L. Casella, Silvana R. Matkovic and Laura E. Briand
Catalysts 2023, 13(9), 1253; https://doi.org/10.3390/catal13091253 - 30 Aug 2023
Cited by 6 | Viewed by 1766
Abstract
The esterification of oleic acid was applied in order to screen the suitability of a series of phosphotungstic-based Wells-Dawson types of compounds as potential catalysts in the heterogeneous transesterification of sunflower waste cooking oil. This test reaction indicated that the phosphotungstic Wells-Dawson heteropolyacid [...] Read more.
The esterification of oleic acid was applied in order to screen the suitability of a series of phosphotungstic-based Wells-Dawson types of compounds as potential catalysts in the heterogeneous transesterification of sunflower waste cooking oil. This test reaction indicated that the phosphotungstic Wells-Dawson heteropolyacid H6P2W18O62·xH2O, dispersed on titania oxide in a loading of 15 mg per m2 of oxide support (named 42% HPA/TiO2) and possessing exclusively Brønsted acid sites, was the most promising among the screened materials. In addition, the application of a nonlinear analysis methodology to find a surface that fits the specific activity of the oleic acid esterification with methanol at various temperatures, weights of catalyst, molar ratios of substrates, and stirring speeds, and also considering the active phase desorption out of the catalyst’s surface, allowed determining the optimum operative conditions that were applied in the transesterification of the waste cooking oil afterwards. The transesterification of the waste cooking oil at 60 °C and 1:9 WCO: methanol molar ratio in a batch reactor under stirring at 650 rpm for 3 h, catalyzed with 0.25 wt% of 42% HPA/TiO2 (20.0 g of oil and 49.6 mg of catalyst), presents 74.6% of conversion of glycerides and 74.4% yield towards fatty acid methyl esters. The catalyst was recovered and reused several times, maintaining a fairly constant catalytic performance. Full article
Show Figures

Graphical abstract

Back to TopTop