Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PMoA/ZnO/PVP (PMOA: ZnO = 7:3, A3)
2.1.1. Analysis of FTIR
2.1.2. Analysis of TEM
2.2. Photochromic Properties of Composite Films
2.3. Photochromic Mechanism of Composite Films
3. Materials and Methods
3.1. Materials
3.2. Preparation
3.3. Instrumental Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, T.; Ma, Y.; Cao, Y.; Jiang, P.; Zhang, X.; Yang, W.; Yao, J. Enhancement effect of gold nanoparticles on the UV-light photochromism of molybdenum trioxide thin films. Langmuir 2001, 17, 8024–8027. [Google Scholar] [CrossRef]
- Wan, J.; Xu, J.; Zhu, S.; Li, J.; Ying, G.; Wang, B.; Chen, K. Easily prepared superhydrophobic photochromic composite and its application in waterproof rewritable paper. Chem. Eng. J. 2022, 444, 136604. [Google Scholar] [CrossRef]
- Ru, Y.; Shi, Z.; Zhang, J.; Wang, J.; Chen, B.; Huang, R.; Liu, G.; Yu, T. Recent progress of photochromic materials towards photocontrollable devices. Mater. Chem. Front. 2021, 5, 7737–7758. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365. [Google Scholar] [CrossRef]
- Peng, S.; Wen, J.; Hai, M.; Yang, Z.; Yuan, X.; Wang, D.; Cao, H.; He, W. Synthesis and application of reversible fluorescent photochromic molecules based on tetraphenylethylene and photochromic groups. New J. Chem. 2019, 43, 617–621. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, Y.; Du, Y.; Chen, J.; Hou, X.; Meng, J. Preparation and application of melamine-formaldehyde photochromic microcapsules. Sens. Actuators B Chem. 2013, 188, 502–512. [Google Scholar] [CrossRef]
- Han, S.D.; Hu, J.X.; Wang, G.M. Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coord. Chem. Rev. 2022, 452, 214304. [Google Scholar] [CrossRef]
- Lee, S.; You, Y.; Ohkubo, K.; Fukuzumi, S.; Nam, W. Mechanism and fluorescence application of electrochromism in photochromic dithienylcyclopentene. Org. Lett. 2012, 14, 2238–2241. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.Y.; Han, F.F.; Zhang, R.; Zhao, Y.; Miao, B.X.; Ni, Z.H. Reversible photochromic tetraphenylethene-based Schiff base: Design, synthesis, crystal structure and applications as visible light driven rewritable paper and UV sensor. Dye. Pigment. 2019, 167, 143–150. [Google Scholar] [CrossRef]
- Żmija, J.; Małachowski, M.J. New organic photochromic materials and selected applications. J. Achiev. Mater. Manuf. Eng. 2010, 41, 48–56. [Google Scholar]
- Yang, Z.; Du, J.; Martin, L.I.; Van der Heggen, D.; Poelman, D. Highly responsive photochromic ceramics for high-contrast rewritable information displays. Laser Photonics Rev. 2021, 15, 2000525. [Google Scholar] [CrossRef]
- Kayani, A.B.A.; Kuriakose, S.; Monshipouri, M.; Khalid, F.A.; Walia, S.; Sriram, S.; Bhaskaran, M. UV photochromism in transition metal oxides and hybrid materials. Small 2021, 17, 2100621. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Sharma, A.K.; Jha, R.; Sarkar, A. Stable α-MoO3 nanocrystals and its doped variants with unique morphologies under optimized reaction conditions for efficient electrochemical and photochromic performances. Mater. Chem. Phys. 2022, 280, 125813. [Google Scholar] [CrossRef]
- Kharade, R.R.; Mali, S.S.; Patil, S.P.; Patil, K.R.; Gang, M.G.; Patil, P.S.; Kim, J.H.; Bhosale, P.N. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films. Electrochim. Acta 2013, 102, 358–368. [Google Scholar] [CrossRef]
- Song, X.C.; Wang, X.; Zheng, Y.F.; Yin, H.Y. Electrochromic Properties of WO3-MoO3 nanocomposite films prepared by electrodeposition method. Curr. Nanosci. 2013, 9, 330–334. [Google Scholar] [CrossRef]
- Prabhu, S.; Cindrella, L.; Kwon, O.J.; Mohanraju, K. Photoelectrochemical, photocatalytic and photochromic performance of rGO-TiO2WO3 composites. Mater. Chem. Phys. 2019, 224, 217–228. [Google Scholar] [CrossRef]
- Asim, N.; Badeiei, M.; Ghoreishi, K.B.; Ludin, N.A.; Zonooz, M.R.F.; Sopian, K. New Developments in photocatalysts modification: Case study of WO3. Adv. Fluid Mech. Heat Mass Transf. 2012, 114, 110–114. [Google Scholar]
- Kumar, S.G.; Rao, K.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. [Google Scholar] [CrossRef]
- Wei, Y.; Han, B.; Dong, Z.; Feng, W. Phosphomolybdic acid-modified highly organized TiO2 nanotube arrays with rapid photochromic performance. J. Mater. Sci. Technol. 2019, 35, 1951–1958. [Google Scholar] [CrossRef]
- Lu, C.; Sun, Y.; Liu, J.; Wang, X.; Liu, S.L.; Feng, W. Enhanced photochromism of heteropolyacid/polyvinylpyrolidone composite film by TiO2 doping. J. Appl. Polym. Sci. 2015, 132, 41583. [Google Scholar] [CrossRef]
- Taghavi, M.; Ehrampoush, M.H.; Ghaneian, M.T.; Tabatabaee, M.; Fakhri, Y. Application of a Keggin-type heteropoly acid on supporting nanoparticles in photocatalytic degradation of organic pollutants in aqueous solutions. J. Clean. Prod. 2018, 197, 1447–1453. [Google Scholar] [CrossRef]
- Zeng, Q.; Guo, S.; Sun, Y.; Li, Z.; Feng, W. Protonation-induced enhanced optical-Light photochromic properties of an inorganic-organic phosphomolybdic acid/polyaniline hybrid thin film. Nanomaterials 2020, 10, 1839. [Google Scholar] [CrossRef]
- Xu, X.; Wei, S. (NH4)3PW12O40-H3PO4 composites as efficient proton conductors at intermediate temperatures. J. Mater. Sci. Technol. 2020, 37, 128–134. [Google Scholar] [CrossRef]
- Jing, X.; Meng, Q.; Zou, D.; Feng, W.; Han, X. Visible light photochromism of polyoxometalates-based composite film with deposition of ZnFe2O4 nanoparticles. Mater. Lett. 2014, 136, 229–232. [Google Scholar] [CrossRef]
- Sun, W.; Si, Y.; Jing, H.; Dong, Z.; Wang, C.; Zhang, Y.; Zhao, L.; Feng, W.; Yan, Y. Visible-light photochromism of phosphomolybdic acid/ZnO composite. Chem. Res. Chin. Univ. 2018, 34, 464–469. [Google Scholar] [CrossRef]
- Yue, T.T.; Han, B.; Wang, X.; Bai, L.; Feng, W. Instantaneous visible-light photochromic performance of composite powders based on PMoA and ZnO Nanotubes. Chem. Lett. 2019, 48, 851–854. [Google Scholar] [CrossRef]
- Huang, Y.T.; Sun, Y.B.; Zeng, Q.R.; Feng, W. Ultrasonic-assisted organic–inorganic multilayer thin film synthesis and enhanced visible-light phototropy based on PVP/PMoA. J. Mater. Sci. 2021, 56, 19870–19883. [Google Scholar] [CrossRef]
- Taher, M.A.; Lo’ay, A.A.; Gouda, M.; Limam, S.A.; Abdelkader, M.F.; Osman, S.O.; Fikry, M.; Ali, E.F.; Mohamed, S.Y.; Khalil, H.A.; et al. Impacts of gum arabic and polyvinylpyrrolidone (PVP) with salicylic acid on peach fruit (Prunus persica) shelf life. Molecules 2022, 27, 2595. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Lu, Y.; Xuan, L.; Xia, S.; Feng, W.; Han, X. Preparation and visible-light photochromism of phosphomolybdic acid/polyvinylpyrrolidone hybrid film. Chem. Res. Chin. Univ. 2014, 30, 703–708. [Google Scholar] [CrossRef]
- Helmi, F.; Helmi, M.; Hemmati, A. Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study. Renew. Energy 2022, 189, 881–898. [Google Scholar] [CrossRef]
- Wilke, T.J.; Barteau, M.A. Development of thermodynamic activity coefficients to describe the catalytic performance of supported polyoxometalate catalysts. J. Catal. 2020, 382, 286–294. [Google Scholar] [CrossRef]
- Safeen, A.; Safeen, K.; Shafique, M.; Iqbal, Y.; Ahmed, N.; Khan, M.A.R.; Asghar, G.; Althubeiti, K.; Otaibi, S.A.; Ali, G.; et al. The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC Adv. 2022, 12, 11923–11932. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, M.; Yu, K.; Lv, J.; Zheng, X.; Zhou, B. The phosphomolybdate hybrids based on nanoscale heteropoly blue and metal-organic chain for supercapacitor and dual-functional electrochemical biosensor. J. Energy Storage 2023, 60, 106592. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Liu, F.; Liu, L.; Yan, M.; Wang, W. Electrostatic Assembly of Photochromic TiO2/Phosphomolybdic Acid Composite Nanoparticles for Light-Responsive Rewritable Papers. ACS Appl. Nano Mater. 2022, 5, 13218–13226. [Google Scholar] [CrossRef]
- Wang, Z.; Ai, L.; Wu, Q. Preparation and photochromism performance of P2W16Mo2/PVA/TiO2 composite films. J. Coord. Chem. 2020, 73, 2402–2409. [Google Scholar] [CrossRef]
- Kubiak, A.; Wojciechowska, W.; Kurc, B.; Pigłowska, M.; Synoradzki, K.; Gabała, E.; Moszyński, D.; Szybowicz, M.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Highly crystalline TiO2-MoO3 composite materials synthesized via a template-assisted microwave method for electrochemical application. Crystals 2020, 10, 493. [Google Scholar] [CrossRef]
- Yu, Z.; Hao, J.; Li, W.; Liu, H. Enhanced electrochemical performances of cobalt-doped Li2MoO3 cathode materials. Materials 2019, 12, 843. [Google Scholar] [CrossRef]
- Srikant, V.; Clarke, D.R. On the optical band gap of zinc oxide. J. Appl. Phys. 1998, 83, 5447–5451. [Google Scholar] [CrossRef]
- Johar, M.A.; Afzal, R.A.; Alazba, A.A.; Manzoor, U. Photocatalysis and bandgap engineering using ZnO nanocomposites. Adv. Mater. Sci. Eng. 2015, 2015, 934587. [Google Scholar] [CrossRef]
Composite Film | Peak Range (nm) | Saturation Time (min) | Absorbance Value |
---|---|---|---|
A1 | 765–780 | 7 | 0.214 |
A2 | 758–778 | 8 | 0.262 |
A3 | 761–782 | 9 | 0.323 |
A4 | 751–780 | 7 | 0.193 |
A5 | 742–773 | 8 | 0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Li, J.; Deng, Q.; Gao, Y. Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film. Molecules 2023, 28, 7605. https://doi.org/10.3390/molecules28227605
Song T, Li J, Deng Q, Gao Y. Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film. Molecules. 2023; 28(22):7605. https://doi.org/10.3390/molecules28227605
Chicago/Turabian StyleSong, Tiehong, Jinyao Li, Qiyuan Deng, and Yanjiao Gao. 2023. "Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film" Molecules 28, no. 22: 7605. https://doi.org/10.3390/molecules28227605
APA StyleSong, T., Li, J., Deng, Q., & Gao, Y. (2023). Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film. Molecules, 28(22), 7605. https://doi.org/10.3390/molecules28227605