Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = hemp fiber composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3561 KiB  
Article
A Robust Analytical Network Process for Biocomposites Supply Chain Design: Integrating Sustainability Dimensions into Feedstock Pre-Processing Decisions
by Niloofar Akbarian-Saravi, Taraneh Sowlati and Abbas S. Milani
Sustainability 2025, 17(15), 7004; https://doi.org/10.3390/su17157004 - 1 Aug 2025
Viewed by 250
Abstract
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria [...] Read more.
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria decision-making framework for selecting pre-processing equipment configurations within a hemp-based biocomposite SC. Using a cradle-to-gate system boundary, four alternative configurations combining balers (square vs. round) and hammer mills (full-screen vs. half-screen) are evaluated. The analytical network process (ANP) model is used to evaluate alternative SC configurations while capturing the interdependencies among environmental, economic, social, and technical sustainability criteria. These criteria are further refined with the inclusion of sub-criteria, resulting in a list of 11 key performance indicators (KPIs). To evaluate ranking robustness, a non-linear programming (NLP)-based sensitivity model is developed, which minimizes the weight perturbations required to trigger rank reversals, using an IPOPT solver. The results indicated that the Half-Round setup provides the most balanced sustainability performance, while Full-Square performs best in economic and environmental terms but ranks lower socially and technically. Also, the ranking was most sensitive to the weight of the system reliability and product quality criteria, with up to a 100% shift being required to change the top choice under the ANP model, indicating strong robustness. Overall, the proposed framework enables decision-makers to incorporate uncertainty, interdependencies, and sustainability-related KPIs into the early-stage SC design of bio-based composite materials. Full article
(This article belongs to the Special Issue Sustainable Enterprise Operation and Supply Chain Management)
Show Figures

Figure 1

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 292
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

19 pages, 3709 KiB  
Article
Analysis of the Physical and Thermal Characteristics of Gypsum Panels with Hemp Hurds for Building Insulation
by Chatpon Chaimongkol, Sukunya Ross, Dachaphon Kealkaew and Atthakorn Thongtha
Sustainability 2025, 17(15), 6801; https://doi.org/10.3390/su17156801 - 26 Jul 2025
Viewed by 442
Abstract
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in [...] Read more.
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in gypsum composite density and improved thermal insulating properties with the introduction of hemp hurds. Water absorption, a significant drawback of gypsum boards, is mitigated with hemp hurds, indicating potential benefits for insulation efficiency. For mechanical tests, the gypsum ceiling board at approximately 5% by weight exhibits a flexural strength value exceeding the minimum average threshold of 1 MPa and the highest average compressive strength at 2.94 MPa. Thermal testing reveals lower temperatures and longer time lags in gypsum boards with 5% hemp hurds, suggesting enhanced heat resistance and reduced energy consumption for cooling. The study contributes valuable insights into the potential use of hemp hurds in gypsum-based building materials, presenting a sustainable and energy-efficient alternative for the construction industry. Full article
Show Figures

Figure 1

29 pages, 3584 KiB  
Review
Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs)
by Abir Hmida, Fouad Erchiqui, Abdelkader Laafer and Mahmoud Bourouis
Energies 2025, 18(14), 3629; https://doi.org/10.3390/en18143629 - 9 Jul 2025
Viewed by 547
Abstract
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material [...] Read more.
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material (PCM)-based passive thermal management techniques have been considered due to their energy storage capabilities. This study provides a comprehensive review of the research on PCM applications, types, and encapsulation forms. Various solutions have been proposed to enhance PCM performance. In this review, the authors suggest new methods to improve PCM efficiency by using the multilayered wall technique, which involves employing two layers of a hybrid bio-composite—specifically, the hybrid hemp/wood fiber-reinforced composite with a polypropylene (PP) matrix—along with a layer of PCM made from spent coffee grounds (SCGs). Previous studies have shown that oil extracted from SCGs demonstrates good thermal and chemical stability, as it contains approximately 60–80% fatty acids, with a phase transition temperature of approximately 4.5 ± 0.72 °C and latent heat values of 51.15 ± 1.46 kJ/kg. Full article
Show Figures

Figure 1

24 pages, 1711 KiB  
Review
Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates
by Cristiano Fragassa and Carlo Santulli
J. Compos. Sci. 2025, 9(7), 356; https://doi.org/10.3390/jcs9070356 - 8 Jul 2025
Viewed by 434
Abstract
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with [...] Read more.
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with the metal. Another question may concern possible moisture penetration in the structure, which may reduce environmental resistance and result in local degradation, such as wear or even corrosion. Despite these limitations, this hybridization enjoys increasing success. Two forms are possibly available for this: introduction into metal matrix composites (MMCs), normally in the form of char from biomass combustion, or laminate reinforcement as the core for fiber metal laminates (FMLs). These two cases are treated alongside each other in this review, first because they may represent two combined options for recycling the same biomass into high-profile structures, aimed primarily at the aerospace industry. Moreover, as discussed above, the effect on the aluminum alloy can be compared and the forces to which they are subjected might be of a similar type, most particularly in terms of their hardness and impact. Both cases considered, MMCs and FMLs involved over time many lignocellulosic residues, starting from the most classical bast species, i.e., flax, hemp, sisal, kenaf, etc., and extending also to less diffuse ones, especially in view of the introduction of biomass as secondary, or residual, raw materials. Full article
Show Figures

Figure 1

18 pages, 6078 KiB  
Article
Composites with Flax and Hemp Fibers Obtained Using Osmotic Degumming, Water-Retting, and Dew-Retting Processes
by Wanda Różańska and Szymon Rojewski
Materials 2025, 18(13), 3200; https://doi.org/10.3390/ma18133200 - 7 Jul 2025
Viewed by 345
Abstract
This study presents the application of flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers into composites with polyethylene matrices. The applied fibers were obtained using osmotic, water-retting, and dew-retting processes. The study determined the impact of the fiber extraction [...] Read more.
This study presents the application of flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers into composites with polyethylene matrices. The applied fibers were obtained using osmotic, water-retting, and dew-retting processes. The study determined the impact of the fiber extraction method on the properties of the composites obtained from natural filler and polyethylene matrix. These properties included color, tensile strength, thermal stability, adhesion of filler to the polymer, and flammability. It has been shown that the addition of flax and hemp fibers improves the mechanical properties of the composite compared to pure polymer. The tensile strength of the pure polymer samples was 24.64 MPa, while the tensile strength of composites reinforced with flax fibers ranged from 31.26 to 34.45 MPa, and those reinforced with hemp fibers ranged from 31.41 to 33.36 MPa. Studying the composites’ flammability showed that filling them with osmotic degummed hemp fibers reduced the maximum heat release rate by over 34% for hemp compared to pure polymer. This research shows that the composites filled with flax and hemp fibers, regardless of extraction method, are characterized by reduced flammability and improved mechanical properties compared to the pure polyethylene samples. Full article
Show Figures

Figure 1

15 pages, 1066 KiB  
Article
Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact
by Mirela Roxana Apsan, Ana Maria Mitu, Nicolae Pop, Tudor Sireteanu, Vicentiu Marius Maxim and Adrian Musat
J. Compos. Sci. 2025, 9(7), 338; https://doi.org/10.3390/jcs9070338 - 29 Jun 2025
Viewed by 378
Abstract
This paper analyzed the behavior of polymer composite materials reinforced with randomly oriented short natural fibers (hemp, flax, etc.) subjected to external stresses under quasistatic contact conditions with dry Coulomb friction. We presumed the composite body, a 2D flat rectangular plate, being in [...] Read more.
This paper analyzed the behavior of polymer composite materials reinforced with randomly oriented short natural fibers (hemp, flax, etc.) subjected to external stresses under quasistatic contact conditions with dry Coulomb friction. We presumed the composite body, a 2D flat rectangular plate, being in frictional contact with a rigid foundation for the quasistatic case. The manuscript proposes the finite element method approximation in space and the finite difference approximation in time. The problem of quasistatic frictional contact is described with a special finite element, which can analyze the state of the nodes in the contact area, and their modification, between open, sliding, and fixed contact states, in the analyzed time interval. This finite element also models the Coulomb friction law and controls the penetrability according to a power law. Moreover, the quasi-static case analyzed allows for the description of the load history using an incremental and iterative algorithm. The discrete problem will be a static and nonlinear one for each time increment, and in the case of sliding contact, the stiffness matrix becomes non-symmetric. The regularization of the non-differentiable term comes from the modulus of the normal contact stress, with a convex function and with the gradient in the sub-unit modulus. The non-penetration condition was achieved with the penalty method, and the linearization was conducted with the Newton–Raphson method. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

14 pages, 4406 KiB  
Article
Craftsmanship and Techniques of a Lacquered Ear Cup from the Ancient Nanyue Kingdom
by Lin Zheng, Xia Li, Zichen Zhao, Shuang’e Tian, Jianling Tang, Siming Li, Xiaocen Li, Na Wang and Tengfei Yu
Coatings 2025, 15(7), 752; https://doi.org/10.3390/coatings15070752 - 25 Jun 2025
Viewed by 408
Abstract
This study analyzes a lacquered ear cup excavated from the Luobowan tomb complex in Guigang, Guangxi, attributed to the Nanyue Kingdom of the early Han dynasty. A range of analytical techniques, including optical microscopy (OM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), [...] Read more.
This study analyzes a lacquered ear cup excavated from the Luobowan tomb complex in Guigang, Guangxi, attributed to the Nanyue Kingdom of the early Han dynasty. A range of analytical techniques, including optical microscopy (OM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), pyrolysis–gas chromatography–mass spectrometry (Py-GC-MS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), were employed to investigate the structural layers, material composition, and preservation state of the artifact. The lacquerware consists of four traditional layers: a wooden core, fabric reinforcement, lacquer ground, and lacquer film, reflecting Central Plains lacquerware techniques. The wooden core was identified as Phoebe sp., and the fabric layer is likely hemp, though fiber degradation limited exact identification. The lacquer ground layer contains natural lacquer mixed with SiO2 from brick or tile powder. The lacquer film is a blend of Chinese and Vietnamese lacquer, with no synthetic additives or plant oils detected. The red lacquer layer contains cinnabar (HgS) as a pigment, while the black lacquer uses carbon black. Differences in moisture content between the red and black lacquer films are attributed to variations in surface porosity and pigment characteristics. This research provides valuable insights into Nanyue lacquer technology and preservation challenges. Full article
(This article belongs to the Special Issue Research and Conservation of Ancient Lacquer)
Show Figures

Figure 1

36 pages, 4774 KiB  
Review
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi and Nicoleta Ungureanu
Polymers 2025, 17(12), 1691; https://doi.org/10.3390/polym17121691 - 18 Jun 2025
Viewed by 758
Abstract
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers [...] Read more.
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers (FRPs)—offer appealing alternatives due to their high specific strength and stiffness, corrosion resistance, and design flexibility. Meanwhile, increasing environmental awareness has triggered interest in biocomposites, which contain natural fibers (e.g., flax, hemp, straw) and/or bio-based resins (e.g., PLA, biopolyesters), aligned with circular economy principles. This review offers a comprehensive overview of synthetic composites and biocomposites for agricultural machinery and equipment (AME). It briefly presents their fundamental constituents—fibers, matrices, and fillers—and recapitulates relevant mechanical and environmental properties. Key manufacturing processes such as hand lay-up, compression molding, resin transfer molding (RTM), pultrusion, and injection molding are discussed in terms of their applicability, benefits, and limits for the manufacture of AME. Current applications in tractors, sprayers, harvesters, and planters are covered in the article, with advantages such as lightweighting, corrosion resistance, flexibility and sustainability. Challenges are also reviewed, including the cost, repairability of damage, and end-of-life (EoL) issues for composites and the moisture sensitivity, performance variation, and standardization for biocomposites. Finally, principal research needs are outlined, including material development, long-term performance testing, sustainable and scalable production, recycling, and the development of industry-specific standards. This synthesis is a practical guide for researchers, engineers, and manufacturers who want to introduce innovative material solutions for more efficient, longer lasting, and more sustainable agricultural machinery. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Enhancing Mechanical Properties of Hemp and Sisal Fiber-Reinforced Composites Through Alkali and Fungal Treatments for Sustainable Applications
by Rahul Kovuru and Jens Schuster
J. Manuf. Mater. Process. 2025, 9(6), 191; https://doi.org/10.3390/jmmp9060191 - 10 Jun 2025
Viewed by 738
Abstract
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and [...] Read more.
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and fungal treatments. Experimental results show that fungal treatment significantly improves tensile and flexural strength, while hardness slightly decreases. Water absorption tests revealed moderate reductions in hydrophilicity compared to untreated samples, although absolute water uptake remains higher than conventional glass/epoxy composites. Microscopy analysis further confirmed enhanced fiber adhesion and structural integrity in treated specimens. These findings suggest that hybrid composites reinforced with hemp and sisal, particularly with fungal treatment, hold promise for low-to-medium load sustainable applications in the automotive interiors, packaging, and construction industries, where moderate mechanical performance and partial biodegradability are acceptable. This research contributes to the advancement of bio-based composite materials while acknowledging current limitations in long-term durability and complete biodegradability. Full article
Show Figures

Figure 1

13 pages, 3459 KiB  
Article
Incremental Forming of Natural Fiber-Reinforced Polypropylene Composites: Considerations on Formability Limits and Energy Consumption
by Antonio Formisano, Dario De Fazio, Giuseppe Irace and Massimo Durante
Materials 2025, 18(12), 2688; https://doi.org/10.3390/ma18122688 - 7 Jun 2025
Viewed by 483
Abstract
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably [...] Read more.
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably compared to synthetic fiber-reinforced composites, due to the availability and unique properties of natural fibers in polymer applications. One of the dominant thermoplastics used as a matrix is polypropylene. This experimental study focuses on the incremental forming of natural fiber-reinforced polypropylene composites. Cones and spherical caps were manufactured from composite laminates of polypropylene reinforced with hemp and flax long-fiber fabrics. The formability limits, observed through failures and defects, as well as the forming forces, power, and energy consumption, were investigated to examine the feasibility of incremental forming applied to these composite materials; based on the results obtained, it is possible to say that the process can manufacture components with not very high wall angles but under low load conditions and allowing to limit the energy impact. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

29 pages, 9212 KiB  
Article
Physical Structural Mechanical and Thermal Insulation Properties of Hemp Fiber-Substituted Geopolymer Composites
by Ahmet Filazi, Reyhan Akat, Muharrem Pul, Songül Tortuk and Ali Özdin
Materials 2025, 18(11), 2536; https://doi.org/10.3390/ma18112536 - 28 May 2025
Cited by 1 | Viewed by 768
Abstract
This study examines the thermal insulation capacity, mechanical performance, and high-temperature resistance of geopolymer composites reinforced with 5%, 10%, and 20% hemp fiber. This research aims to develop sustainable, high-performance construction materials with enhanced thermal efficiency and structural integrity. Thermal conductivity, compressive strength, [...] Read more.
This study examines the thermal insulation capacity, mechanical performance, and high-temperature resistance of geopolymer composites reinforced with 5%, 10%, and 20% hemp fiber. This research aims to develop sustainable, high-performance construction materials with enhanced thermal efficiency and structural integrity. Thermal conductivity, compressive strength, and flexural strength tests were conducted on geopolymer mortar specimens to evaluate their performance. The results indicate that increasing hemp fiber content improves thermal insulation, with the 20% hemp fiber mixture achieving the lowest thermal conductivity. However, hemp fiber reinforcement leads to reductions in both compressive and flexural strength while maintaining structural stability. These findings highlight the potential of hemp fiber-reinforced geopolymers as eco-friendly alternatives to conventional insulation materials, particularly for applications requiring fire resistance and thermal efficiency, despite the observed decrease in mechanical properties. This research contributes to the advancement of sustainable construction materials and underscores the viability of hemp fiber-reinforced geopolymer mortars for industrial applications. Further studies are recommended to optimize mix designs and assess long-term durability under various environmental conditions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 3531 KiB  
Article
Carbonized Hemp Fiber for Use in Composites
by Sodiq B. Yusuf, Michael R. Maughan and Armando G. McDonald
Materials 2025, 18(11), 2509; https://doi.org/10.3390/ma18112509 - 27 May 2025
Viewed by 611
Abstract
This study investigates the use of carbonized hemp fiber (CHF) as a reinforcement for phenol resorcinol formaldehyde (PRF)-based fiber composites. The hemp fiber was carbonized slowly up to 1000 °C under N2 with a yield of 18%. Compression-molded composites were prepared with [...] Read more.
This study investigates the use of carbonized hemp fiber (CHF) as a reinforcement for phenol resorcinol formaldehyde (PRF)-based fiber composites. The hemp fiber was carbonized slowly up to 1000 °C under N2 with a yield of 18%. Compression-molded composites were prepared with CHF and then compared to hemp (HF) and wood fiber (WF) at 0 to 50% loading with PRF resin. The flow characteristics of the uncured composites were determined by dynamic rheology and showed pseudoplastic behavior; the composites show promise as extrudable materials. The flexural strength of the HF composites (69 MPa for 40% HF) was higher than the CHF composites. The thermal stability of the composites was determined by thermogravimetric analysis (TGA), and the CHF composites were more stable than the HF and WF composites. Carbonization was shown to enhance both the thermal stability and the hydrophobicity of the composites, which is expected to lead to less susceptibility to weathering and biological attack. Formulations of 50% WF, 50% CHF, and 30% HF fiber loadings with PRF were able to be extruded into rods. Extruded CHF composites showed better mechanical properties than the HF and WF composites. Full article
Show Figures

Graphical abstract

23 pages, 3925 KiB  
Article
The Use of Bio-Polyurethane Binder for the Development of Engineered Wood Composites
by Sigitas Vėjelis, Agnė Kairytė, Saulius Vaitkus and Arūnas Kremensas
Polymers 2025, 17(11), 1434; https://doi.org/10.3390/polym17111434 - 22 May 2025
Viewed by 1049
Abstract
Fiber hemp shives and biopolyurethane binder were used to create an engineered wood composite due to the synergistic properties of these materials. This study created engineered wood specimens using different ratios of biopolyurethane binder and hemp shives, which varied from 0.5 to 1.5. [...] Read more.
Fiber hemp shives and biopolyurethane binder were used to create an engineered wood composite due to the synergistic properties of these materials. This study created engineered wood specimens using different ratios of biopolyurethane binder and hemp shives, which varied from 0.5 to 1.5. Different pressure levels were used when preparing the specimens, which were 1.5, 3.0, and 4.5 MPa. The formed engineered wood specimens showed that both the amount of binder and the level of pressure significantly influence the strength and moisture indicators, and different processes occur when increasing the amount of binder and the level of pressure. The research showed that the developed engineered wood composites had reached bending strength equal to 17 MPa, tensile strength equal to 7 MPa, and compressive stress equal to 11 MPa. In most cases, the strength index values were higher than those of various industrial-engineered wood products. Engineered wood was characterized by water absorption from 35 to 10%, and swelling in water varied from 26 to 10%. The flammability of the specimens, determined by the low-flame method, indicated that the specimens were flammable, but the expanded graphite used allowed for the creation of non-flammable specimens. Full article
(This article belongs to the Special Issue Advances in Eco-Friendly Polyurethane Foams and Adhesives)
Show Figures

Figure 1

17 pages, 9487 KiB  
Article
Polymer Composite Sandwich Panels Composed of Hemp and Plastic Skins and Composite Wood, Recycled Plastic, and Styrofoam Cores
by Ashiqul Islam, Wahid Ferdous, Paulomi (Polly) Burey, Kamrun Nahar, Libo Yan and Allan Manalo
Polymers 2025, 17(10), 1359; https://doi.org/10.3390/polym17101359 - 15 May 2025
Viewed by 620
Abstract
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores [...] Read more.
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores (composite wood, recycled plastic, and styrofoam) materials. The skins of these sandwich panels were investigated under five different environmental conditions (normal air, water, hygrothermal, saline solution, and 80 °C elevated temperature) over seven months to evaluate their durability performance. In addition, the tensile and dynamic mechanical properties of those sandwich panels were studied. The bending behavior of cores and sandwich panels was also investigated and compared. The results indicated that elevated temperatures are 30% more detrimental to fiber composite laminates than normal water. Composite laminates made of hemp are more sensitive to environmental conditions than composite laminates made of recycled PET. A higher-density core makes panels more rigid and less susceptible to indentation failure. The flexible plastic cores are found to be up to 25% more effective at increasing the strength of sandwich panels than brittle wood cores. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

Back to TopTop