Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact
Abstract
1. Introduction
2. Materials and Methods
2.1. Quasistatic Formulation of Contact Problems with Friction for Composite Materials
- (a)
- if and , we obtain local but nonlinear laws;
- (b)
- if and , we obtain nonlocal laws;
- (c)
- if and , we obtain classical Coulomb’s laws;
- (d)
- if and , if is known, the contact area is known, a priori;
- (e)
- if we obtain the classical problem of frictionless unilateral contact.
2.2. Variational Formulation of Quasistatic Contact Problems for Composite Materials
2.3. Incremental Formulations Obtained by Temporal Discretization
2.4. Approximation Using the Finite Elements Method and the Description of the Incremental and Iterative Algorithms
2.4.1. The Existence and the Uniqueness of the Solution of the Incremental Problem: Contact Finite Element with Friction
2.4.2. The Newton–Raphson Algorithm in Iterative and Incremental Solving of Nonlinear Algebraic Systems
- Initialize data t0 = 0, k = 0, n = 0,
- Calculate the stiffness matrix K of the composite;
- Calculate the contact nodal forces P and the frictional contact forces J, assemble the global stiffness matrix KN and the global incremental loading vector on the sub-interval , followed by resolving with the Newton–Raphson algorithm {};
- Check the convergence: if < TOL, go to (vii);
- Else go to (vi);
- Update the displacement fields, the condition + , and the increments of the loading forces ;
- n = n + 1 and go to (ii);
- Exit.
2.4.3. Numerical Simulation
- -
- Vf, Vm are the volume ratios of the fibers and matrix (Vf + Vm = 1), respectively;
- -
- Ef, Em are the elasticity modules of the fibers and matrix, respectively,
- -
- η is an orientation factor that depends on the fiber length, orientation, adhesion, etc. (for random orientation in 3D, η ≈ 1/5; for random 2D, η ≈ 3/8).
- DT = initializes iterations;
- PROP = performs the proportional incremental loading;
- CV = performs the convergence test of the displacements.
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Tembleque, L.; Buroni, F.; Abascal, R.; Sáez, A. Analysis of FRP composites under frictional contact condition. Int. J. Solids Struct. 2013, 50, 3947–3959. [Google Scholar] [CrossRef]
- Alzweighi, M.; Tryding, J.; Mansour, R.; Borgqvist, E.; Kulachenko, A. Anisotropic damage behavior in fiber-based materials: Modeling and experimental validation. J. Mech. Phys. Solids 2023, 181, 105430. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Abdollahiparsa, H.; Shahmirzaloo, A.; Teuffel, P.; Blok, R. A review of recent developments in structural applications of natural fiber-Reinforced composites (NFRCs). Compos. Adv. Mater. 2023, 32, 1–18. [Google Scholar] [CrossRef]
- Vlassak, J.J.; Ciavarella, M.; Barber, J.R.; Wang, X. The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 2003, 51, 1701–1721. [Google Scholar] [CrossRef]
- Ning, X.; Lovell, M.R.; Slaughter, W.S. Asymptotic solutions for axisymmetric contact of a thin, transversely isotropic elastic layer. Wear 2006, 260, 693–698. [Google Scholar] [CrossRef]
- Bagault, C.; Nélias, D.; Baietto, M.C.; Ovaert, T.C. Contact analyses for anisotropic half-space coated with an anisotropic layer: Effect of the anisotropy on the pressure distribution and contact area. Int. J. Solids Struct. 2013, 50, 743–754. [Google Scholar] [CrossRef]
- Birleanu, C.; Udroiu, R.; Cioaza, M.; Pustan, M.; Paul, B.; Vilau, C. The Effect of fiber Weight Fraction on Tribological Behavior for Glass Fiber Reinforced Polymer. Polymers 2025, 17, 720. [Google Scholar] [CrossRef]
- Tserpes, K.; Sioutis, I. Advances in Composite Materials for Space Applications: A Comprehensive Literature Review. Aerospace 2025, 12, 215. [Google Scholar] [CrossRef]
- Goda, T.; Vàradi, K.; Wetzel, B.; Friedrich, K. Finite element simulation of the fiber–matrix debonding in polymer composites produced by a sliding indentor: Part II: Parallel and anti-parallel fiber orientation. J. Compos. Mater. 2004, 38, 1607–1618. [Google Scholar] [CrossRef]
- Vàradi, K.; Nèder, Z.; Friedrich, K.; Flöck, J. Finite-element analysis of a polymer composite subjected to a ball indentation. Compos. Sci. Technol. 1999, 59, 271–281. [Google Scholar]
- Duvaut, G. Equilibre d’un solide elastique avec contact unilateral et frottement de Coulomb. C. R. Acad. Sc. Paris 1980, 290, 263–265. [Google Scholar]
- Oden, J.T.; Pires, E. Contact Problems in Elastostatics with Non-Local Friction Laws; TICOM Report; The University of Texas at Austin: Austin, TX, USA, 1981; pp. 81–112. [Google Scholar]
- Cocu, M. Existence of solutions of Signorini problems with friction. Int. J. Eng. Sci. 1984, 22, 567–575. [Google Scholar] [CrossRef]
- Oden, J.T.; Pires, E. Numerical analysis of certain contact problems in elasticity with nonlocal friction laws. Comp. Struct. 1983, 16, 481–485. [Google Scholar] [CrossRef]
- Andersson, L.E. A global existence result for a quasistatic contact problem with friction. Adv. Math. Sci. Appl. 1995, 5, 249–286. [Google Scholar]
- Klarbring, A.; Mikelic, A.; Schillor, A. A global existence result for the quasistatic frictional contact problem with normal compliance. In Unilateral Problems in Structural Analysis IV (Capri 1989); Birkhauser: Basel, Switzerland, 1991; pp. 85–111. [Google Scholar]
- Pop, N. Preconditioning Uzawa algorithm for contact problems. PAMM Proc. Appl. Math. Mech. 2008, 8, 10985–10986. [Google Scholar] [CrossRef]
- Bonari, J.; Paggi, M.; Dini, D. A new finite element paradigm to solve contact problems with roughness. Int. J. Solids Struct. 2022, 253, 111643. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, M.; Yu, Q.; Shan, Y.; Zhang, Y. Investigations on the Adhesive Contact Behaviors between a Viscoelastic Stamp and a Transferred Element in Microtransfer Printing. Coatings 2021, 11, 1201. [Google Scholar] [CrossRef]
- Bensaada, A.; Essoufi, E.-H.; Zafrar, A. Primal-dual formulation for parameter estimation in elastic contact problem with friction. Appl. Math. Sci. Eng. 2024, 32, 2367025. [Google Scholar] [CrossRef]
- Katouzian, M.; Vlase, S.; Marin, M.; Pop, N. Temperature Influence on the Creep Behavior of a Carbon Fiber/Polyetheretherketone Composite. J. Appl. Comput. Mech. 2025, 1–10. [Google Scholar] [CrossRef]
- Katouzian, M.; Vlase, S. A Model to Study the Creep Behavior of Carbon Fiber/Epoxy Resin Composites Under Temperature. Appl. Sci. 2025, 15, 4206. [Google Scholar] [CrossRef]
- Vasile, A.; Coropeţchi, I.C.; Constantinescu, D.M.; Sorohan, S.; Picu, C.R. Simulated annealing algorithms used for microstructural design of composites. Mater. Today Proc. 2023, 93, 680–684. [Google Scholar] [CrossRef]
- Wriggers, P.; Simo, J.C. A note on tangent stiffness for fully nonlinear contact problems. Commun. Appl. Numer. Methods 1985, 1, 199–203. [Google Scholar] [CrossRef]
- Simo, J.C.; Wriggers, P.; Taylor, R.L. A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput. Methods Appl. Mech. Eng. 1985, 50, 163–180. [Google Scholar] [CrossRef]
- Raous, M.; Chabrand, P.; Lebon, F. Numerical method for frictional contact problems and applications. J. Theor. Appl. Mech. 1988, 7, 111–128. [Google Scholar]
- Hull, D.; Clyne, T.W. On Introduction to Composite Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Apsan, M.R.; Mitu, A.M.; Neagoe, C.N.; Pop, N.; Sireteanu, T. Non-Destructive Testing for Evaluation of Young’s Modulus by Using Free Vibration Response of Composite Materials. Appl. Sci. 2025, 15, 189. [Google Scholar] [CrossRef]
- Halpin, J.C.; Kardos, J.L. The Halpin-Tsai Equations: A Review. Polym. Eng. Sci. 1976, 16, 344–352. [Google Scholar]
- Mina, J.H.; González, A.V.; Muñoz-Vélez, M.F. Micro- and Macromechanical Properties of a Composite with a Ternary PLA–PCL–TPS Matrix Reinforced with Short Fique Fibers. Polymers 2020, 12, 58. [Google Scholar] [CrossRef]
- Alart, P.; Lebon, F. Numerical Study of a Stratified Composite Coupling Homogenization and Frictional Contact. Math. Comput. Model. 1988, 28, 273–286. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 4th ed.; McGraw-Hill: London, UK, 1991; Volume 2. [Google Scholar]
F [N] | f [N] | Gap Status AB [mm] | Slip Status BC [mm] | Stick Status CD [mm] | |
---|---|---|---|---|---|
0.2 | 100,000 | −50,000 | 0. | 2.5 | 37.5 |
(2 nodes) | (15 nodes) | ||||
0.2 | 100,000 | −150,000 | 0. | 10 | 30 |
(5 nodes) | (12 nodes) | ||||
0.2 | 100,000 | −250,000 | 0. | 35 | 5 |
(14) | (3 nodes) |
F [N] | f [N] | Gap Status AB [mm] | Slip Status BC [mm] | Stick Status CD [mm] | |
---|---|---|---|---|---|
0.2 | 100,000 | −50,000 | 0. | 15 | 25 |
0.2 | 100,000 | −150,000 | 0. | 32.5 | 7.5 |
0.2 | 100,000 | −250,000 | 0. | 37.5 | 2.5 |
F [N] | F [N] | Gap Status AB [mm] | Slip Status BC [mm] | Stick Status CD [mm] | |
---|---|---|---|---|---|
0.0 | 200,000 | −100,000 | 0 | 40 | 0 |
0.2 | 200,000 | −100,000 | 0 | 35 | 5 |
Case A | Case B | Case C | Case D | Meaning |
---|---|---|---|---|
LOOP 10 | TANG (UTAN) | LOOP 2 | DT 1 | |
TANG (UTAN) | LOOP 10 | TANG (UTAN) | PROP 1 | |
FORM | FORM | LOOP 5 | LOOP 10 | |
SOLV | SOLV | FORM | TIME | |
DISP 2 | DISP 2 | SOLV | TANG (UTAN) | Calculate the K matrix |
NEXT | NEXT | DISP | FORM | Calculate the F updated free term |
STRE | STRE | NEXT | SOLV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apsan, M.R.; Mitu, A.M.; Pop, N.; Sireteanu, T.; Maxim, V.M.; Musat, A. Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact. J. Compos. Sci. 2025, 9, 338. https://doi.org/10.3390/jcs9070338
Apsan MR, Mitu AM, Pop N, Sireteanu T, Maxim VM, Musat A. Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact. Journal of Composites Science. 2025; 9(7):338. https://doi.org/10.3390/jcs9070338
Chicago/Turabian StyleApsan, Mirela Roxana, Ana Maria Mitu, Nicolae Pop, Tudor Sireteanu, Vicentiu Marius Maxim, and Adrian Musat. 2025. "Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact" Journal of Composites Science 9, no. 7: 338. https://doi.org/10.3390/jcs9070338
APA StyleApsan, M. R., Mitu, A. M., Pop, N., Sireteanu, T., Maxim, V. M., & Musat, A. (2025). Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact. Journal of Composites Science, 9(7), 338. https://doi.org/10.3390/jcs9070338