Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = heat pump scheduling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 235
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

17 pages, 3087 KiB  
Article
Coordinated Scheduling and Operational Characterization of Electricity and District Heating Systems: A Case Study
by Peng Yu, Dianyang Li, Dai Cui, Jing Xu, Chengcheng Li and Huiqing Cao
Energies 2025, 18(9), 2211; https://doi.org/10.3390/en18092211 - 26 Apr 2025
Viewed by 429
Abstract
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing [...] Read more.
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing systems. Therefore, this study systematically explores the deep transfer modifications of a specific thermal power plant based in Liaoning, China, and the operational characteristics of the heating supply system of a particular heating company. In addition, the overall PHS operational performance is analyzed. The results indicate that both absorption heat pumps and solid-state electric thermal storage technologies effectively improve system load regulation capabilities. The temperature decrease in the water medium in the primary network was proportional to the pipeline distance. When the pipeline lengths were 1175 and 14,665 m, the temperature decreased by 0.66 and 3.48 °C, respectively. The heat exchanger effectiveness and logarithmic mean temperature difference (LMTD) were positively correlated with the outdoor temperature. When the outdoor temperature dropped to −18 °C, the heat exchanger efficiency decreased to 60%, and the LMTD decreased to 17.5 °C. The study findings provide practical data analysis support to address the balance between power supply and heating demand. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 5774 KiB  
Article
Research and Demonstration of Operation Optimization Method of Zero-Carbon Building’s Compound Energy System Based on Day-Ahead Planning and Intraday Rolling Optimization Algorithm
by Biao Qiao, Jiankai Dong, Wei Xu, Ji Li and Fei Lu
Buildings 2025, 15(5), 836; https://doi.org/10.3390/buildings15050836 - 6 Mar 2025
Cited by 1 | Viewed by 663
Abstract
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it [...] Read more.
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it is necessary to carry out relevant optimization methods. This paper investigated the current research status of the control and scheduling of compound energy systems in zero-carbon buildings at home and abroad, selected a typical zero-carbon building as the research object, analyzed its energy system’s operational data, and proposed an operation scheduling algorithm based on day-ahead flexible programming and intraday rolling optimization. The multi-energy flow control algorithm model was developed to optimize the operation strategy of heat pump, photovoltaic, and energy storage systems. Then, the paper applied the algorithm model to a typical zero-carbon building project, and verified the actual effect of the method through the actual operational data. After applying the method in this paper, the self-absorption rate of photovoltaic power generation in the building increased by 7.13%. The research results provide a theoretical model and data support for the operation control of the zero-carbon building’s compound energy system, and could promote the market application of the compound energy system. Full article
(This article belongs to the Special Issue Research on Solar Energy System and Storage for Sustainable Buildings)
Show Figures

Figure 1

35 pages, 4772 KiB  
Article
Optimised Sizing and Control of Non-Invasive Retrofit Options for More Sustainable Heat and Power Supply to Multi-Storey Apartment Buildings
by Jevgenijs Kozadajevs, Ivars Zalitis, Anna Mutule and Lubova Petrichenko
Sustainability 2025, 17(1), 236; https://doi.org/10.3390/su17010236 - 31 Dec 2024
Viewed by 1009
Abstract
Considering the ambitious climate goals defined by the European Union, the significant share of energy demand represented by buildings, the slow process of their renovation due to challenges such as a need for majority consent from residents and limited available space in dense [...] Read more.
Considering the ambitious climate goals defined by the European Union, the significant share of energy demand represented by buildings, the slow process of their renovation due to challenges such as a need for majority consent from residents and limited available space in dense urban areas, this study aims to foster retrofitting of energy supply systems of multi-storey apartment buildings, improving their sustainability. This entails making the transition to sustainable energy systems more socially acceptable and practical in urban contexts by proposition and demonstration of the potential of a power and heat supply system retrofit that minimises disruptions felt by residents. It integrates rooftop renewable power sources, heat storage with an electric heater, heat pumps, and existing connections to public utility networks. Furthermore, simulation results of both single- and multi-objective optimisation (performed by the genetic algorithm) for equipment selection, as well as conventional and smart control (implemented as a gradient-based optimisation) for daily scheduling, are compared, defining the main scientific contribution of the study. It is found possible to achieve a net present value of up to almost twice the annual energy expenses of the unrenovated building or self-sufficiency rate of up to 41.6% while using conventional control. These benefits can reach 2.6 times or 49.8% if the smart control is applied, demonstrating both the profitability and improved self-sufficiency achievable with the proposed approach in Latvian conditions. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

24 pages, 9000 KiB  
Article
Energy Management System for Polygeneration Microgrids, Including Battery Degradation and Curtailment Costs
by Yassine Ennassiri, Miguel de-Simón-Martín, Stefano Bracco and Michela Robba
Sensors 2024, 24(22), 7122; https://doi.org/10.3390/s24227122 - 5 Nov 2024
Viewed by 1467
Abstract
Recent advancements in sensor technologies have significantly improved the monitoring and control of various energy parameters, enabling more precise and adaptive management strategies for smart microgrids. This work presents a novel model of an energy management system (EMS) for grid-connected polygeneration microgrids that [...] Read more.
Recent advancements in sensor technologies have significantly improved the monitoring and control of various energy parameters, enabling more precise and adaptive management strategies for smart microgrids. This work presents a novel model of an energy management system (EMS) for grid-connected polygeneration microgrids that allows optimizing the management of electrical storage systems, electric vehicles, and other deferrable loads such as heat pumps. The main novelty of this model is that it incorporates both climate comfort variables and the consideration of the degradation of the energy storage capacity in the control strategy, as well as a penalty for the dumping of surpluses. The model has been applied to a smart, sustainable building as a case study. The results show that the proposed model is highly adaptable to diverse weather conditions, minimizing renewable energy losses while satisfying the energy demand and providing comfort to the building’s users. The study shows (i) that EVs’ dynamic charging schedules play a crucial role, (ii) that it is possible to minimize a battery’s degradation by optimizing its cycling, averaging one cycle per day, and (iii) the critical impact of seasonal weather patterns on microgrid energy management and the strategic role of EVs and storage systems in maintaining energy balance and efficiency. Full article
(This article belongs to the Special Issue Sensors Technology and Data Analytics Applied in Smart Grid)
Show Figures

Figure 1

20 pages, 3485 KiB  
Article
Validation of a Model Predictive Control Strategy on a High Fidelity Building Emulator
by Davide Fop, Ali Reza Yaghoubi and Alfonso Capozzoli
Energies 2024, 17(20), 5117; https://doi.org/10.3390/en17205117 - 15 Oct 2024
Cited by 1 | Viewed by 1413
Abstract
In recent years, advanced controllers, including Model Predictive Control (MPC), have emerged as promising solutions to improve the efficiency of building energy systems. This paper explores the capabilities of MPC in handling multiple control objectives and constraints. A first MPC controller focuses on [...] Read more.
In recent years, advanced controllers, including Model Predictive Control (MPC), have emerged as promising solutions to improve the efficiency of building energy systems. This paper explores the capabilities of MPC in handling multiple control objectives and constraints. A first MPC controller focuses on the task of ensuring thermal comfort in a residential house served by a heat pump while minimizing the operating costs when subject to different pricing schedules. A second MPC controller working on the same system tests the ability of MPC to deal with demand response events by enforcing a time-varying maximum power usage limitation signal from the electric grid. Furthermore, multiple combinations of the control parameters are tested in order to assess their influence on the controller performance. The controllers are tested on the BOPTEST framework, which offers standardized test cases in high-fidelity emulation models, and pre-defined baseline control strategies to allow fair comparisons also across different studies. Results show that MPC is able to handle multi-objective optimal control problems, reducing thermal comfort violations by between 66.9% and 82% and operational costs between 15.8% up to 20.1%, depending on the specific scenario analyzed. Moreover, MPC proves its capability to exploit the building thermal mass to shift heating power consumption, allowing the latter to adapt its time profile to time-varying constraints. The proposed methodology is based on technologically feasible steps that are intended to be easily transferred to large scale, in-field applications. Full article
Show Figures

Figure 1

22 pages, 2500 KiB  
Review
Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector
by Hessam Golmohamadi, Saeed Golestan, Rakesh Sinha and Birgitte Bak-Jensen
Energies 2024, 17(18), 4670; https://doi.org/10.3390/en17184670 - 19 Sep 2024
Cited by 2 | Viewed by 2716
Abstract
The integration of renewable energy sources (RESs) is rapidly increasing within energy systems worldwide. However, this shift introduces intermittency and uncertainty on the supply side. To hedge against RES intermittency, demand-side flexibility introduces a practical solution. Therefore, further studies are required to unleash [...] Read more.
The integration of renewable energy sources (RESs) is rapidly increasing within energy systems worldwide. However, this shift introduces intermittency and uncertainty on the supply side. To hedge against RES intermittency, demand-side flexibility introduces a practical solution. Therefore, further studies are required to unleash demand-side flexibility in power systems. This flexibility is relevant across various sectors of power systems, including residential, industrial, commercial, and agricultural sectors. This paper reviews the key aspects of demand-side flexibility within the residential sector. To achieve this objective, a general introduction to demand flexibility across the four sectors is provided. As a contribution of this paper, and in comparison with previous studies, household appliances are classified based on their flexibility and controllability. The flexibility potential of key residential demands, including heat pumps, district heating, electric vehicles, and battery systems, is then reviewed. Another contribution of this paper is the exploration of demand-side flexibility scheduling under uncertainty, examining three approaches: stochastic programming, robust optimization, and information-gap decision theory. Additionally, the integration of demand flexibility into short-term electricity markets with high-RES penetration is discussed. Finally, the key objective functions and simulation software used in the study of demand-side flexibility are reviewed. Full article
(This article belongs to the Special Issue Renewable Energy Power Generation and Power Demand Side Management)
Show Figures

Figure 1

28 pages, 9681 KiB  
Article
Smart Operation Control of Power and Heat Demands in Active Distribution Grids Leveraging Energy Flexibility
by Rakesh Sinha, Sanjay K. Chaudhary, Birgitte Bak-Jensen and Hessam Golmohamadi
Energies 2024, 17(12), 2986; https://doi.org/10.3390/en17122986 - 17 Jun 2024
Cited by 2 | Viewed by 1195
Abstract
Demand flexibility plays a crucial role in mitigating the intermittency of renewable power sources. This paper focuses on an active distribution grid that incorporates flexible heat and electric demands, specifically heat pumps (HPs) and electric vehicles (EVs). Additionally, it addresses photovoltaic (PV) power [...] Read more.
Demand flexibility plays a crucial role in mitigating the intermittency of renewable power sources. This paper focuses on an active distribution grid that incorporates flexible heat and electric demands, specifically heat pumps (HPs) and electric vehicles (EVs). Additionally, it addresses photovoltaic (PV) power generation facilities and electrical batteries to enhance demand flexibility. To exploit demand flexibility from both heat and electric demand, along with the integration of PVs and batteries, Control and Communication Mechanisms (CCMs) are formulated. These CCMs integrate demand flexibility into the distribution grids to obtain economic benefits for private households and, at the same time, facilitate voltage control. Concerning EVs, the paper discusses voltage-based droop control, scheduled charging, priority charging, and up-/down-power regulation to optimize the charging and discharging operations. For heat demands, the on-off operation of the HPs integrated with phase change material (PCM) storage is optimized to unlock heat-to-power flexibility. The HP controllers aim to ensure as much self-consumption as possible and provide voltage support for the distribution grid while ensuring the thermal comfort of residents. Finally, the developed CCMs are implemented on a small and representative community of an active distribution grid with eight houses using Power Factory software and DIgSILENT simulation language (DSL). This scalable size of the active distribution network facilitates the careful study of symbiotic interaction among the flexible load, generation, and different houses thoroughly. The simulation results confirm that the integration of flexible demands into the grid using the designed CCMs results in the grid benefiting from stabilized voltage control, especially during peak demand hours. Full article
Show Figures

Figure 1

18 pages, 3197 KiB  
Article
Optimizing Energy Management and Case Study of Multi-Energy Coupled Supply for Green Ships
by Zhe Wang, Yue Ma, Yinyu Sun, Haobo Tang, Menglong Cao, Rui Xia and Fenghui Han
J. Mar. Sci. Eng. 2023, 11(7), 1286; https://doi.org/10.3390/jmse11071286 - 25 Jun 2023
Cited by 20 | Viewed by 3445
Abstract
The ship industry is currently facing numerous challenges, including rising fuel prices, limited fuel resources, and increasingly strict regulations related to energy efficiency and pollutant emissions. In this context, the adoption of green-ship wind–photovoltaic–electricity–fuel multi-energy supply systems has emerged as an efficient and [...] Read more.
The ship industry is currently facing numerous challenges, including rising fuel prices, limited fuel resources, and increasingly strict regulations related to energy efficiency and pollutant emissions. In this context, the adoption of green-ship wind–photovoltaic–electricity–fuel multi-energy supply systems has emerged as an efficient and clean technology that harnesses multiple energy sources. These systems have the potential to increase the utilization of renewable energy in ship operations while optimizing management practices in order to enhance overall energy efficiency. To address these challenges, this article presents a comprehensive energy supply system for ships that integrates multi-energy sources for cold–heat–electricity supply. The primary components of this system include fuel cells, photovoltaic equipment, wind turbines, electric heating pumps, electric refrigerators, thermal refrigerators, batteries, and heat storage tanks. By ensuring the safety of the system, our approach aims to minimize daily operating costs and optimize the performance of the multi-energy flow system by running scheduling models. To achieve this, our proposed system utilizes dynamic planning techniques combined with ship navigation conditions to establish an optimized management model. This model facilitates the coordinated distribution of green ship electricity, thermal energy, and cooling loads. The results of our study demonstrate that optimized management models significantly reduce economic costs and improve the stability of energy storage equipment. Specifically, through an analysis of the economic benefits of power storage and heat storage tanks, we highlight the potential for reducing fuel consumption by 6.0%, 1.5%, 1.4%, and 2.9% through the use of electric–thermal hybrid energy storage conditions. Full article
(This article belongs to the Special Issue Marine Power Systems II)
Show Figures

Figure 1

23 pages, 9067 KiB  
Article
Techno-Economic Assessment of Residential Heat Pump Integrated with Thermal Energy Storage
by Sara Sultan, Jason Hirschey, Navin Kumar, Borui Cui, Xiaobing Liu, Tim J. LaClair and Kyle R. Gluesenkamp
Energies 2023, 16(10), 4087; https://doi.org/10.3390/en16104087 - 14 May 2023
Cited by 4 | Viewed by 2686
Abstract
Phase change material (PCM)-based thermal energy storage (TES) can provide energy and cost savings and peak demand reduction benefits for grid-interactive residential buildings. Researchers established that these benefits vary greatly depending on the PCM phase change temperature (PCT), total TES storage capacity, system [...] Read more.
Phase change material (PCM)-based thermal energy storage (TES) can provide energy and cost savings and peak demand reduction benefits for grid-interactive residential buildings. Researchers established that these benefits vary greatly depending on the PCM phase change temperature (PCT), total TES storage capacity, system configuration and location and climate of the building. In this study, preliminary techno-economic performance is reported for a novel heat pump (HP)-integrated TES system using an idealized approach. A simplified HP-TES was modeled for 1 year of space heating and cooling loads for a residential building in three different climates in the United States. The vapor compression system of the HP was modified to integrate with TES, and all heat transfer to and from the TES was mediated by the HP. A single PCM was used for heating and cooling, and the PCT and TES capacity were varied to observe their effects on the building’s energy consumption, peak load shifting and cost savings. The maximum reduction in electric consumption, utility cost and peak electric demand were achieved at a PCT of 30 °C for New York City and 20 °C for Houston and Birmingham. Peak energy consumption in Houston, New York City, and Birmingham was reduced by 47%, 53%, and 70%, respectively, by shifting peak load using a time-of-use utility schedule. TES with 170 MJ storage capacity allowed for maximum demand shift from on-peak to off-peak hours, with diminishing returns once the TES capacity equaled the daily building thermal loads experienced during the most extreme ambient conditions. Full article
(This article belongs to the Special Issue Advanced Thermal Energy Storage Technologies)
Show Figures

Figure 1

30 pages, 8165 KiB  
Article
Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy
by Chunxia Gao, Zhaoyan Zhang and Peiguang Wang
Energies 2023, 16(9), 3781; https://doi.org/10.3390/en16093781 - 28 Apr 2023
Cited by 8 | Viewed by 2452
Abstract
The coordinated use of electricity and a heat energy system can effectively improve the energy structure during winter heating in the northern part of China and improve the environmental pollution problem. In this paper, an economic scheduling model of an electric–thermal integrated energy [...] Read more.
The coordinated use of electricity and a heat energy system can effectively improve the energy structure during winter heating in the northern part of China and improve the environmental pollution problem. In this paper, an economic scheduling model of an electric–thermal integrated energy system, including a wind turbine, regenerative electric boiler, solar heat collection system, biomass boiler, ground source heat pump and battery is proposed, and a biomass boiler was selected as the auxiliary heat source of the solar heat collection system. A mixed integer linear programming model was established to take the operating cost of the whole system as the target. A day-ahead optimization scheduling strategy considering the demand side response and improving new energy consumption is proposed. In order to verify the influence of the coordinated utilization of the flexible load and energy storage equipment on the optimal scheduling in the model built, three scenarios were set up. Scenario 3 contains energy storage and a flexible load. Compared with scenario 1, the total cost of scenario 3 was reduced by 51.5%, and the abandonment cost of wind energy was reduced by 43.3%. The use of a flexible load and energy storage can effectively reduce the cost and improve new energy consumption. By increasing the capacity of the energy-storage device, the wind power is completely absorbed, but the operation and maintenance cost is increased, so the capacity of energy storage equipment is allocated reasonably according to the actual situation. Full article
(This article belongs to the Special Issue Modeling and Optimization Research of Integrated Energy Power System)
Show Figures

Figure 1

18 pages, 4285 KiB  
Article
Thermal Sensor Allocation for Effective and Efficient Heat Transfer Measurements in Transportation Systems
by Jorge Saavedra and David Gonzalez Cuadrado
Sensors 2023, 23(5), 2803; https://doi.org/10.3390/s23052803 - 3 Mar 2023
Cited by 3 | Viewed by 1839
Abstract
Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy distribution networks. To improve the performance and guarantee the endurance of such systems, it is critical to control their operational temperature within certain regimes. Under [...] Read more.
Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy distribution networks. To improve the performance and guarantee the endurance of such systems, it is critical to control their operational temperature within certain regimes. Under standard working conditions, those elements become heat sources either during their entire operational envelope or during given phases of it. Consequently, in order to maintain a reasonable working temperature, active cooling is required. The refrigeration may consist of the activation of internal cooling systems relying on fluid circulation or air suction and circulation pulled from the environment. However, in both scenarios pulling surrounding air or making use of coolant pumps increases the power demand. The augmented power demand has a direct impact on the power plant or electric generator autonomy, while instigating higher power demand and substandard performance from the power electronics and batteries’ compounds. In this manuscript, we present a methodology to efficiently estimate the heat flux load generated by internal heat sources. By accurately and inexpensively computing the heat flux, it is possible to identify the coolant requirements to optimize the use of the available resources. Based on local thermal measurements fed into a Kriging interpolator, we can accurately compute the heat flux minimizing the number of sensors required. Considering the need for effective thermal load description toward efficient cooling scheduling. This manuscript presents a procedure based on temperature distribution reconstruction via a Kriging interpolator to monitor the surface temperature using a minimal number of sensors. The sensors are allocated by means of a global optimization that minimizes the reconstruction error. The surface temperature distribution is then fed into a heat conduction solver that processes the heat flux of the proposed casing, providing an affordable and efficient way of controlling the thermal load. Conjugate URANS simulations are used to simulate the performance of an aluminum casing and demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 20777 KiB  
Article
Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and Cold Winter Zone in China
by Xia Wang, Jiachen Yuan, Kairui You, Xianrui Ma and Zhaoji Li
Sustainability 2023, 15(2), 1575; https://doi.org/10.3390/su15021575 - 13 Jan 2023
Cited by 15 | Viewed by 3603
Abstract
The International Energy Agency (IEA) emphasizes that using real building energy use data (RBEUD) to reflect the actual condition of buildings and inform policy-making is the most effective way to reduce buildings’ carbon emissions. However, based on IEA’s evaluation, regional and national building [...] Read more.
The International Energy Agency (IEA) emphasizes that using real building energy use data (RBEUD) to reflect the actual condition of buildings and inform policy-making is the most effective way to reduce buildings’ carbon emissions. However, based on IEA’s evaluation, regional and national building stock data are limited and lacking. Especially for China, the lack of RBEUD in buildings has limited our ability to address the energy performance gap (EPG). In this research, EPG refers to the difference between regulated energy consumption by design standards and actual energy usage. EPG makes it difficult to develop buildings that are energy-efficient. Therefore, this study aims to gather and analyze RBEUD in order to understand the role of occupants’ behavior in explaining the EPG of energy-efficient residential buildings in China. The results suggest that the actual consumption of residential buildings is less than 1/5–1/3 of the theoretical limits. The heat pump and air conditioner’s actual schedules and setpoint settings are the significant drivers that explain the EPG. In addition, the presentation of a database of 1128 households provides actual usage behavior parameters for policy-makers to improve the accuracy of building energy forecasting models. Full article
(This article belongs to the Special Issue Advances on Building Performance and Sustainability, Volume II)
Show Figures

Figure 1

13 pages, 3334 KiB  
Article
Analysis of the Influence of Selected Factors on Heating Costs and Pollutant Emissions in a Cold Climate Based on the Example of a Service Building Located in Bialystok
by Agata Ołtarzewska and Dorota Anna Krawczyk
Energies 2022, 15(23), 9111; https://doi.org/10.3390/en15239111 - 1 Dec 2022
Cited by 6 | Viewed by 1805
Abstract
In recent years, due to the rapidly growing global energy crisis and the ever-increasing prices of energy carriers, more attention has been paid to the energy efficiency of existing buildings, especially in the context of reducing harmful emissions and lowering heating costs. The [...] Read more.
In recent years, due to the rapidly growing global energy crisis and the ever-increasing prices of energy carriers, more attention has been paid to the energy efficiency of existing buildings, especially in the context of reducing harmful emissions and lowering heating costs. The purpose of this study was to analyse the influence of selected factors on heating costs and air pollution in a cold climate based on the example of a service building located in Bialystok, Poland. The following scenarios were assumed: the implementation of a heating schedule, improvement of the thermal insulation of the building envelope, lowering of the indoor temperature in all rooms, and moving away from a traditional heat source (gas boiler) to renewable energy (heat pump). The results showed that improvements in heat transfer coefficients had the greatest impact on reducing heating costs and that emissions from renewable energy sources depend largely on the national energy mix. Full article
Show Figures

Figure 1

33 pages, 3649 KiB  
Article
The Impact of Energy Renovation on Continuously and Intermittently Heated Residential Buildings in Southern Europe
by Yangmin Wang, Janne Hirvonen, Ke Qu, Juha Jokisalo and Risto Kosonen
Buildings 2022, 12(9), 1316; https://doi.org/10.3390/buildings12091316 - 27 Aug 2022
Cited by 7 | Viewed by 2738
Abstract
To achieve carbon neutrality in the EU, it is important to renovate the existing EU residential buildings for a higher building energy efficiency. This study examines the impacts of several novel renovation technologies on energy consumption, CO2 emissions and indoor climates in [...] Read more.
To achieve carbon neutrality in the EU, it is important to renovate the existing EU residential buildings for a higher building energy efficiency. This study examines the impacts of several novel renovation technologies on energy consumption, CO2 emissions and indoor climates in southern European residential buildings through building-level simulations. Three typical residential buildings in South Europe were chosen as the demo buildings to implement the novel technologies. The technologies were classified into passive, ventilation and generation packages, and then simulated independently under the intermittent and continuous heating schedules. Additionally, two final combinations of renovation technologies were also simulated to demonstrate the maximum energy and CO2 emissions reduction potential of the demo buildings. All novel retrofit technologies manifested obvious effects on the energy consumption and CO2 emissions. Nevertheless, the effects were significantly affected by the heating schedule. When the intermittent heating schedule was switched to the continuous heating schedule, the relative energy conservation and CO2 emissions reduction potential of the thermal insulation improvement measures (e.g., bio-aerogel thermal insulation) increased, while those of the generation measures (e.g., solar assisted heat pump) diminished. Renovation with the final combinations reduced the primary energy consumption by up to 66%, 74% and 65% in the continuously heated Greek, Portuguese and Spanish demo buildings, the corresponding CO2 emissions reductions of which were 65%, 75% and 74%, respectively. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop