Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector
Abstract
:1. Introduction
1.1. Why Demand Flexibility?
- The phase-out of fossil fuel power plants and vehicles.
- The phase-in of RESs and EVs with intermittent power generation and consumption.
1.2. Flexibility in Demand Sectors
1.3. Paper Structure and Contributions
- (1)
- Classification of household appliances: a classification of household appliances from the perspectives of flexibility and controllability is provided, along with a comprehensive review of the most important residential demands, including HPs, district heating, EVs, and PV-battery systems.
- (2)
- Survey of demand flexibility under uncertainty: a survey of demand flexibility under uncertainty is conducted, focusing on three recent models, including stochastic programming, robust optimization, and information-gap decision theory.
- (3)
- Review of objectives and simulation software: a comprehensive review of the main objectives of demand flexibility and the software tools used for scheduling demand flexibility is carried out.
2. Demand Flexibility in Residential Sector
2.1. Classification of Household Appliances
- (1)
- Thermostatically controllable appliances (TCAs)
- (2)
- Controllable non-thermal appliances (CNTAs)
- (3)
- Uncontrollable appliances (UAs)
2.2. Home Energy Management System
2.3. Heat Pumps
2.4. District Heating
- (1)
- The flexibility of thermal inertia of buildings: This is reflected in the thermal dynamics of buildings. Buildings contain thermal mass, such as walls and windows, which can store heat energy [53]. Consequently, indoor temperatures can be adjusted in response to electricity price variations and/or renewable power availability on the supply side.
- (2)
- The flexibility of thermal storage devices: These are specifically designed to store heat energy. Common storage devices in DH systems include water tanks, boreholes, chemical storage, and aquifers [54]. Heat energy can be stored during low-price hours (excess power) and used during high-price hours (power shortages).
- (3)
- The flexibility of the heat network: This is reflected in the temperature of the heat carrier. Adjusting the heat carrier temperature can provide power flexibility. However, temperature variation can accelerate pipe aging and material fatigue, particularly at weak joints, which is a limiting factor [55].
2.5. Electric Vehicles
2.6. Photovoltaic and Battery Storage
3. Demand Flexibility under Uncertainty
- (1)
- How complete is our information about the uncertain variables?
- (2)
- How precise do the strategies need to be for the final plan?
3.1. Stochastic Programming
3.2. Robust Optimization
3.3. Information-Gap Decision Theory
4. Integration of Demand Flexibility to Electricity Market
- (1)
- Day-ahead market: conducted 24 h before the power delivery time, this market determines electricity prices based on the intersection of supply and demand curves [87].
- (2)
- Intraday market: Held 60 to 10 min before the power delivery time, this market, also known as the adjustment market, allows participants to adjust their power procurement strategies based on updated flexibility requirements. Participants can buy or sell parts of their power portfolio, originally procured from the day-ahead market, in response to RES availability [88].
- (3)
- Balancing market (real-time market): conducted a few seconds before the energy delivery time, this market provides final up-/down-regulation to the power system [89].
5. Key Concepts of Flexibility Scheduling
5.1. Objective Functions
5.2. Communication and Data Exchange
5.3. Simulation Software
6. Limitations and Future Works
- (1)
- Consumer awareness and engagement in demand response programs;
- (2)
- Lack of standardizations for smart HEMSs;
- (3)
- Insufficient grid infrastructures for communication and data exchange;
- (4)
- Lack of market and regulatory mechanisms;
- (5)
- Vulnerability to cybersecurity attacks.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Battery energy storage systems | BESS |
Combined Heat and Power | CHP |
Continuous-Time Stochastic Model | CTSM |
Controllable non-thermal appliances | CNTA |
Demand response | DR |
Demand Response Aggregator | DRA |
Demand response program | DRP |
Differential Equations | DE |
Distribution System Operator | DSO |
District heating | DH |
Electric vehicle | EV |
Electric water heaters | EWH |
Energy management system | EMS |
Grid-to-vehicle | G2V |
Heat pump | HP |
Heat, ventilation, and air conditioning | HVAC |
Home energy management system | HEMS |
Information-gap decision theory | IGDT |
Model predictive control | MPC |
Phase-change Materials | PCM |
Photovoltaic | PV |
Power Line Carrier | PLC |
Probability Distribution Function | |
Renewable Energy Source | RES |
Thermostatically controllable appliances | TCA |
Uncontrollable appliances | UA |
Variable Frequency Drives | VFD |
Vehicle-to-grid | V2G |
References
- Lund, H.; Mathiesen, B. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Dumlao, S.M.G.; Ishihara, K.N. Impact assessment of electric vehicles as curtailment mitigating mobile storage in high PV penetration grid. Energy Rep. 2022, 8, 736–744. [Google Scholar] [CrossRef]
- Pourramezan, A.; Samadi, M. A novel approach for incorporating incentive-based and price-based demand response programs in long-term generation investment planning. Int. J. Electr. Power Energy Syst. 2022, 142, 108315. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Gu, W.; Lu, S.; Chung, C.Y. Dynamic optimal energy flow of integrated electricity and gas systems in continuous space. Appl. Energy 2024, 375, 124052. [Google Scholar] [CrossRef]
- Saedi, I.; Mhanna, S.; Mancarella, P. Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking. Appl. Energy 2021, 303, 117598. [Google Scholar] [CrossRef]
- Klyapovskiy, S.; You, S.; Cai, H.; Bindner, H.W. Integrated Planning of a Large-Scale Heat Pump in View of Heat and Power Networks. IEEE Trans. Ind. Appl. 2019, 55, 5–15. [Google Scholar] [CrossRef]
- Lezama, F.; Soares, J.; Canizes, B.; Vale, Z. Flexibility management model of home appliances to support DSO requests in smart grids. Sustain. Cities Soc. 2020, 55, 102048. [Google Scholar] [CrossRef]
- Finck, C.; Li, R.; Kramer, R.; Zeiler, W. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems. Appl. Energy 2018, 209, 409–425. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Sæle, H.; Degefa, M.Z. Electric water heater flexibility potential and activation impact in system operator perspective–Norwegian scenario case study. Energy 2021, 236, 121490. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, J.; Tan, Y.; Yin, R.; Zou, B.; Hu, M.; Yan, J. A novel forecast-based operation strategy for residential PV-battery-flexible loads systems considering the flexibility of battery and loads. Energy Convers. Manag. 2023, 278, 116705. [Google Scholar] [CrossRef]
- Yang, S.; Gao, H.O.; You, F. Demand flexibility and cost-saving potentials via smart building energy management: Opportunities in residential space heating across the US. Adv. Appl. Energy 2024, 14, 100171. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Pillai, J.R.; Khooban, M.H. Robust Self-Scheduling of Operational Processes for Industrial Demand Response Aggregators. IEEE Trans. Ind. Electron. 2020, 67, 1387–1395. [Google Scholar] [CrossRef]
- Gregory, A.T.M.; Homan, K.; Aghajanzadeh, A. Opportunities for Automated Demand Response in California’s Dairy Processing Industry; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2015. [Google Scholar]
- Olsen, A.; Goli, D.; Faulkner, S.; McKane, D. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2010. [Google Scholar]
- Bao, P.; Zhang, W.; Cheng, D.; Liu, M. Hierarchical control of aluminum smelter loads for primary frequency support considering control cost. Int. J. Electr. Power Energy Syst. 2020, 122, 106202. [Google Scholar] [CrossRef]
- Helin, K.; Käki, A.; Zakeri, B.; Lahdelma, R.; Syri, S. Economic potential of industrial demand side management in pulp and paper industry. Energy 2017, 141, 1681–1694. [Google Scholar] [CrossRef]
- Alarfaj, O.; Bhattacharya, K. Material Flow Based Power Demand Modeling of an Oil Refinery Process for Optimal Energy Management. IEEE Trans. Power Syst. 2019, 34, 2312–2321. [Google Scholar] [CrossRef]
- Wang, J.; You, S.; Zong, Y.; Træholt, C.; Dong, Z.Y.; Zhou, Y. Flexibility of combined heat and power plants: A review of technologies and operation strategies. Appl. Energy 2019, 252, 113445. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Asadi, A. A multi-stage stochastic energy management of responsive irrigation pumps in dynamic electricity markets. Appl. Energy 2020, 265, 114804. [Google Scholar] [CrossRef]
- Aghajanzadeh, A.; Therkelsen, P. Agricultural demand response for decarbonizing the electricity grid. J. Clean. Prod. 2019, 220, 827–835. [Google Scholar] [CrossRef]
- Loschan, C.; Schwabeneder, D.; Lettner, G.; Auer, H. Flexibility potential of aggregated electric vehicle fleets to reduce transmission congestions and redispatch needs: A case study in Austria. Int. J. Electr. Power Energy Syst. 2023, 146, 108802. [Google Scholar] [CrossRef]
- Li, Z.; Lei, X.; Shang, Y.; Jia, Y.; Jian, L. A genuine V2V market mechanism aiming for maximum revenue of each EV owner based on non-cooperative game model. J. Clean. Prod. 2023, 414, 137586. [Google Scholar] [CrossRef]
- Heydarian-Forushani, E.; Golshan, M.; Shafie-Khah, M. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration. Appl. Energy 2016, 179, 338–349. [Google Scholar] [CrossRef]
- Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators. Appl. Energy 2020, 279, 115751. [Google Scholar] [CrossRef]
- Maouris, G.; Escriva, E.J.S.; Acha, S.; Shah, N.; Markides, C.N. CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach. Appl. Energy 2020, 264, 114722. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/tools/glossary/?id=electricity (accessed on 12 June 2024).
- Golmohamadi, H. Flexible Operation of Power-To-X Energy Systems in Transportation Networks. In Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 117–164. [Google Scholar] [CrossRef]
- IEA. World Electricity Final Consumption by Sector, 1974–2019. Available online: https://www.iea.org/data-and-statistics/charts/world-electricity-final-consumption-by-sector-1974-2018 (accessed on 10 June 2024).
- Mugnini, A.; Ramallo-González, A.P.; Parreño, A.; Molina-Garcia, A.; Skarmeta, A.F.; Arteconi, A. Dynamic building thermal mass clustering for energy flexibility assessment: An application to demand response events. Energy Build. 2024, 308, 114011. [Google Scholar] [CrossRef]
- Sadeghianpourhamami, N.; Demeester, T.; Benoit, D.; Strobbe, M.; Develder, C. Modeling and analysis of residential flexibility: Timing of white good usage. Appl. Energy 2016, 179, 790–805. [Google Scholar] [CrossRef]
- Cibin, N.; Tibo, A.; Golmohamadi, H.; Skou, A.; Albano, M. Machine learning-based algorithms to estimate thermal dynamics of residential buildings with energy flexibility. J. Build. Eng. 2023, 65, 105683. [Google Scholar] [CrossRef]
- Hasrat, I.R.; Jensen, P.G.; Larsen, K.G.; Srba, J. End-to-End Heat-Pump Control Using Continuous Time Stochastic Modelling and Uppaal Stratego. In Theoretical Aspects of Software Engineering; Aït-Ameur, Y., Crăciun, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 363–380. [Google Scholar]
- Evens, M.; Arteconi, A. Design energy flexibility within a comfort and climate box–An experimental evaluation of the internal heat pump control effects. Appl. Therm. Eng. 2024, 254, 123842. [Google Scholar] [CrossRef]
- Farzamkia, S.; Ranjbar, H.; Hatami, A.; Iman-Eini, H. A novel PSO (Particle Swarm Optimization)-based approach for optimal schedule of refrigerators using experimental models. Energy 2016, 107, 707–715. [Google Scholar] [CrossRef]
- Vellei, M.; Le Dréau, J.; Abdelouadoud, S.Y. Predicting the demand flexibility of wet appliances at national level: The case of France. Energy Build. 2020, 214, 109900. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Pillai, J.R. Optimization of household energy consumption towards day-ahead retail electricity price in home energy management systems. Sustain. Cities Soc. 2019, 47, 101468. [Google Scholar] [CrossRef]
- Tuomela, S.; Tomé, M.d.C.; Iivari, N.; Svento, R. Impacts of home energy management systems on electricity consumption. Appl. Energy 2021, 299, 117310. [Google Scholar] [CrossRef]
- Khan, A.A.; Razzaq, S.; Khan, A.; Khursheed, F. Owais HEMSs and enabled demand response in electricity market: An overview. Renew. Sustain. Energy Rev. 2015, 42, 773–785. [Google Scholar] [CrossRef]
- Prum, P.; Charoen, P.; Khan, M.A.; Bayati, N.; Charoenlarpnopparut, C. Energy Management Scheme for Optimizing Multiple Smart Homes Equipped with Electric Vehicles. Energies 2024, 17, 254. [Google Scholar] [CrossRef]
- Golmohamadi, H. Stochastic energy optimization of residential heat pumps in uncertain electricity markets. Appl. Energy 2021, 303, 117629. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Geng, X.; Chen, X.; Xing, M. Experiments on the characteristics of a sewage water source heat pump system for heat recovery from bath waste. Appl. Therm. Eng. 2022, 204, 117956. [Google Scholar] [CrossRef]
- Kheiri, S.Z.; Mirzaei, M.A.; Parvania, M. Integrating the Energy Flexibility of Cold Climate Air Source Heat Pump in Home Energy Management Systems. In Proceedings of the 2024 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19–22 February 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Juhl, R.; Kristensen, N.R.; Bacher, P.; Kloppenborg, J.; Madsen, H. Grey-box Modeling of the Heat Dynamics of a Building with CTSM-R. 2020. Available online: http://ctsm.info/building2.pdf (accessed on 15 June 2024).
- Hasrat, I.R.; Jensen, P.G.; Larsen, K.G.; Srba, J. A toolchain for domestic heat-pump control using Uppaal Stratego. Sci. Comput. Program. 2023, 230, 102987. [Google Scholar] [CrossRef]
- Hou, J.; Li, H.; Nord, N.; Huang, G. Model predictive control under weather forecast uncertainty for HVAC systems in university buildings. Energy Build. 2022, 257, 111793. [Google Scholar] [CrossRef]
- Sawant, P.; Mier, O.V.; Schmidt, M.; Pfafferott, J. Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC. Energies 2021, 14, 7953. [Google Scholar] [CrossRef]
- Vivian, J.; Prataviera, E.; Cunsolo, F.; Pau, M. Demand Side Management of a pool of air source heat pumps for space heating and domestic hot water production in a residential district. Energy Convers. Manag. 2020, 225, 113457. [Google Scholar] [CrossRef]
- Nunna, A.C.; Zong, Y.; Georges, L.; You, S. Demand response with active phase change material based thermal energy storage in buildings. Energy Rep. 2023, 9, 227–235. [Google Scholar] [CrossRef]
- Pakere, I.; Feofilovs, M.; Lepiksaar, K.; Vītoliņš, V.; Blumberga, D. Multi-source district heating system full decarbonization strategies: Technical, economic, and environmental assessment. Energy 2023, 285, 129296. [Google Scholar] [CrossRef]
- Sorknæs, P. Hybrid energy networks and electrification of district heating under different energy system conditions. Energy Rep. 2021, 7, 222–236. [Google Scholar] [CrossRef]
- Korpela, T.; Kaivosoja, J.; Majanne, Y.; Laakkonen, L.; Nurmoranta, M.; Vilkko, M. Utilization of District Heating Networks to Provide Flexibility in CHP Production. Energy Procedia 2017, 116, 310–319. [Google Scholar] [CrossRef]
- Wahlroos, M.; Pärssinen, M.; Manner, J.; Syri, S. Utilizing data center waste heat in district heating–Impacts on energy efficiency and prospects for low-temperature district heating networks. Energy 2017, 140, 1228–1238. [Google Scholar] [CrossRef]
- Fambri, G.; Marocco, P.; Badami, M.; Tsagkrasoulis, D. The flexibility of virtual energy storage based on the thermal inertia of buildings in renewable energy communities: A techno-economic analysis and comparison with the electric battery solution. J. Energy Storage 2023, 73, 109083. [Google Scholar] [CrossRef]
- Todorov, O.; Alanne, K.; Virtanen, M.; Kosonen, R. A method and analysis of aquifer thermal energy storage (ATES) system for district heating and cooling: A case study in Finland. Sustain. Cities Soc. 2020, 53, 101977. [Google Scholar] [CrossRef]
- Vandermeulen, A.; Van Der Heijde, B.; Helsen, L. Controlling district heating and cooling networks to unlock flexibility: A review. Energy 2018, 151, 103–115. [Google Scholar] [CrossRef]
- Visakh, A.; Selvan, M.P. Analysis and mitigation of the impact of electric vehicle charging on service disruption of distribution transformers. Sustain. Energy Grids Netw. 2023, 35, 101096. [Google Scholar] [CrossRef]
- Sharma, S.; Jain, P. Risk-averse integrated demand response and dynamic G2V charge scheduling of an electric vehicle aggregator to support grid stability. Int. Trans. Electr. Energy Syst. 2021, 31, e12867. [Google Scholar] [CrossRef]
- Alfaverh, F.; Denaï, M.; Sun, Y. Optimal vehicle-to-grid control for supplementary frequency regulation using deep reinforcement learning. Electr. Power Syst. Res. 2023, 214, 108949. [Google Scholar] [CrossRef]
- Sørensen, Å.L.; Lindberg, K.B.; Sartori, I.; Andresen, I. Analysis of residential EV energy flexibility potential based on real-world charging reports and smart meter data. Energy Build. 2021, 241, 110923. [Google Scholar] [CrossRef]
- Karimi-Arpanahi, S.; Jooshaki, M.; Pourmousavi, S.A.; Lehtonen, M. Leveraging the flexibility of electric vehicle parking lots in distribution networks with high renewable penetration. Int. J. Electr. Power Energy Syst. 2022, 142, 108366. [Google Scholar] [CrossRef]
- Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles. Appl. Energy 2021, 290, 116802. [Google Scholar] [CrossRef]
- Moshövel, J.; Kairies, K.-P.; Magnor, D.; Leuthold, M.; Bost, M.; Gährs, S.; Szczechowicz, E.; Cramer, M.; Sauer, D.U. Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption. Appl. Energy 2015, 137, 567–575. [Google Scholar] [CrossRef]
- Cerna, F.V. A hybrid PV scheme as support to relieve congestion in the domestic supply network. Int. J. Electr. Power Energy Syst. 2022, 134, 107413. [Google Scholar] [CrossRef]
- Holweger, J.; Pena-Bello, A.; Jeannin, N.; Ballif, C.; Wyrsch, N. Distributed flexibility as a cost-effective alternative to grid reinforcement. Sustain. Energy Grids Netw. 2023, 34, 101041. [Google Scholar] [CrossRef]
- Ali, A.O.; Hamed, A.M.; Abdelsalam, M.M.; Sabry, M.N.; Elmarghany, M.R. Energy management of photovoltaic-battery system connected with the grid. J. Energy Storage 2022, 55, 105865. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wennersten, R.; Sun, Q. Peak shaving and valley filling potential of energy management system in high-rise residential building. Energy Procedia 2019, 158, 6201–6207. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Z.; Si, J.; Zhang, S.; Dong, L.; Li, S.; Gao, Y. Adaptive Power Point Tracking Control of PV System for Primary Frequency Regulation of AC Microgrid With High PV Integration. IEEE Trans. Power Syst. 2021, 36, 3129–3141. [Google Scholar] [CrossRef]
- Chaudhary, P.; Rizwan, M. Voltage regulation mitigation techniques in distribution system with high PV penetration: A review. Renew. Sustain. Energy Rev. 2018, 82, 3279–3287. [Google Scholar] [CrossRef]
- Salim, O.M.; Dorrah, H.T.; Hassan, M.A. Wind speed estimation based on a novel multivariate Weibull distribution. IET Renew. Power Gener. 2019, 13, 2762–2773. [Google Scholar] [CrossRef]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming, 2nd ed.; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2011; Volume 31. [Google Scholar] [CrossRef]
- Jordehi, A.R.; Tabar, V.S.; Mansouri, S.; Sheidaei, F.; Ahmarinejad, A.; Pirouzi, S. Two-stage stochastic programming for scheduling microgrids with high wind penetration including fast demand response providers and fast-start generators. Sustain. Energy, Grids Netw. 2022, 31, 100694. [Google Scholar] [CrossRef]
- Zatti, M.; Martelli, E.; Amaldi, E. A three-stage stochastic optimization model for the design of smart energy districts under uncertainty. In Computer Aided Chemical Engineering; Espuña, A., Graells, M., Puigjaner, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 40, pp. 2389–2394. [Google Scholar] [CrossRef]
- Flores-Quiroz, A.; Strunz, K. A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option. Appl. Energy 2021, 291, 116736. [Google Scholar] [CrossRef]
- Aljohani, T.M. Multilayer Iterative Stochastic Dynamic Programming for Optimal Energy Management of Residential Loads with Electric Vehicles. Int. J. Energy Res. 2024, 2024, 6842580. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A.; El Ghaoui, L. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Chen, X.; Li, N. Leveraging Two-Stage Adaptive Robust Optimization for Power Flexibility Aggregation. IEEE Trans. Smart Grid 2021, 12, 3954–3965. [Google Scholar] [CrossRef]
- Pirouzi, S.; Aghaei, J.; Niknam, T.; Shafie-Khah, M.; Vahidinasab, V.; Catalão, J.P. Two alternative robust optimization models for flexible power management of electric vehicles in distribution networks. Energy 2017, 141, 635–651. [Google Scholar] [CrossRef]
- Bahramara, S. Robust Optimization of the Flexibility-constrained Energy Management Problem for a Smart Home with Rooftop Photovoltaic and an Energy Storage. J. Energy Storage 2021, 36, 102358. [Google Scholar] [CrossRef]
- Ding, Y.; Bai, Y.; Tian, Z.; Wang, Q.; Su, H. Coordinated optimization of robustness and flexibility of building heating systems for demand response control considering prediction uncertainty. Appl. Therm. Eng. 2023, 223, 120024. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Hasanien, H.M.; Turky, R.A.; Jordehi, A.R.; Mansouri, S.A.; Jurado, F. A fully robust home energy management model considering real time price and on-board vehicle batteries. J. Energy Storage 2023, 72, 108531. [Google Scholar] [CrossRef]
- Ben-Haim, Y. Chapter 3-Robustness and Opportuneness. In Info-Gap Decision Theory, 2nd ed.; Ben-Haim, Y., Ed.; Academic Press: Oxford, UK, 2006; pp. 37–114. [Google Scholar] [CrossRef]
- Nikoobakht, A.; Aghaei, J.; Mardaneh, M. Managing the risk of uncertain wind power generation in flexible power systems using information gap decision theory. Energy 2016, 114, 846–861. [Google Scholar] [CrossRef]
- Gazijahani, F.S.; Salehi, J. IGDT-Based Complementarity Approach for Dealing With Strategic Decision Making of Price-Maker VPP Considering Demand Flexibility. IEEE Trans. Ind. Inform. 2020, 16, 2212–2220. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, W.; Wang, H.; Dong, Y.; He, S. Information gap-based coordination scheme for active distribution network considering charging/discharging optimization for electric vehicles and demand response. Int. J. Electr. Power Energy Syst. 2023, 145, 108652. [Google Scholar] [CrossRef]
- Zeng, L.; Xu, J.; Wang, Y.; Liu, Y.; Tang, J.; Wen, M.; Chen, Z. Day-ahead interval scheduling strategy of power systems based on improved adaptive diffusion kernel density estimation. Int. J. Electr. Power Energy Syst. 2023, 147, 108850. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, C.; Jia, W.; Liu, Q.; Cheng, L.; Yang, H.; Luo, Y.; Kuang, N. A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation. Energies 2022, 15, 7565. [Google Scholar] [CrossRef]
- Morales, J.M.; Conejo, A.J.; Madsen, H.; Pinson, P.; Zugno, M. Clearing the Day-Ahead Market with a High Penetration of Stochastic Production. In Integrating Renewables in Electricity Markets: Operational Problems; Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M., Eds.; Springer: Boston, MA, USA, 2014; pp. 57–100. [Google Scholar] [CrossRef]
- Conejo, A.J.; Carrión, M.; Morales, J.M. Pool Trading for Wind Power Producers. In Decision Making Under Uncertainty in Electricity Markets; Conejo, A.J., Carrión, M.J., Morales, M., Eds.; Springer: Boston, MA, USA, 2010; pp. 195–251. [Google Scholar] [CrossRef]
- Morales, J.M.; Conejo, A.J.; Madsen, H.; Pinson, P.; Zugno, M. Balancing Markets. In Integrating Renewables in Electricity Markets: Operational Problems; Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M., Eds.; Springer: Boston, MA, USA, 2014; pp. 101–136. [Google Scholar] [CrossRef]
- Yao, M.; Hu, Z.; Zhang, N.; Duan, W.; Zhang, J. Low-carbon benefits analysis of energy-intensive industrial demand response resources for ancillary services. J. Mod. Power Syst. Clean Energy 2015, 3, 131–138. [Google Scholar] [CrossRef]
- Golmohamadi, H. Demand-side management in industrial sector: A review of heavy industries. Renew. Sustain. Energy Rev. 2022, 156, 111963. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Hierarchical flexibility potentials of residential buildings with responsive heat pumps: A case study of Denmark. J. Build. Eng. 2021, 41, 102425. [Google Scholar] [CrossRef]
- Bahlawan, H.; Castorino, G.A.M.; Losi, E.; Manservigi, L.; Spina, P.R.; Venturini, M. Optimal management with demand response program for a multi-generation energy system. Energy Convers. Manag. X 2022, 16, 100311. [Google Scholar] [CrossRef]
- Rana, A.; Gróf, G. Assessment of local energy trading in a residential energy hub with demand management. Energy Rep. 2024, 11, 1642–1658. [Google Scholar] [CrossRef]
- Al Hadi, A.; Silva, C.A.S.; Hossain, E.; Challoo, R. Algorithm for Demand Response to Maximize the Penetration of Renewable Energy. IEEE Access 2020, 8, 55279–55288. [Google Scholar] [CrossRef]
- Zeng, H.; Shao, B.; Dai, H.; Tian, N.; Zhao, W. Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility. Appl. Energy 2023, 348, 121541. [Google Scholar] [CrossRef]
- Hua, H.; Chen, X.; Gan, L.; Sun, J.; Dong, N.; Liu, D.; Qin, Z.; Li, K.; Hu, S. Demand-Side Joint Electricity and Carbon Trading Mechanism. IEEE Trans. Ind. Cyber-Physical Syst. 2024, 2, 14–25. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Chu, Y.; Ma, Y.; Zhang, D.; Guerrero, J.M. Multi-objective based demand response strategy optimization considering differential demand on reliability of power system. Int. J. Electr. Power Energy Syst. 2023, 152, 109202. [Google Scholar] [CrossRef]
- Chandran, C.V.; Basu, M.; Sunderland, K.; Pukhrem, S.; Catalão, J.P. Application of demand response to improve voltage regulation with high DG penetration. Electr. Power Syst. Res. 2020, 189, 106722. [Google Scholar] [CrossRef]
- Miow, X.C.; Lim, Y.S.; Hau, L.C.; Wong, J.; Patsios, H. Demand response for frequency regulation with neural network load controller under high intermittency photovoltaic systems. Energy Rep. 2023, 9, 2869–2880. [Google Scholar] [CrossRef]
- Devarapalli, H.P.; Dhanikonda, V.S.S.S.S.; Gunturi, S.B. Demand-Side Management for Improvement of the Power Quality in Smart Homes Using Non-Intrusive Identification of Appliance Usage Patterns with the True Power Factor. Energies 2021, 14, 4837. [Google Scholar] [CrossRef]
- Stawska, A.; Romero, N.; de Weerdt, M.; Verzijlbergh, R. Demand response: For congestion management or for grid balancing? Energy Policy 2021, 148, 111920. [Google Scholar] [CrossRef]
- Golmohamadi, H. Operational scheduling of responsive prosumer farms for day-ahead peak shaving by agricultural demand response aggregators. Int. J. Energy Res. 2021, 45, 938–960. [Google Scholar] [CrossRef]
- Wohlfarth, K.; Worrell, E.; Eichhammer, W. Energy efficiency and demand response–Two sides of the same coin? Energy Policy 2020, 137, 111070. [Google Scholar] [CrossRef]
- Morales, J.M.; Conejo, A.J.; Madsen, H.; Pinson, P.; Zugno, M. Facilitating Renewable Integration by Demand Re-sponseDemand response. In Integrating Renewables in Electricity Markets: Operational Problems; Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M., Eds.; Springer: Boston, MA, USA, 2014; pp. 289–329. [Google Scholar] [CrossRef]
- Freire, V.A.; Marquez, J.J.; Bordons, C.; Zafra-Cabeza, A.; de Arruda, L.V.R. Energy Management System for Microgrid Considering Operational Faults in Power Supply. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Morato, M.M.; Mendes, P.R.; Normey-Rico, J.E.; Bordons, C. LPV-MPC fault-tolerant energy management strategy for renewable microgrids. Int. J. Electr. Power Energy Syst. 2020, 117, 105644. [Google Scholar] [CrossRef]
- Lu, R.; Bai, R.; Huang, Y.; Li, Y.; Jiang, J.; Ding, Y. Data-driven real-time price-based demand response for industrial facilities energy management. Appl. Energy 2021, 283, 116291. [Google Scholar] [CrossRef]
- Kadlec, M.; Buhnova, B.; Tomsik, J.; Herman, J.; Druzbikova, K. Weather Forecast Based Scheduling for Demand Response Optimization in Smart Grids. In Proceedings of the 2017 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 25–26 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G. Economic heat control of mixing loop for residential buildings supplied by low-temperature district heating. J. Build. Eng. 2021, 46, 103286. [Google Scholar] [CrossRef]
- Ebeid, E.; Rotger-Griful, S.; Mikkelsen, S.A.; Jacobsen, R.H. A methodology to evaluate demand response communication protocols for the Smart Grid. In Proceedings of the 2015 IEEE International Conference on Communications Workshops (ICCW), London, UK, 8–12 June 2015; pp. 2012–2017. [Google Scholar] [CrossRef]
- Hasrat, I.R.; Jensen, P.G.; Larsen, K.G.; Srba, J. Modelling of Hot Water Buffer Tank and Mixing Loop for an Intelligent Heat Pump Control. In Formal Methods for Industrial Critical Systems; Cimatti, A., Titolo, L., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 113–130. [Google Scholar]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Optimization of power-to-heat flexibility for residential buildings in response to day-ahead electricity price. Energy Build. 2021, 232, 110665. [Google Scholar] [CrossRef]
- UPPAAL Real Time Simulator. Available online: http://www.uppaal.org/ (accessed on 11 June 2024).
- EL Zerk, A.; Ouassaid, M.; Zidani, Y. Development of a real-time framework between MATLAB and PLC through OPC-UA: A case study of a microgrid energy management system. Sci. Afr. 2023, 21, e01846. [Google Scholar] [CrossRef]
- Suresh, V.; Janik, P.; Guerrero, J.M.; Leonowicz, Z.; Sikorski, T. Microgrid Energy Management System With Embedded Deep Learning Forecaster and Combined Optimizer. IEEE Access 2020, 8, 202225–202239. [Google Scholar] [CrossRef]
- Akbari, E.; Shabestari, S.F.M.; Pirouzi, S.; Jadidoleslam, M. Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management. Renew. Energy 2023, 206, 295–308. [Google Scholar] [CrossRef]
- Bhattarai, B.P.; Myers, K.S.; Turk, R.J.; Bak-Jensen, B. 21-Multi-time-scale energy management of distributed energy resources in active distribution grids. In Smart Power Distribution Systems; Yang, Q., Yang, T., Li, W., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 503–528. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Ahourai, F. GridMat: Matlab toolbox for GridLAB-D to analyze grid impact and validate residential microgrid level energy management algorithms. In Proceedings of the 2014 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19–22 February 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Subramanya, S.A.; Parathodiyil, M.; Nagashree, A. Implementation of Peak Demand Reduction on a Distribution Feeder Using Python-OpenDSS Co-Simulation. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Elhefny, A.; Jiang, Z.; Cai, J. Co-simulation and energy management of photovoltaic-rich residential communities for improved distribution voltage support with flexible loads. Sol. Energy 2022, 231, 516–526. [Google Scholar] [CrossRef]
- Andersen, A.N.; Østergaard, P.A. A method for assessing support schemes promoting flexibility at district energy plants. Appl. Energy 2018, 225, 448–459. [Google Scholar] [CrossRef]
- Wang, J.; Blonsky, M.; Ding, F.; Drew, S.C.; Padullaparti, H.; Ghosh, S.; Mendoza, I.; Tiwari, S.; Martinez, J.E.; Dahdah, J.J.D.; et al. Performance Evaluation of Distributed Energy Resource Management via Advanced Hardware-in-the-Loop Simulation. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Lipari, G.; Del Rosario, G.; Corchero, C.; Ponci, F.; Monti, A. A real-time commercial aggregator for distributed energy resources flexibility management. Sustain. Energy, Grids Netw. 2018, 15, 63–75. [Google Scholar] [CrossRef]
- Rodriguez, M.; Arcos-Aviles, D.; Martinez, W. Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms. Appl. Energy 2023, 335, 120771. [Google Scholar] [CrossRef]
- Aguilar, M.; Riffo, S.; Veliz, A.; González-Castaño, C.; Restrepo, C. RT Box card for studying the control communication impacts on microgrid performance and stability. HardwareX 2022, 12, e00322. [Google Scholar] [CrossRef] [PubMed]
- Harmouch, F.Z.; Ebrahim, A.F.; Esfahani, M.M.; Krami, N.; Hmina, N.; Mohammed, O.A. An Optimal Energy Management System for Real-Time Operation of Multiagent-Based Microgrids Using a T-Cell Algorithm. Energies 2019, 12, 3004. [Google Scholar] [CrossRef]
- Maturana, F.; Staron, R.; Loparo, K.; Ambre, R.; Carnahan, D. Simulation-Based Environment for Modeling Distributed Agents for Smart Grid Energy Management. In Proceedings of the Factory Automation (ETFA 2011), Toulouse, France, 5–9 September 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, J.; Cao, J.; Yin, R.; Zou, B.; Tan, Y.; Yan, J. Demand Flexibility of Residential Buildings: Definitions, Flexible Loads, and Quantification Methods. Engineering 2022, 16, 123–140. [Google Scholar] [CrossRef]
- Golmohamadi, H. Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability 2022, 14, 7916. [Google Scholar] [CrossRef]
- Söder, L.; Lund, P.D.; Koduvere, H.; Bolkesjø, T.F.; Rossebø, G.H.; Rosenlund-Soysal, E.; Skytte, K.; Katz, J.; Blumberga, D. A review of demand side flexibility potential in Northern Europe. Renew. Sustain. Energy Rev. 2018, 91, 654–664. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Integration of flexibility potentials of district heating systems into electricity markets: A review. Renew. Sustain. Energy Rev. 2022, 159, 112200. [Google Scholar] [CrossRef]
- Iqbal, S.; Sarfraz, M.; Ayyub, M.; Tariq, M.; Chakrabortty, R.K.; Ryan, M.J.; Alamri, B. A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment. Sustainability 2021, 13, 7170. [Google Scholar] [CrossRef]
References | The Key Objective Function |
---|---|
[93] | Energy consumption cost minimization |
[94] | Self-consumption maximization |
[95] | Maximization of renewable power penetration |
[96,97] | Minimization of greenhouse gas emissions and carbon emission control |
[98] | Maximization of power system reliability |
[99] | Voltage regulation |
[100] | Frequency control |
[101] | Increasing power quality |
[102] | Congestion management |
[103] | Peak shaving and valley filling |
[104] | Increasing energy efficiency |
Reference | Addressed Demand Flexibility and Related Concepts |
---|---|
[129] | - Building flexibility - HVAC - EWH - Refrigerators - Wet appliances - Lighting |
[130] | Flexibility potentials for industrial, residential, agricultural and commercial sectors |
[131] | - Demand flexibility in northern Europe, Sweden, Denmark, Norway, Finland, Estonia, Lativia, Lithuania - Flexibility of industrial, residential, commercial sectors - Flexibility of heating system, shopping centers, office buildings |
[132] | - District heating - Heat resources - Control methods of flexible heat demands - Integration of heat flexibility into electricity markets |
[133] | - Energy efficiency - Price-based and incentive-based demand response programs - Hardware and communication technology for demand flexibility - Soft computing such as neural network and fuzzy logic - Optimization approaches for scheduling demand flexibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golmohamadi, H.; Golestan, S.; Sinha, R.; Bak-Jensen, B. Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector. Energies 2024, 17, 4670. https://doi.org/10.3390/en17184670
Golmohamadi H, Golestan S, Sinha R, Bak-Jensen B. Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector. Energies. 2024; 17(18):4670. https://doi.org/10.3390/en17184670
Chicago/Turabian StyleGolmohamadi, Hessam, Saeed Golestan, Rakesh Sinha, and Birgitte Bak-Jensen. 2024. "Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector" Energies 17, no. 18: 4670. https://doi.org/10.3390/en17184670
APA StyleGolmohamadi, H., Golestan, S., Sinha, R., & Bak-Jensen, B. (2024). Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector. Energies, 17(18), 4670. https://doi.org/10.3390/en17184670