Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = heat flux fluctuations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10047 KB  
Article
Thermal Environment for Lunar Orbiting Spacecraft Based on Non-Uniform Planetary Infrared Radiation Model
by Xinqi Li, Liying Tan, Jing Ma and Xuemin Qian
Aerospace 2025, 12(8), 737; https://doi.org/10.3390/aerospace12080737 - 19 Aug 2025
Viewed by 129
Abstract
Accurate computation of external heat flux is critical for spacecraft thermal analysis and thermal control system design. The traditional method, which adopted the uniform planetary infrared radiation model (UPIRM), is inadequate for lunar orbital missions due to the extreme planetary surface temperature variations. [...] Read more.
Accurate computation of external heat flux is critical for spacecraft thermal analysis and thermal control system design. The traditional method, which adopted the uniform planetary infrared radiation model (UPIRM), is inadequate for lunar orbital missions due to the extreme planetary surface temperature variations. This study proposes an external heat flux calculation method for lunar orbits by integrating a non-uniform lunar surface temperature model derived from Lunar Reconnaissance Orbiter (LRO) Diviner radiometric data. Specifically, the lunar surface temperature data were first fitted as functions of latitude (ψ) and position angles (ζ) through data regression analysis. Then, a comprehensive mathematical framework is established to analyze solar radiation, lunar albedo, and lunar infrared radiation components, incorporating orbital parameters such as beta angle (β), orbital inclination (i) and so on. Coordinate transformations and numerical integration techniques are employed to evaluate heat flux distributions across cuboidal orbiter surfaces. It is found that the lunar infrared radiation heat flux manifests pronounced fluctuation, peaking at 1023 W/m2 near the lunar noon region while plummeting to 20 W/m2 near the midnight region under the orbital parameters investigated in this study. This study demonstrates the essential role of the non-uniform planetary infrared radiation model (NUPIRM) in enhancing prediction accuracy by contrast, offering foundational references for thermal management in future lunar and deep-space exploration spacecraft. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

30 pages, 7565 KB  
Article
Dynamic Optimization and Performance Analysis of Solar Thermal Storage Systems for Intermittent Heating in High-Altitude Cold Regions
by Xiaojia Hu, Pu Bai, Ying Wang and Menghua Du
Buildings 2025, 15(16), 2908; https://doi.org/10.3390/buildings15162908 - 17 Aug 2025
Viewed by 289
Abstract
Solar thermal technology is an important component of low-carbon energy systems, but its application potential is constrained by two key factors: the inherent limits of energy flux density and the temporal mismatch between supply and demand. This study examined efficiency losses in building [...] Read more.
Solar thermal technology is an important component of low-carbon energy systems, but its application potential is constrained by two key factors: the inherent limits of energy flux density and the temporal mismatch between supply and demand. This study examined efficiency losses in building heating systems in Northwest China caused by the mismatch between supply and demand in intermittent solar thermal storage systems. Three typical building heating models (Day–Night Intermittent Mode, Day–Night + Monthly Intermittent Mode, and Composite Intermittent Mode (Day–Night + Weekly + Monthly)) were constructed through SketchUp, integrating the Transient System Simulation Tool (TRNSYS) with improved calculation methods in an innovative way. The study first examined regional energy consumption patterns and the temporal characteristics of building occupancy and then proposed a collaborative optimization framework for thermal collection and storage, focused on improving the dynamic matching algorithm of the thermal collection area ratio and the tank volume ratio and establishing a tank capacity calculation model that considers the time-varying characteristics of heat demand and fluctuations in thermal collection efficiency during the intermittent heating cycle. The results show that compared with continuous operation, the intermittent strategy reduces the annual cumulative heat load by 13–33%, among which the Day–Night Intermittent Mode shows the daily peak load reaches 1.8 times the normal value during restart, while the daily fluctuation amplitude of the Day–Night + Monthly Intermittent Mode decreases by 42%. The corresponding solar energy guarantee rate reaches 86–88%, and the heat storage loss is reduced by 19–27%. The time-varying coupling design method established in this study provides an optimization path that takes into account both system efficiency and economy for intermittent heating scenarios. The proposed dynamic capacity configuration criterion has universal guiding value for the design of solar district heating systems. Full article
Show Figures

Figure 1

22 pages, 5293 KB  
Article
Membrane Distillation for Water Desalination: Assessing the Influence of Operating Conditions on the Performance of Serial and Parallel Connection Configurations
by Lebea N. Nthunya and Bhekie B. Mamba
Membranes 2025, 15(8), 235; https://doi.org/10.3390/membranes15080235 - 4 Aug 2025
Viewed by 767
Abstract
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre [...] Read more.
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre membrane modules connected in parallel and series in direct contact membrane distillation (DCMD) for the first time. The configurations were evaluated under varying process parameters such as temperature (50–70 °C), flow rates (22.1–32.3 mL·s−1), magnesium concentration as scalant (1.0–4.0 g·L−1), and flow direction (co-current and counter-current), assessing their influence on temperature gradients (∆T), flux and pH stability, salt rejection, and crystallisation. Interestingly, the parallel module configuration maintained high operational stability with uniform flux and temperature differences (∆T) even at high recovery factors (>75%). On one hand, the serial configuration experienced fluctuating ∆T caused by thermal and concentration polarisation, causing an early crystallisation (abrupt drop in feed conductivity). Intensified polarisation effects with accelerated crystallisation increased the membrane risk of wetting, particularly at high recovery factors. Despite these changes, the salt rejection remained relatively high (99.9%) for both configurations across all tested conditions. The findings revealed that acidification trends caused by MgSO4 were configuration-dependent, where the parallel setup-controlled rate of pH collapse. This study presented a novel framework connecting membrane module architecture to mass and heat transfer phenomena, providing a transformative DCMD module configuration design in water desalination. These findings not only provide the critical knowledge gaps in DCMD module configurations but also inform optimisation of MD water desalination to achieve high recovery and stable operation conditions under realistic brine composition. Full article
(This article belongs to the Special Issue Membrane Distillation: Module Design and Application Performance)
Show Figures

Figure 1

21 pages, 3327 KB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 - 31 Jul 2025
Viewed by 370
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

51 pages, 5106 KB  
Article
Evaluating Solar Energy Potential Through Clear Sky Index Characterization Across Elevation Profiles in Mozambique
by Fernando Venâncio Mucomole, Carlos Augusto Santos Silva and Lourenço Lázaro Magaia
Solar 2025, 5(3), 30; https://doi.org/10.3390/solar5030030 - 1 Jul 2025
Viewed by 599
Abstract
The characteristics and types of the sky can greatly influence photovoltaic (PV) power generation, potentially leading to a reduction in both the lifespan and efficiency of the entire system. Driven by the challenge of addressing fluctuations in solar PV energy utilization, the aim [...] Read more.
The characteristics and types of the sky can greatly influence photovoltaic (PV) power generation, potentially leading to a reduction in both the lifespan and efficiency of the entire system. Driven by the challenge of addressing fluctuations in solar PV energy utilization, the aim was to assess the solar energy potential by analyzing the clear sky index Kt* across elevation profiles. To achieve this, a theoretical model for determining Kt* was employed, which encapsulated the solar energy analysis. Initially, solar energy data collected from approximately 16 stations in various provinces of Mozambique, as part of the solar energy measurement initiatives by INAM, FUNAE, AERONET, and Meteonorm, was processed. Subsequently, the clear sky radiation was calculated, and Kt* was established. The statistical findings indicate a reduction in energy contribution from the predictors, accounting for 28% of the total incident energy; however, there are progressive increases averaging around ~0.02, with Kt* values ranging from 0.4 to 0.9, demonstrating a strong correlation between 0.7 and 0.9 across several stations and predictor parameters. No significant climate change effects were noted. The radiation flux is directed from areas with higher Kt* to those with lower values, as illustrated in the heat map. The region experiences an increase in atmospheric parameter deposition, with concentrations around ~0.20, yet there remains a substantial energy flow potential of 92% for PV applications. This interaction can also be applied in other locations to assess the potential for available solar energy, as the analyzed solar energy spectrum aligns closely with the theoretical statistical calibration of energy distribution relevant to the global solar energy population process. Full article
(This article belongs to the Topic Solar Forecasting and Smart Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 5848 KB  
Article
Influence of Thermal Inertia on Dynamic Characteristics of Gas Turbine Impeller Components
by Yang Liu, Yuhao Jia and Yongbao Liu
Entropy 2025, 27(7), 711; https://doi.org/10.3390/e27070711 - 1 Jul 2025
Viewed by 377
Abstract
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, [...] Read more.
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, a three-dimensional computational fluid dynamic simulation is employed to create a model of the gas turbine rotor, incorporating thermal inertia, which is then analyzed in conjunction with three-dimensional finite element methods. The governing equations of the flow field are discretized, providing results for the flow and temperature fields throughout the entire flow path. A hybrid approach, combining temperature differences and heat flux density, is applied to set the thermal boundary conditions for the walls, with the turbine’s operational state determined based on the direction of heat transfer. Additionally, mesh division techniques and turbulence models are selected based on the geometric dimensions and operating conditions of the compressor and turbine. The simulation results reveal that thermal inertia induces a shift in the dynamic characteristics of the rotor components. Under the same heat transfer conditions, variations in rotational speed have a minimal impact on the shift in the characteristic curve. The working fluid temperature inside the compressor components is lower, with a smaller temperature difference from the wall, resulting in less intense heat transfer compared to the turbine components. Overall, heat transfer accounts for only about 0.1% of the total enthalpy at the inlet. When heat exchange occurs between the working fluid and the walls, around 6–15% of the exchanged heat is converted into changes in technical work, with this percentage increasing as the temperature difference rises. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

22 pages, 2370 KB  
Article
Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes
by Jun Yi, Mengyi Xu, Qian Ren, Hailin Zhang, Muxing Liu, Yuanhang Fei, Shenglong Li, Hanjiang Nie, Qi Li, Xin Ni and Yongsheng Wang
Land 2025, 14(7), 1352; https://doi.org/10.3390/land14071352 - 26 Jun 2025
Viewed by 405
Abstract
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil [...] Read more.
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil temperature, thermal properties, and heat fluxes. Our study aimed to quantify the effects of converting UFs to PFs on soil temperature and heat transfer processes, and to elucidate its underlying mechanisms. A long-term cultivated UF and a newly developed PF (converted from a UF in May 2015) were selected for this study. Soil water content (SWC) and temperature were monitored hourly over two years (June 2017 to June 2019) in five soil horizons (i.e., 10, 20, 40, 60, and 90 cm) at both fields. The mean soil temperature differences between the UF and PF at each depth on the annual scale varied from −0.1 to 0.4 °C, while they fluctuated more significantly on the seasonal (−0.9~1.8 °C), monthly (−1.5~2.5 °C), daily (−5.6~4.9 °C), and hourly (−7.3~11.3 °C) scales. The SWC in the PF was significantly higher than that in the UF, primarily due to differences in tillage practices, which resulted in a narrower range of soil temperature variation in the PF. Additionally, the SWC and soil physicochemical properties significantly altered the soil’s thermal properties. Compared with the UF, the volumetric heat capacity (Cs) at the depths of 10, 20, 40, 60, and 90 cm in the PF changed by 8.6%, 19.0%, 5.5%, −4.3%, and −2.9%, respectively. Meanwhile, the thermal conductivity (λθ) increased by 1.5%, 18.3%, 19.0%, 9.0%, and 25.6%, respectively. Moreover, after conversion from the UF to the PF, the heat transfer direction changed from downward to upward in the 10–20 cm soil layer, resulting in a 42.9% reduction in the annual average soil heat flux (G). Furthermore, the differences in G between the UF and PF were most significant in the summer (101.9%) and most minor in the winter (12.2%), respectively. The conversion of the UF to the PF increased the Cs and λθ, ultimately reducing the range of soil temperature variation and changing the direction of heat transfer, which led to more heat release from the soil. This study reveals the effects of farmland use type conversion on regional land surface energy balance, providing theoretical underpinnings for optimizing agricultural ecosystem management. Full article
Show Figures

Figure 1

18 pages, 2013 KB  
Article
The Improved Measurement of Building Thermal Transmittance in Zagreb Using a Temperature-Based Method
by Igor Štambuk, Roman Malarić, Ivica Bakota and Zvonko Trzun
Sensors 2025, 25(11), 3456; https://doi.org/10.3390/s25113456 - 30 May 2025
Viewed by 568
Abstract
Theoretical U-values, which measure thermal transmittance, can be calculated based on the thermal parameters of an opaque element’s layers. However, practical measurements are essential to validate these theoretical values. The heat flux meter (HFM) method, is a widely accepted standard for such [...] Read more.
Theoretical U-values, which measure thermal transmittance, can be calculated based on the thermal parameters of an opaque element’s layers. However, practical measurements are essential to validate these theoretical values. The heat flux meter (HFM) method, is a widely accepted standard for such measurements. Despite its prevalence, the HFM method faces challenges, including wall surface roughness, ensuring proper contact between measurement devices and surfaces, and weather-related fluctuations. This study introduces a prototype system that employs a modified temperature-based method (TBM) to address these challenges. The paper provides a detailed comparison of thermal transmittance measurements obtained using both the modified TBM and the HFM method. The results showed U-value differences between the two methods. Additionally, these experimental findings were compared with theoretical calculations, highlighting the efficacy and potential of the modified TBM as an alternative approach for accurate U-value determination. Full article
(This article belongs to the Special Issue Advances in Wireless Sensor Networks for Smart City)
Show Figures

Figure 1

15 pages, 4269 KB  
Article
The Effect of Thermal Conductivity for Buildings’ Composite Panels Including Used Materials on Heat Variation and Energy Consumption
by Eliza Chircan, Vasile Gheorghe, Iuliana Costiuc and Liviu Costiuc
Buildings 2025, 15(10), 1599; https://doi.org/10.3390/buildings15101599 - 9 May 2025
Viewed by 653
Abstract
Alongside technological advancement, there is a growing need for materials that are easier to obtain and process and that offer multiple uses, thereby reducing environmental impact. Such materials are generally subject to mechanical, resistance and fatigue studies, often without considering their thermal properties, [...] Read more.
Alongside technological advancement, there is a growing need for materials that are easier to obtain and process and that offer multiple uses, thereby reducing environmental impact. Such materials are generally subject to mechanical, resistance and fatigue studies, often without considering their thermal properties, which could potentially expand the range of applications for the studied compound. The current study aims to analyze possible fluctuations and deviations from linearity in temperature flow curves, as well as their impact on the conductivity coefficient. These studies are conducted on a new type of panel made of fiberglass, a low-cost material with significant recycling potential, using foam elements recycled from packaging insulations and a cement biding mixture. This study considers the time variation of the different thermal coefficients and the temperature curves obtained from the experimental measurements. These data are analyzed and used to simulate heat variation in order to observe the heat flux fluctuations within the plate. The results suggest that the proposed composite plate can serve as an alternative to classical insulating panels. Full article
Show Figures

Figure 1

20 pages, 2862 KB  
Article
Characterizing Seasonal Variation of the Atmospheric Mixing Layer Height Using Machine Learning Approaches
by Yufei Chu, Guo Lin, Min Deng, Hanqing Guo and Jun A. Zhang
Remote Sens. 2025, 17(8), 1399; https://doi.org/10.3390/rs17081399 - 14 Apr 2025
Cited by 1 | Viewed by 599
Abstract
As machine learning becomes more integrated into atmospheric science, XGBoost has gained popularity for its ability to assess the relative contributions of influencing factors in the atmospheric boundary layer height. To examine how these factors vary across seasons, a seasonal analysis is necessary. [...] Read more.
As machine learning becomes more integrated into atmospheric science, XGBoost has gained popularity for its ability to assess the relative contributions of influencing factors in the atmospheric boundary layer height. To examine how these factors vary across seasons, a seasonal analysis is necessary. However, dividing data by season reduces the sample size, which can affect result reliability and complicate factor comparisons. To address these challenges, this study replaces default parameters with grid search optimization and incorporates cross-validation to mitigate dataset limitations. Using XGBoost with four years of data from the atmospheric radiation measurement (ARM) (Southern Great Plains (SGP) C1 site, cross-validation stabilizes correlation coefficient fluctuations from 0.3 to within 0.1. With optimized parameters, the R value can reach 0.81. Analysis of the C1 site reveals that the relative importance of different factors changes across seasons. Lower tropospheric stability (LTS, ~0.53) is the dominant factor at C1 throughout the year. However, during DJF, latent heat flux (LHF, 0.44) surpasses LTS (0.22). In SON, LTS (0.58) becomes more influential than LHF (0.18). Further comparisons among the four long-term SGP sites (C1, E32, E37, and E39) show seasonal variations in relative importance. Notably, during JJA, the differences in the relative importance of the three factors across all sites are lower than in other seasons. This suggests that boundary layer development in the summer is not dominated by a single factor, reflecting a more intricate process likely influenced by seasonal conditions such as enhanced convective activity, higher temperatures, and humidity, which collectively contribute to a balanced distribution of parameter impacts. Furthermore, the relative importance of LTS gradually increases from morning to noon, indicating that LTS becomes more significant as the boundary layer approaches its maximum height. Consequently, the LTS in the early morning in autumn exhibits greater relative importance compared to other seasons. This reflects a faster development of the mixing layer height (MLH) in autumn, suggesting that it is easier to retrieve the MLH from the previous day during this period. The findings enhance understanding of boundary layer evolution and contribute to improved boundary layer parameterization. Full article
Show Figures

Figure 1

27 pages, 3733 KB  
Article
Modeling and Experimental Investigation of the Evolution of Surface Temperature Fields in Water Bodies
by Feiyang Luo, Changgeng Shuai, Yongcheng Du and Chengzhe Gao
Appl. Sci. 2025, 15(6), 3140; https://doi.org/10.3390/app15063140 - 13 Mar 2025
Viewed by 576
Abstract
The variation in the background temperature field in aquatic environments plays a crucial role in the detection of thermal signatures of maritime moving targets. To elucidate the influence of various meteorological and hydrological parameters on the background temperature field of water bodies, this [...] Read more.
The variation in the background temperature field in aquatic environments plays a crucial role in the detection of thermal signatures of maritime moving targets. To elucidate the influence of various meteorological and hydrological parameters on the background temperature field of water bodies, this study employs the COARE 3.0 model to analyze the relationship between the net heat flux at the air–water interface and the characteristics of the cool skin layer. By examining the diurnal fluctuations of environmental parameters, the diurnal variation patterns of the cool skin layer properties are investigated. A dynamic temperature field testing platform was established in an outdoor pool to measure air–water volume variables and validate the accuracy of the water temperature field calculation model. The findings indicate that the cool skin phenomenon is indeed present in natural aquatic environments. The properties of the cool skin layer are predominantly affected by factors such as wind speed, the specific humidity gradient between the near-surface and high-altitude regions, and the temperature gradient between these regions. The temperature of the cool skin layer is typically a few tenths of K lower than that of the subsurface water, with a thickness generally ranging from 2 to 5 mm. Full article
Show Figures

Figure 1

20 pages, 7019 KB  
Article
Research on the Liquid Helium Insulation Characteristics of an Experimental System
by Ye Chen, Liang Guo, Qiming Jia, Xiujuan Xie, Weiping Zhu and Ping Wang
Energies 2025, 18(6), 1349; https://doi.org/10.3390/en18061349 - 10 Mar 2025
Viewed by 912
Abstract
The research on the thermal insulation performance of experimental systems in the liquid helium temperature range is relatively scarce. This paper presents the theoretical design and establishment of a liquid helium storage system for insulation research, consisting of a liquid helium Dewar, a [...] Read more.
The research on the thermal insulation performance of experimental systems in the liquid helium temperature range is relatively scarce. This paper presents the theoretical design and establishment of a liquid helium storage system for insulation research, consisting of a liquid helium Dewar, a daily boil-off rate test subsystem, and a helium recovery subsystem. The passive thermal insulation structure consisted of a multilayer insulation (MLI) system with hollow glass microspheres serving as spacers. Based on self-built data acquisition, experiments were conducted to investigate the liquid helium insulation characteristics of an experimental system. A theoretical thermal analysis of the Dewar was conducted, resulting in the derivation of an expression for the heat leak of the Dewar. The analysis indicates that the evaporation capacity from the liquid helium Dewar was significantly affected by the structure of the neck tube. The overall relative error between the simulated and experimental temperature distribution of the insulation layer is 14.3%, with a maximum error of 22.3%. The system had an average daily boil-off rate of 14.4%, a heat leakage of 7.5 W, and a heat flux of 2.254 W/m2, while the effective thermal conductivity of the MLI with hollow glass microspheres was determined to be 2.887 × 10−4 W/(m·K). Furthermore, the apparent thermal conductivity between different layers of MLI significantly fluctuated with increasing temperature, ranging from a maximum of 5.342 × 10−4 W/(m·K) to a minimum of 1.721 × 10−4 W/(m·K). Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition)
Show Figures

Figure 1

20 pages, 8703 KB  
Article
Atmospheric Variability and Sea-Ice Changes in the Southern Hemisphere
by Carlos Diego Gurjão, Luciano Ponzi Pezzi, Claudia Klose Parise, Flávio Barbosa Justino, Camila Bertoletti Carpenedo, Vanúcia Schumacher and Alcimoni Comin
Atmosphere 2025, 16(3), 284; https://doi.org/10.3390/atmos16030284 - 27 Feb 2025
Viewed by 1031
Abstract
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern [...] Read more.
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern Annular Mode (SAM), and Antarctic Dipole (ADP). Using NSIDC satellite-derived sea ice data and ERA5 reanalysis from 1980 to 2022, we analyzed SIC anomalies in the Weddell, Ross, and Bellingshausen and Amundsen (B&A) Seas, assessing their response to climatic forcings across different timescales. Our findings reveal strong linkages between SIC variability and large-scale atmospheric circulation. ENSO-related teleconnections drive a dipolar SIC response, with warming in the Pacific sector and cooling in the Atlantic during El Niño, and the opposite pattern during La Niña. PSA and ADP further modulate this response by altering Rossby wave propagation and heat fluxes, leading to significant SIC fluctuations. The ADP emerges as a dominant driver of interannual SIC anomalies, showing an out-of-phase relationship between the Atlantic and Pacific sectors of the Southern Ocean. Regional SIC trends exhibit contrasting patterns: the Ross Sea shows a significant positive SIC trend, while the B&A and Weddell Seas experience persistent negative anomalies due to enhanced meridional heat transport and stronger westerly winds. SAM strongly influences SIC, particularly in the Atlantic sector, with delayed responses of up to six months, likely due to ice-albedo feedbacks and ocean memory effects. These results enhance our understanding of Antarctic sea ice variability and its sensitivity to large-scale climate oscillations. Given the observed trends and ongoing climate change, further research is needed to assess how these processes will evolve under future warming scenarios. This study highlights the importance of continuous satellite observations and high-resolution climate modeling for improving projections of Antarctic sea ice behavior and its implications for the global climate system. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

35 pages, 14477 KB  
Article
Effects of Primary Jets on the Flow Field and Outlet Temperature Distribution in a Reverse-Flow Combustor
by Qian Yao, Peixing Li, Chaoqun Ren, Chaowei Tang, Qiongyao Qin, Jianzhong Li and Wu Jin
Aerospace 2025, 12(3), 182; https://doi.org/10.3390/aerospace12030182 - 25 Feb 2025
Viewed by 961
Abstract
A reverse-flow combustor has a larger liner surface area due to airflow turning, which complicates flow and cooling control, particularly heat transfer efficiency. Effective heat management is essential for maintaining uniform temperature distribution and preventing thermal gradients. This study explores the impact of [...] Read more.
A reverse-flow combustor has a larger liner surface area due to airflow turning, which complicates flow and cooling control, particularly heat transfer efficiency. Effective heat management is essential for maintaining uniform temperature distribution and preventing thermal gradients. This study explores the impact of axial position and diameter of primary holes on thermal performance and flow dynamics. Results indicate that as the primary holes move toward the dome, the recirculation vortex size decreases, leading to insufficient fuel mixing, a reduction in the high-temperature area in the primary zone, and an increase in the high-temperature area of the middle zone. On the other hand, moving the primary holes downstream enhances fuel mixing, increasing high-temperature areas in the primary zone and reducing them in the middle and dilution zones, thus improving thermal boundary layers and convective heat transfer rates. When the primary hole is moved 10 mm downstream, outlet temperature improves significantly with an outlet temperature distribution factor (OTDF) of 0.21 and a radial temperature distribution factor (RTDF) of 0.16. Additionally, reducing the upper primary hole diameter strengthens jet deflection, improving fuel–gas mixing at the dome and heat transfer to the central region. With a 2.1 mm hole diameter, the temperature gradient decreases, resulting in an OTDF of 0.184 and RTDF of 0.15. Furthermore, as the momentum flux ratio increases, the jet penetration depth initially rises and then stabilizes. Momentum flux ratios between 10.6 and 15.1 significantly affect jet penetration, while further increases result in smaller fluctuations. Higher momentum flux ratios create localized high- and low-temperature zones, reducing outlet temperature distribution quality. The optimal momentum ratio for the reverse-flow combustor, ensuring effective jet penetration and better temperature distribution, is between 10.6 and 14.7, with a corresponding penetration depth of 34.3 mm to 35.1 mm. These findings offer valuable insights for improving reverse-flow combustor design and performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 12589 KB  
Article
Analysis of the Influence of Process Parameters on Transverse Flux Induction Heating of Endless-Rolling Strip
by Lin Gao, Fang-Zhou Shi, Meng Yan, Yi-Ping He, Jian Xiang, Xiao-Hu Qi and Hua-Gui Huang
Metals 2025, 15(2), 218; https://doi.org/10.3390/met15020218 - 18 Feb 2025
Viewed by 838
Abstract
This study focuses on the effect of an induction heating device on the entry of a thin strip continuous casting and rolling line. A finite element model for the electromagnetic–thermal coupling of transverse magnetic flux induction heating was developed by adopting COMSOL software [...] Read more.
This study focuses on the effect of an induction heating device on the entry of a thin strip continuous casting and rolling line. A finite element model for the electromagnetic–thermal coupling of transverse magnetic flux induction heating was developed by adopting COMSOL software 6.1 to systematically investigate the effects of process parameters on the magnetic field, eddy current field, and the transverse temperature distribution of the strip. The results show that when the gap is between 20 mm and 40 mm, the maximum value of magnetic induction in the overheating region at the edges of the strip increases from 0.28 T to 0.35 T and 0.38. When the strip width is 1000 mm, there is an approximately 29% increase in magnetic induction in comparison to a strip with a width of 800 mm, and both eddy current density and temperature exhibit abnormal fluctuations. The maximum temperature difference in the temperature uniformity region at the center of the strip is only 3 °C at different frequencies, and the temperature-rise curves almost completely overlap. With increasing current, the temperature difference between the weak temperature region and the temperature uniformity region at the center widens, indicating a deterioration in temperature uniformity. Meanwhile, the field conditions are simulated using a simplified model of continuous heating. The results indicate that the maximum temperature deviation in the overheating region at the edges of the strip is 6 °C, while the deviation in the temperature uniformity region is 2 °C. Furthermore, the simulation data reveal an average temperature rise of 1156 °C across the width of the strip, with a deviation of 1.4 °C compared to the measured results, which verifies the validity of the proposed model. The analysis results provide a reference basis for designing transverse magnetic flux induction heating devices and optimizing process parameters. Full article
Show Figures

Figure 1

Back to TopTop