Modeling and Experimental Investigation of the Evolution of Surface Temperature Fields in Water Bodies
Abstract
:1. Introduction
2. Theoretical Model for Water Temperature Field
2.1. Vertical Profile Temperature Structure of Water
2.2. Gas–Liquid Two-Phase Interface Heat Flux Calculation Model
2.3. Vertical Profile Temperature Calculation Model of Water
2.4. Cold Skin Layer Calculation Model of Water
3. Experimental Measurement of Water Temperature Field
3.1. Experimental Testing System
3.2. Test Content
4. Validation of Water Body Temperature Field Calculation Model and Analysis of Test Results
4.1. Spatiotemporal Evolution of Vertical Profile Temperature in Water Bodies
4.2. Verification of the Existence of Cool Skin Layer in Natural Water Bodies
4.3. Analysis of Influencing Factors on the Cold Skin Characteristics of Water Bodies
4.4. Analysis of the Diurnal Variation Patterns of the Cold Skin Layer in Water Bodies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawai, Y.; Wada, A. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr. 2007, 63, 721–744. [Google Scholar] [CrossRef]
- Kawai, Y.; Kawamura, H. Study on a platform effect in the in situ sea surface temperature observations under weak wind and clear sky conditions using numerical models. J. Atmos. Ocean. Technol. 2000, 17, 185–196. [Google Scholar] [CrossRef]
- Zhang, S.C.; Yang, Z.; Yang, L. Numerical Simulation of Sea Surface Transient Temperature Field. Adv. Mater. Res. 2012, 482, 497–500. [Google Scholar] [CrossRef]
- Luo, F.; Shuai, C.; Du, Y.; Gao, C.; Wang, B. Experimental on the thermal characteristics of surface wake generated by submerged vehicle. Ocean. Eng. 2024, 297, 116957. [Google Scholar] [CrossRef]
- Farrar, J.T.; Zappa, C.J.; Weller, R.A.; Jessup, A.T. Sea surface temperature signatures of oceanic internal waves in low winds. J. Geophys. Res. Ocean. 2007, 112, C06014. [Google Scholar] [CrossRef]
- Zappa, C.J.; Jessup, A.T. High-resolution airborne infrared measurements of ocean skin temperature. IEEE Geosci. Remote Sens. Lett. 2005, 2, 146–150. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Zhu, S.; Ladwig, R.; Carrea, L.; Oliver, S.; Piotrowski, A.P.; Ptak, M.; Shinohara, R.; Sojka, M.; Woolway, R.I.; et al. Lake water temperature modeling in an era of climate change: Data sources, models, and future prospects. Rev. Geophys. 2024, 62, e2023RG000816. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Toffolon, M.; Majone, B. A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrol. Earth Syst. Sci. 2013, 17, 3323–3338. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Minnett, P.J.; Smith, M.; Ward, B. Measurements of the oceanic thermal skin effect. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 861–868. [Google Scholar] [CrossRef]
- MacCallum, S.N.; Merchant, C.J. Surface water temperature observations of large lakes by optimal estimation. Can. J. Remote Sens. 2012, 38, 25–45. [Google Scholar] [CrossRef]
- White, S.; Silva, T.; Amoudry, L.O.; Spyrakos, E.; Martin, A.; Medina-Lopez, E. The colours of the ocean: Using multispectral satellite imagery to estimate sea surface temperature and salinity on global coastal areas, the Gulf of Mexico and the UK. Front. Environ. Sci. 2024, 12, 1426547. [Google Scholar] [CrossRef]
- Kong, X.; Li, Y.; Wang, L.; Liu, H. Lake Surface Temperature Retrieval Study Based on Landsat 8 Satellite Imagery—A Case Study of Poyang Lake. Atmosphere 2024, 15, 428. [Google Scholar] [CrossRef]
- Fedorets, A.A.; Dombrovsky, L.A.; Smirnov, A.M. The use of infrared self-emission measurements to retrieve surface temperature of levitating water droplets. Infrared Phys. Technol. 2015, 69, 238–243. [Google Scholar] [CrossRef]
- Guo, M.; Zhuang, Q.; Yao, H.; Golub, M.; Leung, L.R.; Tan, Z. Intercomparison of thermal regime algorithms in 1-D lake models. Water Resour. Res. 2021, 57, e2020WR028776. [Google Scholar] [CrossRef]
- Fedorets, A.A.; Shcherbakov, D.V.; Levashov, V.Y.; Dombrovsky, L.A. Self-stabilization of droplet clusters levitating over heated salt water. Int. J. Therm. Sci. 2022, 182, 107822. [Google Scholar] [CrossRef]
- Liu, T.; Lee, Z.; Shang, S.; Xiu, P.; Chai, F.; Jiang, M. Impact of transmission scheme of visible solar radiation on temperature and mixing in the upper water column with inputs for transmission derived from ocean color remote sensing. J. Geophys. Res. Ocean 2020, 125, e2020JC016080. [Google Scholar] [CrossRef]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L.; et al. Observational needs of sea surface temperature. Front. Mar. Sci. 2019, 6, 420. [Google Scholar] [CrossRef]
- Rahaghi, A.I.; Lemmin, U.; Sage, D.; Barry, D.A. Achieving high-resolution thermal imagery in low-contrast lake surface waters by aerial remote sensing and image registration. Remote Sens. Environ. 2019, 221, 773–783. [Google Scholar] [CrossRef]
- Hampton, S.E.; Izmest’eva, L.R.; Moore, M.V.; Katz, S.L.; Dennis, B.; Silow, E.A. Sixty years of environmental change in the world’s largest freshwater lake–Lake Baikal, Siberia. Glob. Change Biol. 2008, 14, 1947–1958. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Tiberti, R.; Rossana, C.; Massimiliano, C.; Andrea, L.; Dario, M.; Daniele, S.; Michela, R. Automated high frequency monitoring of Lake Maggiore through in situ sensors: System design, field test and data quality control. J. Limnol. 2021, 80, 1–19. [Google Scholar] [CrossRef]
- Carrea, L.; Crétaux, J.F.; Liu, X.; Wu, Y.; Calmettes, B.; Duguay, C.R.; Merchant, C.J.; Selmes, N.; Simis, S.G.H.; Warren, M.; et al. Satellite-derived multivariate world-wide lake physical variable timeseries for climate studies. Sci. Data 2023, 10, 30. [Google Scholar] [CrossRef]
- Fu, Y.; Zou, C.Z.; Zhang, P.; Wu, B.; Wu, S.; Liu, S.; Wang, Y. A climate data record of atmospheric moisture and sea surface temperature from satellite observations. Earth Syst. Sci. Data Discuss. 2025, 2025, 1–26. [Google Scholar]
- Sharma, S.; Gray, D.K.; Read, J.S.; O’Reilly, C.M.; Schneider, P.; Qudrat, A.; Gries, C.; Stefanoff, S.; Hampton, S.E.; Hook, S. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2015, 2, 150008. [Google Scholar] [CrossRef]
- Sima, O.; Tang, B.-H.; He, Z.-W.; Wang, D.; Zhao, J.-L. Retrieval of Plateau Lake Water Surface Temperature from UAV Thermal Infrared Data. Atmosphere 2024, 15, 99. [Google Scholar] [CrossRef]
- Marmorino, G.O.; Smith, G.B.; Bowles, J.H.; Rhea, W.J. Infrared imagery of breaking internal waves. Cont. Shelf Res. 2008, 28, 485–490. [Google Scholar] [CrossRef]
- Tu, C.Y.; Tsuang, B.J. Cool-skin simulation by a one-column ocean model. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Donlon, C.J.; Robinson, I.S. Observations of the oceanic thermal skin in the Atlantic Ocean. J. Geophys. Res. Ocean. 1997, 102, 18585–18606. [Google Scholar] [CrossRef]
- Prats, J.; Reynaud, N.; Rebière, D.; Peroux, T.; Tormos, T.; Danis, P.-A. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999–2016 from Landsat archives. Earth Syst. Sci. Data 2018, 10, 727–743. [Google Scholar] [CrossRef]
- Moser, P.M. Applications of Airborne Passive Infrared Mapping Devices to Military Oceanography; U.S. Naval Air Develoment Center: Warminster Township, PA, USA, 1987. [Google Scholar]
- Wenstop. Maritime Infrared Linesanning Trials Against Submarines; Norwegian Defence Research Establishment: Lillestrom, Norway, 1977. [Google Scholar]
- Chen, Q.; Lin, Q.; Xuan, Y.; Han, Y. Investigation on the thermohaline structure of the stratified wake generated by a propagating submarine. Int. J. Heat Mass Transf. 2021, 166, 120808. [Google Scholar] [CrossRef]
- Voropayev, S.I.; Nath, C.; Fernando, H.J.S. Thermal surface signatures of ship propeller wakes in stratified waters. Phys. Fluids 2012, 24, 116603. [Google Scholar] [CrossRef]
- Wang, C.A.; Xu, D.; Gao, J.P. Surface temperature characteristics of underwater thermal jet based on thermal skin. Appl. Ocean. Res. 2023, 130, 103411. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool skin and warm layer effects on sea surface temperature. J. Geophys. Res. Ocean 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air sea fluxes for tropical ocean global atmosphere coupled ocean atmosphere response experiment. J. Geophys. Res. Ocean 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Grachev, A.A.; Fairall, C.W. Dependence of the Monin Obukhov Stability Parameter on the Bulk Richardson Number over the Ocean. J. Appl. Meteorol. 1997, 36, 406–415. [Google Scholar] [CrossRef]
- Paulson, C.A.; Simpson, J.J. The temperature difference across the cool skin of the ocean. J. Geophys. Res. Ocean 1981, 86, 11044–11054. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X. Ocean haline skin layer and turbulent surface convections. J. Geophys. Res. Ocean 2012, 117, 1–15. [Google Scholar] [CrossRef]
- Saunders, P.M. The Temperature at the Ocean Air Interface. J. Atmos. Sci. 1967, 24, 269–273. [Google Scholar] [CrossRef]
0.2~0.6 | 0.237 | 34.8492 |
0.6~0.9 | 0.360 | 2.2662 |
0.9~1.2 | 0.179 | 3.149 × 10−2 |
1.2~1.5 | 0.087 | 5.483 × 10−3 |
1.5~1.8 | 0.080 | 8.317 × 10−4 |
1.8~2.1 | 0.0246 | 1.261 × 10−4 |
2.1~2.4 | 0.025 | 3.133 × 10−4 |
2.4~2.7 | 0.007 | 7.819 × 10−5 |
2.7~3.0 | 0.0004 | 1.443 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, F.; Shuai, C.; Du, Y.; Gao, C. Modeling and Experimental Investigation of the Evolution of Surface Temperature Fields in Water Bodies. Appl. Sci. 2025, 15, 3140. https://doi.org/10.3390/app15063140
Luo F, Shuai C, Du Y, Gao C. Modeling and Experimental Investigation of the Evolution of Surface Temperature Fields in Water Bodies. Applied Sciences. 2025; 15(6):3140. https://doi.org/10.3390/app15063140
Chicago/Turabian StyleLuo, Feiyang, Changgeng Shuai, Yongcheng Du, and Chengzhe Gao. 2025. "Modeling and Experimental Investigation of the Evolution of Surface Temperature Fields in Water Bodies" Applied Sciences 15, no. 6: 3140. https://doi.org/10.3390/app15063140
APA StyleLuo, F., Shuai, C., Du, Y., & Gao, C. (2025). Modeling and Experimental Investigation of the Evolution of Surface Temperature Fields in Water Bodies. Applied Sciences, 15(6), 3140. https://doi.org/10.3390/app15063140