Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,455)

Search Parameters:
Keywords = health-promoting compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 701 KiB  
Article
Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion
by Ziva Vipotnik, Majda Golob and Alen Albreht
Plants 2025, 14(15), 2444; https://doi.org/10.3390/plants14152444 (registering DOI) - 7 Aug 2025
Abstract
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract [...] Read more.
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract correlated positively with the total phenolic content (TPC), which was 472.9 ± 0.1 mg GAE/g dw. The extract also showed good antimicrobial activity against Gram-positive foodborne bacteria. More importantly, in vitro bioaccessibility of phenols from the raspberry pomace extract was 5-fold higher when the extract was incorporated into meringue cookies. Although the concentrations of anthocyanins, flavonoids, and tannins decreased after the oral, gastric, and intestinal phases of digestion, the TPC slightly increased as the compounds were released from the food matrix. The content of available phenolics was 4-fold lower in the case of a commercial raspberry colorant, demonstrating that the waste from raspberry pomace could serve as a valuable health-promoting ingredient for functional food formulations. Full article
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion
by Xiaoyan Chen, Yuntong Lu, Xing Liu, Yunying Gu and Fei Li
Microorganisms 2025, 13(8), 1840; https://doi.org/10.3390/microorganisms13081840 (registering DOI) - 7 Aug 2025
Abstract
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various [...] Read more.
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various enzymes, secondary metabolites, and volatile organic compounds, Trichoderma effectively suppresses plant pathogens, promotes root development, and primes plant immune responses. This review details the evolutionary adaptations of Trichoderma, which has transitioned from saprotrophism to mycoparasitism and established beneficial symbiotic relationships with plants. It also highlights the ecological versatility of Trichoderma in colonizing plant roots and improving soil health, while emphasizing its role in mitigating both biotic and abiotic stressors. With increasing recognition as a biostimulant and biocontrol agent, Trichoderma has become a key player in reducing chemical inputs and advancing eco-friendly farming practices. This review addresses challenges such as strain selection, formulation stability, and regulatory hurdles and concludes by advocating for continued research to optimize Trichoderma’s applications in addressing climate change, enhancing food security, and promoting a sustainable agricultural future. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

14 pages, 1384 KiB  
Article
Volatile Essential Oils from Different Tree Species Influence Scent Impression and Physiological Response
by Eri Matsubara and Naoyuki Matsui
Molecules 2025, 30(15), 3288; https://doi.org/10.3390/molecules30153288 - 6 Aug 2025
Abstract
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. [...] Read more.
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. However, the effects of these tree species’ characteristics on human sensitivity and mental and physical functionality remain underexplored. This study investigated the effects of essential oils from multiple tree species on subjective and physiological responses. The essential oils from nine tree species were tested, subjective scent assessments were conducted, and their effect on autonomic nervous activity was measured. The volatile profiles of the oils were analyzed using gas chromatography–mass spectrometry. Our findings revealed clear differences in the composition of volatile essential oils among species, which influenced the scent evaluation and individual preferences. We suggest that scent preferences have the potential to influence physiological responses. The findings indicate that volatile essential oils could play a potential role in making use of tree resources effectively, and they may also be beneficial for maintaining human health. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

22 pages, 2670 KiB  
Review
Sodium Chloride in Food
by Sylwia Chudy, Agnieszka Makowska and Ryszard Kowalski
Foods 2025, 14(15), 2741; https://doi.org/10.3390/foods14152741 - 6 Aug 2025
Abstract
Sodium chloride is a chemical compound that has been encountered by people for thousands of years, and plays a significant role in their lives. The aim of this article is to provide a comprehensive review of table salt from the perspective of health, [...] Read more.
Sodium chloride is a chemical compound that has been encountered by people for thousands of years, and plays a significant role in their lives. The aim of this article is to provide a comprehensive review of table salt from the perspective of health, food technology, and cultural heritage. The article discusses salt extraction and production, its composition and consumption, and its effects on the human body. The authors draw attention to new trends, such as the use of micronized salt, microencapsulated salt, and salt with colors and shapes that differ from those of typical table salt. Scientific studies on the presence of undesirable substances and the use of salt additives were reviewed. The role of salt in dairy, meat, and bakery technology was illustrated. Gaps in research on salt were highlighted. In the last part, all types of salt with geographical indications are shown. The paper suggests that producers with a long tradition in the salt sector should apply for the European geographical indications to enhance their national and cultural heritage and promote their region. The review highlights the need for further research on all aspects discussed. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

35 pages, 1184 KiB  
Review
Which Approach to Choose to Counteract Musculoskeletal Aging? A Comprehensive Review on the Multiple Effects of Exercise
by Angela Falvino, Roberto Bonanni, Umberto Tarantino, Virginia Tancredi and Ida Cariati
Int. J. Mol. Sci. 2025, 26(15), 7573; https://doi.org/10.3390/ijms26157573 - 5 Aug 2025
Abstract
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation [...] Read more.
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation and tissue dysfunction through the senescence-associated secretory phenotype (SASP). Recently, senotherapeutics have shown promising results in improving musculoskeletal health. Natural compounds such as resveratrol, rapamycin, quercetin, curcumin, vitamin E, genistein, fisetin, and epicatechin act on key signaling pathways, offering protective effects against musculoskeletal decline. On the other hand, molecules such as dasatinib, navitoclax, UBX0101, panobinostat, and metformin have been shown to be effective in eliminating or modulating senescent cells. However, understanding the mechanisms of action, long-term safety, and bioavailability remain areas for further investigation. In this context, physical exercise emerges as an effective non-pharmacological countermeasure, capable of directly modulating cellular senescence and promoting tissue regeneration, representing an integrated strategy to combat age-related diseases. Therefore, we have provided an overview of the main anti-aging compounds and examined the potential of physical exercise as a strategy in the management of age-related musculoskeletal disorders. Further studies should focus on identifying synergistic combinations of pharmacological and non-pharmacological interventions to optimize the effectiveness of anti-aging strategies and promoting healthier musculoskeletal aging. Full article
(This article belongs to the Special Issue Molecular Biology of Senescence and Anti-Aging Strategies)
Show Figures

Figure 1

23 pages, 1970 KiB  
Review
Resveratrol as a Therapeutic Agent in Alzheimer’s Disease: Evidence from Clinical Studies
by Nidhi Puranik, Meenakshi Kumari, Shraddha Tiwari, Thakur Dhakal and Minseok Song
Nutrients 2025, 17(15), 2557; https://doi.org/10.3390/nu17152557 - 5 Aug 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in grapes, berries, and red wine that has garnered attention for its potential neuroprotective properties in combating AD. The neuroprotective effects of RSV are mediated through the activation of sirtuins (SIRT1), inhibition of Aβ aggregation, modulation of Tau protein phosphorylation, and the attenuation of oxidative stress and inflammatory responses. RSV also enhances mitochondrial function and promotes autophagy, which are important processes for maintaining neuronal health. Preclinical studies have demonstrated its efficacy in reducing Aβ burden, improving cognitive performance, and mitigating synaptic damage; however, challenges such as poor bioavailability, rapid metabolism, and limited blood–brain barrier penetration restrict its clinical applicability. Recent technological advances and selected modifications are being explored to overcome these limitations and enhance its therapeutic efficacy. This review summarizes the multifaceted neuroprotective mechanisms of RSV, the synergistic potential of natural compounds in enhancing neuroprotection, and the advancements in formulation strategies aimed at mitigating AD pathology. Leveraging the therapeutic potential of natural compounds represents a compelling paradigm shift for AD management, paving the way for future clinical applications. Full article
(This article belongs to the Special Issue The Neuroprotective Activity of Natural Dietary Compounds)
Show Figures

Figure 1

27 pages, 2559 KiB  
Review
Virgin Coconut Oil and Its Lauric Acid, Between Anticancer Activity and Modulation of Chemotherapy Toxicity: A Review
by Debalina Bose, Adetayo Olorunlana, Rania Abdel-Latif, Ademola C. Famurewa and Eman M. Othman
J. Xenobiot. 2025, 15(4), 126; https://doi.org/10.3390/jox15040126 - 5 Aug 2025
Viewed by 37
Abstract
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty [...] Read more.
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty acid in VCO and has been associated with several pharmacological activities. The literatures show the pharmacological effects of VCO and LA on chronic pathologies, infectious diseases, and metabolic disorders. A robust body of evidence shows that LA and other phenolic compounds are responsible for the VCO protection against toxicities and pharmacological efficacies. This review elucidates the anticancer mechanisms of VCO/LA and their modulation of the chemotherapy-induced side effect toxicity. VCO, LA, and their nanomaterial/encapsulated derivatives promote ROS generation, antiproliferation, apoptosis, cell cycle arrest, the inhibition of metastasis, and the modulation of cancer-related signaling pathways for cancer cell death in vivo and in vitro. VCO mitigates oxidative inflammation and apoptosis to block the underlying mechanisms of the side effect toxicity of chemotherapy. However, the possible beneficial effect of LA on the toxicity of chemotherapy is currently unknown. The available evidence emphasizes the anticancer effect and mechanism of VCO and LA, and the VCO potential to combat adverse side effects of chemotherapy. Thus, VCO and LA are potential adjuvant therapeutic agents in the management of various cancers. Nevertheless, future studies should be targeted at elucidating cancer-related molecular mechanisms to bridge the gap in knowledge. Full article
Show Figures

Figure 1

26 pages, 3287 KiB  
Review
Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential
by Manuela Vitoria Nascimento da Silva, Andrei da Silva Alexandre and Cecilia Veronica Nunez
Microorganisms 2025, 13(8), 1826; https://doi.org/10.3390/microorganisms13081826 - 5 Aug 2025
Viewed by 38
Abstract
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, [...] Read more.
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, stand out as high-yielding producers of bioactive secondary metabolites. Given their scientific and economic relevance, this review critically examines endophytic Colletotrichum species, focusing on the chemical diversity and biological activities of the metabolites they produce, including antibacterial, antifungal, and cytotoxic activity against cancer cells, and antioxidant properties. This integrative review was conducted through a structured search of scientific databases, from which 39 relevant studies were selected, highlighting the chemical and functional diversity of these compounds. The analyzed literature emphasizes their potential applications in pharmaceutical, agricultural, and industrial sectors. Collectively, these findings reinforce the promising biotechnological potential of Colletotrichum endophytes not only as sources of bioactive metabolites but also as agents involved in ecological regulation, plant health promotion, and sustainable production systems. Full article
(This article belongs to the Special Issue Endophytic Fungus as Producers of New and/or Bioactive Substances)
Show Figures

Figure 1

26 pages, 884 KiB  
Review
Harnessing Seed Endophytic Microbiomes: A Hidden Treasure for Enhancing Sustainable Agriculture
by Ayomide Emmanuel Fadiji, Adedayo Ayodeji Lanrewaju, Iyabo Olunike Omomowo, Fannie Isela Parra-Cota and Sergio de los Santos-Villalobos
Plants 2025, 14(15), 2421; https://doi.org/10.3390/plants14152421 - 4 Aug 2025
Viewed by 201
Abstract
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria [...] Read more.
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria commonly colonize plant tissues such as stems, roots, and leaves, seed-associated endophytes generally exhibit lower diversity compared to those in other plant compartments. Nevertheless, seed-borne microbes are of particular importance, as they represent the initial microbial inoculum that influences a plant’s critical early developmental stages. The seed endophytic microbiome is of particular interest due to its potential for vertical transmission and its capacity to produce a broad array of phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites. Collectively, these functions contribute to enhanced plant biomass and yield, especially under abiotic and biotic stress conditions. Despite their multifaceted roles, seed microbiomes remain underexplored in plant ecology, and their potential benefits are not yet fully understood. This review highlights recent advances in our understanding of the diversity, community composition, mechanisms of action, and agricultural significance of seed endophytic microbes. Furthermore, it synthesizes current insights into how seed endophytes promote plant health and productivity and proposes future research directions to fully harness their potential in sustainable agriculture. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

26 pages, 931 KiB  
Article
Nutritional Quality, Fatty Acids Profile, and Phytochemical Composition of Unconventional Vegetable Oils
by Wiktoria Kamińska, Anna Grygier, Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska and Grażyna Neunert
Molecules 2025, 30(15), 3269; https://doi.org/10.3390/molecules30153269 - 4 Aug 2025
Viewed by 220
Abstract
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The [...] Read more.
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The chosen oils were investigated based on their fatty acids profiles, total phenolic compounds (TPC), tocopherols, and pigment contents. Despite the high polyunsaturated fatty acids (PUFAs) content raising concerns about oxidative stability, the significant tocopherol levels and polyphenols content contribute to antioxidative protection. These oils’ favorable hypocholesterolemic, antiatherogenic, and antithrombogenic properties were highlighted by key nutritional indices, showing potential benefits for cardiovascular health. These results suggest that these oils are a promising dietary supplement for promoting both cardiovascular health and sustainability, owing to their rich content of essential fatty acids and bioactive compounds. Moreover, high correlations were found between theoretical and experimental established oxidative stability of the tested oils at the ending stage of the thermostat test. Full article
Show Figures

Figure 1

12 pages, 562 KiB  
Review
Potential of the Use of Biostimulants in Lettuce Production
by Talys Moratti Lemos de Oliveira, Janyne Soares Braga Pires, Vinicius de Souza Oliveira, Ana Júlia Câmara Jeveaux Machado, Adriano Alves Fernandes, Lúcio de Oliveira Arantes and Sara Dousseau-Arantes
Plants 2025, 14(15), 2416; https://doi.org/10.3390/plants14152416 - 4 Aug 2025
Viewed by 161
Abstract
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to [...] Read more.
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to ongoing climate change that has had global effects, the crop has been suffering a reduction in productivity and quality. Thus, technologies aiming to mitigate the effects of climate extremes have been developed. In lettuce production, biostimulants make it possible to improve the growth and sustainable development of plants. This is due to their ability to activate physiological and biochemical processes in plants, resulting in an increase in the production of bioactive compounds such as vitamins, amino acids, and antioxidants. In addition, biostimulants contribute to improving the nutritional quality of lettuces, making them more resistant and adapted to different environmental conditions, resulting in a more sustainable development for the crop. This review aims to compile and discuss the available scientific evidence on the use of biostimulants in lettuce cultivation, addressing their mechanisms of action, the types of substances used, the results obtained in different cultivation systems, and their potential to promote more efficient and adaptable agriculture in the face of environmental changes. Full article
(This article belongs to the Special Issue Advances in Biostimulant Use on Horticultural Crops)
Show Figures

Figure 1

20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 226
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

16 pages, 1167 KiB  
Article
Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
by Iwona Jasińska-Kuligowska, Maciej Kuligowski, Mateusz Wyszyński and Marcin Kidoń
Sustainability 2025, 17(15), 7056; https://doi.org/10.3390/su17157056 - 4 Aug 2025
Viewed by 177
Abstract
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic [...] Read more.
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic content, and antioxidant activity, and HPLC analysis of the phenolic compounds was performed. Subsequently, cookies were prepared by replacing wheat flour with 30% or 50% press cake. The addition of sunflower press cake significantly increased the total phenolic content (up to 8.6 mg GAE/g dm) and antioxidant activity (up to 75.9%) in the cookies, whereas adding sesame press cake showed a less pronounced effect, reaching 0.91 g GAE/g dm and 8.9% for total phenolic content and antioxidant activity, respectively. HPLC analysis indicated that chlorogenic acid and its derivatives dominated in sunflower-enriched cookies, while sesame samples contained lignans such as sesamol and sesamin. Our study shows that 50% substitution improves the health-promoting properties of cookies and does not differ significantly from the 30% level in consumer sensory evaluations. These findings support the use of sunflower and sesame press cakes as valuable ingredients in food applications. This represents an important step toward developing healthier and more nutritious food products while supporting the principles of the circular economy through the upcycling of valuable raw materials. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

23 pages, 3877 KiB  
Article
Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential
by George Ntourtoglou, Chaido Bardouki, Andreas Douros, Nikolaos Gkanatsios, Eleni Bozinou, Vassilis Athanasiadis, Stavros I. Lalas and Vassilis G. Dourtoglou
Molecules 2025, 30(15), 3259; https://doi.org/10.3390/molecules30153259 - 4 Aug 2025
Viewed by 178
Abstract
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, [...] Read more.
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, carotenoids, and volatile compounds. Additionally, this study examined the impact of adding rose hip berries during different stages of carbohydrate fermentation on the resulting phenolic and aroma profiles. A control wort and four experimental formulations were prepared. Rose hip pulp—treated or untreated with PEF—was added either during fermentation or beforehand, and the volatiles produced were analyzed using GC-MS (in triplicate). Fermentation was carried out over 10 days at 20 °C using Saccharomyces cerevisiae and Torulaspora delbrueckii. At a 10:1 ratio, all beverage samples were subjected to physicochemical testing and HPLC analysis for polyphenols, organic acids, and carotenoids, as well as GC-MS analysis for aroma compounds. The results demonstrated that the use of PEF-treated rose hips significantly improved phenolic compound extraction. Moreover, the PEF treatment enhanced the aroma profile of the beverage, contributing to a more complex and appealing sensory experience. This research highlights the rich polyphenol content of rose hips and the potential of PEF-treated fruit as a natural ingredient to improve both the functional and sensory qualities of fruit-based beverages. Their application opens new possibilities for the development of innovative, health-promoting drinks in the brewing industry. Full article
Show Figures

Figure 1

Back to TopTop