Sodium Chloride in Food
Abstract
1. Introduction
2. Salt Mining and Production
- From seawater, salt lakes, and their sediments (solar salt/pan salt);
- From brine (tunnels are drilled, water is added, the brine is pumped out, and then dried)—brine salt;
- From underground mines (rock salt).
3. Salt Composition
4. Salt Consumption and Body Reaction to Intake
5. Salt in Food
Product | Properties | Acting | Concentration of NaCl |
---|---|---|---|
Blood cell protein powder | solubility | decries | 0–0.4 M; (pH = 3) |
The sunflower protein | solubility c | increase | 0.1 M; (pH = 4–7) |
Rice protein | solubility | increase | 0.1 M; (pH = 2/4.5/9 |
decrease | 1.0 M; (pH = 2/4.5/9) | ||
WPI gels | water retention | increase | 0.1 M; (pH = 7.5–9.5) |
Pea and lentil globulins | solubility | increase | 0.1–0.5% |
Blood globin powder | water holding capacity | decrease | ˃0.2 M |
Canned frankfurters | water and fat binding | increase | 5% in product |
Rice protein concentrate | foaming capacity | increase | 0.1 M |
decrease | 1.0 M | ||
Myosin gel (from broiler muscle) | strength | increase | 0.2–0.6 M |
Non-heated myofibrils | extractability of proteins | increase | 0.1–0.6 M |
Whey gel | hardness | increase (maximum at) | 200 mM NaCI and 10 mM CaCl2 |
5.1. Salt in Dairy
5.2. Salt in Meat
- In the first period, osmosis, i.e., water penetration through membranes into a solution with a higher concentration, has an advantage over salt diffusion into the meat. As a result, there is a loss of mass of the raw material and a decrease in the difference in concentrations in the laminar layer on the surface of contact between the raw material and the brine. During this period, salt penetrates mainly into the outer layers of the meat. After the concentrations in the outer layers and the surrounding solution have equalized, further salt penetration takes place slowly as diffusion occurs. During this period, at low salt concentrations (up to 7%), proteins dissolve and pass into the brine;
- In the second phase, the same processes occur, but the increased salt concentration causes the denaturation and coagulation of proteins [94];
- In the third phase, the process is established. Part of the salt is bound to proteins, and the protein complexes formed cause the osmotic pressure in the tissues to become slightly higher than that of the brine. This results in the re-penetration of some water into the meat and an increase in the mass of the cured raw materials [95].
5.3. Salt in Bakery
6. Salts with Geographical Indications
7. Conclusions
- There is a need to define the parameters of micronized salt, along with performing further toxicological studies on contaminants and additives in salt;
- There is a need to analyze the long-term health effects, and to develop techniques for removing microplastics in salt and eliminating plastic packaging;
- In medicine, there are still no clear answers as to how much sodium a healthy body can accumulate;
- The wider use of fluoride in salt should be considered as an interesting solution for anti-caries prophylaxis;
- Further research on compounds added to salt to supplement iodine is necessary;
- In order to show national and cultural heritage and promote regions with a long tradition of salt production, it is advisable for salt producers to apply for the protection of their products with the PGI or PGI mark.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kołodziejski, J. Charakterystyka rynku soli w Polsce na przykładzie Kopalni Soli „Kłodawa” SA. Min.–Inform. Autom. Electr. Eng. 2022, 549, 1–16. [Google Scholar] [CrossRef]
- Hodbod, M.; Czapowski, G. Rock Salt, 2nd ed.; Polish Geological Institute—National Research Institute: Warsaw, Poland, 2020; p. 5.
- Li, Z.; Liang, Y.; Zhou, J.; Sun, X. Impacts of de-icing salt pollution on urban road greenspace: A case study of Beijing. Front. Environ. Sci. Eng. 2014, 8, 747–756. [Google Scholar] [CrossRef]
- Hintz, W.D.; Fay, L.; Relyea, R.A. Road salts, human safety, and the rising salinity of our fresh waters. Front. Ecol. Environ. 2022, 20, 22–30. [Google Scholar] [CrossRef]
- WHO Guideline: Sodium Intake for Adults and Children. Available online: https://iris.who.int/bitstream/handle/10665/77985/9789241504836_eng.pdf?sequence=1 (accessed on 2 August 2025).
- Santos, J.A.; Tekle, D.; Rosewarne, E.; Flexner, N.; Cobb, L.; Al-Jawaldeh, A.; Kim, W.J.; Breda, J.; Whiting, S.; Campbell, N.; et al. A systematic review of salt reduction initiatives around the world: A midterm evaluation of progress towards the 2025 global non-communicable diseases salt reduction target. Adv. Nutr. 2021, 12, 1768–1780. [Google Scholar] [CrossRef]
- Jaenke, R.; Barzi, F.; McMahon, E.; Webster, J.; Brimblecombe, J. Consumer acceptance of refor-mulated food products: A systematic review and meta-analysis of salt-reduced foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3357–3372. [Google Scholar] [CrossRef]
- Bobowski, N.; Rendahl, A.; Vickers, Z. A longitudinal comparison of two salt reduction strategies: Acceptability of a low sodium food depends on the consumer. Food Qual. Pref. 2015, 40, 270–278. [Google Scholar] [CrossRef]
- Denver, S.; Christensen, T.; Nordström, J. Consumer preferences for low-salt foods: A Danish case study based on a comprehensive supermarket intervention. Public Health Nutr. 2021, 24, 3956–3965. [Google Scholar] [CrossRef]
- Kamińska, M.; Krusiec-Świdergoł, B. Wykorzystanie terapeutycznych właściwości soli w profilaktyce i leczeniu chorób układu oddechowego. Państwo I Społeczeństwo 2023, 23, 135–149. [Google Scholar] [CrossRef]
- Jeran, A. Uzdrowiskowe czynniki lecznicze w kontekście Uzdrowiska w Ciechocinku Spa healing factors in the context of the health resort Ciechocinek. Jedziemy Do Wód W Biul. Inf. Stowarzyszenia Gm. Uzdrow. RP 2015, 2, 33–42. Available online: https://sgurp.pl/assets/public/pdf/biuletyny_jedziemy_do_wod/Biuletyn_SGURP_2-2015_REF-1.pdf (accessed on 11 January 2025).
- Faracik, R. Dziedzictwo salinarne a współczesna haloterapia w Europie Środkowej. In Tradycje i Perspektywy Rozwoju Kultury Uzdrowiskowej w Muszynie w Kontekście Europejskim; Płonka-Syroka, B., Brzegowy, P., Syroka, A., Dorocki, S., Eds.; Oficyna Wydawnicza Arboretum: Wrocław, Poland, 2020; pp. 383–398. [Google Scholar]
- Bhat, S.; Marklund, M.; Henr, M.E.; Appel, L.J.; Croft, K.D.; Neal, B.; Wu, J.H. A systematic review of the sources of dietary salt around the world. Adv. Nutr. 2020, 11, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Marro, C.; Bakhshaliyev, V.; Sanz, S.; Aliyev, N. Archaeological investigations on the salt mine of Duzdagi (Nakhchivan, Azerbaïdjan). TÜBA-AR-Turk. Acad. Sci. J. Archaeol. 2010, 13, 233–246. [Google Scholar]
- Warzelnia. Available online: https://www.kopalnia.pl/turysta-indywidualny/o-kopalni/warzelnia-czyli-miejsce-pozyskiwania-soli (accessed on 17 March 2025).
- Salt Statistics and Information. Available online: https://www.usgs.gov/centers/national-minerals-information-center/salt-statistics-and-information (accessed on 17 March 2025).
- Singh, E.J. Salt in India—And A Monstrous Hedge. Salt in India—And A Monstrous Hedge. RGNUL Soc. Sci. Review. A Half Yrly. Peer Rev. J. Rajiv Gandhi Natl. Univ. Law Punjab 2019, 2, 47–58. Available online: https://www.rgnul.ac.in/PDF/57595759-33f9-47be-8705-20516ec668f0.pdf (accessed on 28 February 2025).
- Poborska-Młynarska, K. Współczesne techniki eksploatacji soli kamiennej w kopalniach podziemnych. Przegląd Górniczy 2015, 71, 140–146. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-e2c2d84b-b205-4da3-8f87-b1217ebf0652 (accessed on 27 February 2025).
- Urbański, P.; Gawlik, A. Rock salt production in O/ZG “Polkowice-Sieroszowice”—A case study. Min.–Inform. Autom. Electric. Eng. 2022, 549, 49–82. [Google Scholar] [CrossRef]
- Kreutz, F.O. przyczynie błękitnego zabarwienia soli kuchennej. Rozpr. Akad. Umiejętności. Wydział Mat.-Przyrodniczy. Ser. II 1893, 4, 193–205. [Google Scholar]
- Nassau, K. The Physics and Chemistry of Color: The fifteen Causes of Color, 2nd ed.; Wiley: New York, NY, USA, 2001; p. 496. [Google Scholar]
- Chen, W.; Tegenkamp, C.; Pfnür, H.; Bredow, T. Color centers in NaCl by hybrid functionals. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 82, 104106. [Google Scholar] [CrossRef]
- Zielasek, V.; Hildebrandt, T.; Henzler, M. Surface color centers on epitaxial NaCl films. Phys. Rev. B 2000, 62, 2912. [Google Scholar] [CrossRef]
- Desarnaud, J.; Derluyn, H.; Carmeliet, J.; Bonn, D.; Shahidzadeh, N. Hopper growth of salt crystals. J. Phys. Chem. Lett. 2018, 9, 2961–2966. [Google Scholar] [CrossRef]
- Legutko, M.; Tomanek, G.; Gierak, Ł.; Kropiwnicki, J. The micronization as a key to modern pharmacy. CHEMIK 2014, 68, 224–226. Available online: https://miesiecznikchemik.pl/2014/mikronizacja-kluczem-do-wspolczesnej-farmacji/ (accessed on 28 February 2025).
- de Araújo, C.D.L.; Krauskopf, M.M.; Manzi, J.A.S.; Barbosa, J.A.L.; Cavalcante, C.L.; Feltre, G.; Rios-Mera, J.D.; Saldaña, E.; Castillo, C.J.C. Impact of micronized salt in reducing the sodium con-tent in fresh sausages. Foods 2024, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, J.L.; Rios-Mera, J.D.; Castillo, C.J.C.; Lorenzo, J.M.; Pinton, M.B.; Dos Santos, B.A.; Campagnol, P.C.B. High-power ultrasound, micronized salt, and low KCl level: An effective strategy to reduce the NaCl content of Bologna-type sausages by 50%. Meat Sci. 2023, 195, 109012. [Google Scholar] [CrossRef]
- Fan, X.; Xu, C.; Qin, Y.; Zhou, D.; Li, D. Lipid-protein synergistic micronized salt composite: High-pressure homogenization for enhanced sodium dispersion and thermal stability. Food Chem. 2025, 487, 144825. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, J.; Siepak, M. Polskie sole kamienne vs sole himalajskie–analiza porównawcza wybranych składników soli spożywczych. Przegląd Solny 2018, 14, 95–104. Available online: http://psgs.agh.edu.pl/wp-content/uploads/2023/04/PS6-Jaworska2-1.pdf (accessed on 8 March 2025).
- Jaworska, J.; Niedzielski, P. Skład chemiczny soli spożywczych–sole kłodawskie na tle tak zwanych soli morskich. Chem. Compos. Commer. Table Salts–Rock Salt Kłodawa Comp. So-Call. Sea Salts. Przegląd Solny 2023, 17, 58–68. Available online: http://psgs.agh.edu.pl/wp-content/uploads/2024/01/PS2023-Jaworska1.pdf (accessed on 8 March 2025).
- Basu, A.; Biswas, D.; Mukherje, A. Genotoxicity testing of two anticaking agents: Sodium and potassium ferrocyanide in vitro. Int. J. Hum. Genet. 2013, 13, 21–25. [Google Scholar] [CrossRef]
- Codex Alimentarius International Food Standards. General Standard for Food Additives. Available online: https://www.fao.org/gsfaonline/docs/CXS_192e.pdf (accessed on 3 August 2025).
- Zimmermann, M.B.; Andresson, M. Global endocrinology: Global perspectives in endocrinology: Coverage of iodized salt programs and iodine status in 2020. Europ. J. Endocrinol. 2021, 185, 13–21. [Google Scholar] [CrossRef]
- Greenwald, R.P.; Childs, L.; Pachón, H.; Timmer, A.; Houston, R.; Codling, K. Comparison of salt iodization requirements in national standards with global guidelines. Cur. Dev. Nutr. 2022, 6, nzac116. [Google Scholar] [CrossRef] [PubMed]
- Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders. Available online: https://iris.who.int/handle/10665/136908 (accessed on 20 July 2025).
- Rozporządzenie Ministra Zdrowia z dnia 13 marca 2024 r. w Sprawie Substancji Wzbogacających Dodawanych do Żywności. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240000420 (accessed on 30 April 2025).
- Cabinet Regulation No. 696 of 2015 on Edible Salt. Available online: https://faolex.fao.org/docs/pdf/lat206621.pdf (accessed on 20 July 2025).
- Todd, C.H.; Dunn, J.T. Intermittent oral administration of potassium iodide solution for the correction of iodine deficiency. Am. J. Clin. Nutr. 1998, 67, 1279–1283. [Google Scholar] [CrossRef]
- Milczarek, M.; Stępniak, J.; Lewiński, A.; Karbownik-Lewińska, M. Potassium iodide, but not potassium iodate, as a potential protective agent against oxidative damage to membrane lipids in porcine thyroid. Thyroid. Res. 2013, 6, 1–8. [Google Scholar] [CrossRef]
- Singalavanija, A.; Ruangvaravate, N.; Dulayajinda, D. Potassium iodate toxic retinopathy: A report of five cases. Retina 2000, 20, 378–383. [Google Scholar] [CrossRef]
- Li, X.; Cao, X.; Li, J.; Xu, J.; Ma, W.; Wang, H.; Wang, J.; Zhang, Y. Effects of high potassium iodate intake on iodine metabolism and antioxidant capacity in rats. J. Trace Elem. Med. Biol. 2020, 62, 126575. [Google Scholar] [CrossRef]
- Marthaler, T.M. Salt fluoridation and oral health. Acta Med. Acad. 2013, 42, 140–155. [Google Scholar] [CrossRef]
- Hescot, P.; Roland, E.; Desfontaine, J. Fluoridated salt in France. J. Trace Elem. Med. Biol. 1995, 9, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Nedović, V.; Kalušević, A.; Manojlović, V.; Lević, S.; Bugarski, B. An overview of encapsulation technologies for food applications. In 11th International Congress on Engineering and Food (ICEF11); Elsevier Science Bv: Amsterdam, The Netherlands, 2011; Volume 1, pp. 1806–1815. [Google Scholar] [CrossRef]
- Stajić, S.; Vasilev, D. Encapsulation of Meat Product Ingredients and Influence on Product Quality. In Encapsulation in Food Processing and Fermentation, 1st ed.; Lević, S., Nedović, V., Bugarski, B., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 255–280. [Google Scholar]
- Winkel, C. Stability of Aroma Chemicals. In Chemistry and Technology of Flavors and Fragrances; Rowe, D.J., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 249–250. [Google Scholar] [CrossRef]
- Puri, S.; Rekhi, T.K.; Thomas, T.; Jadhav, M.H.; Mannar, V.; Diosady, L.L. Sensory Trial of Quintuple Fortified Salt—Salt Fortified With Iodine, Iron, Folic Acid, Vit-amin B12, and Zinc—Among Consumers in New Delhi, India. Food Nutr. Bull. 2022, 43, 340–350. [Google Scholar] [CrossRef]
- Modupe, O.; Siddiqui, J.; Jonnalagadda, A.; Diosady, L.L. Folic acid fortification of double fortified salt. Sci. Rep. 2021, 11, 14561. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius International Food Standars, General Standard for Contaminants and Toxins in Food and Feed CXS 193-1995. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 3 February 2025).
- Salvo, E.; Tardugno, R.; Nava, V.; Naccari, C.; Virga, A.; Salvo, A.; Corbo, F.; Clodoveo, M.L.; Cicero, N. Gourmet table salts: The mineral composition showdown. Toxics 2023, 11, 705. [Google Scholar] [CrossRef]
- Suteja, Y.; Dirgayusa, I.G.N.P.; Purnama, S.G.; Purwiyanto, A.I.S. From sea to table: Assessing microplastic contamination in local and non-local salt in Bali, In-donesia. Chemosphere 2025, 374, 144192. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Ao, J.; Ma, M.; Jones, R.R.; Liu, J.; Li, K.; Zhang, L. Nanoplastics detected in commercial sea salt. Environ. Sci. Technol. 2024, 58, 9091–9101. [Google Scholar] [CrossRef]
- Lazăr, N.N.; Călmuc, M.; Milea, Ș.A.; Georgescu, P.L.; Iticescu, C. Micro and nano plastics in fruits and vegetables: A review. Heliyon 2024, 10, e28291. [Google Scholar] [CrossRef]
- Lehel, J.; Murphy, S. Microplastics in the food chain: Food safety and environmental aspects. Rev. Environ. Contam. Toxicol. 2021, 259, 1–49. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Zorpas, A.A.; Inglezakis, V.J.; Rodríguez-Barroso, R. The silent invaders: Microplastic accumulation, impacts, and monitoring approaches. Toxics 2005, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Ritz, E. The history of salt-aspects of interest to the nephrologist. Nephrol. Dial. Transplant. 1996, 11, 969975. [Google Scholar] [CrossRef]
- Kamyk, J. Rynek soli w Polsce–stan obecny i tendencje zmian. Gospod. Surowcami Miner. 2008, 24, 143–153. Available online: https://min-pan.krakow.pl/wp-content/uploads/sites/4/2017/12/10-kamyk.pdf (accessed on 8 March 2025).
- Kwong, E.J.L.; Whiting, S.; Bunge, A.C.; Leven, Y.; Breda, J.; Rakovac, I.; Cappuccio, F.P.; Wickramasinghe, K. Population-level salt intake in the WHO European Region in 2022: A systematic review. Public Health Nutr. 2023, 26, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Bartlett, C.; Smith, G.D.; Ebrahim, S. Systematic review of long term effects of advice to reduce dietary salt in adults. BMJ 2002, 325, 628. [Google Scholar] [CrossRef]
- Kojuri, J.; Rahimi, R. Effect of “no added salt diet” on blood pressure control and 24 hour urinary sodium excretion in mild to moderate hypertension. BMC Cardiovas. Disor. 2007, 7, 34. [Google Scholar] [CrossRef]
- Garg, R.; Williams, G.H.; Hurwitz, S.; Brown, N.J.; Hopkins, P.N.; Adler, G.K. Low-salt diet increases insulin resistance in healthy subjects. Metabolism 2011, 60, 965–968. [Google Scholar] [CrossRef]
- Kodintsev, V.V.; Lenda, I.V.; Ponomarev, A.V.; Naumov, N.A.; Salatov, Y.S. Sodium as one of the basic elements in human life. Eur. J. Nat. Hist. 2022, 5, 4–7. Available online: https://s.world-science.ru/pdf/2022/2022_5.pdf#page=4 (accessed on 15 March 2025).
- Hurley, S.W.; Johnson, A.K. The biopsychology of salt hunger and sodium deficiency. Pflügers Arch.-Europ. J. Physiol. 2015, 467, 445–456. [Google Scholar] [CrossRef]
- Sehgal, S.; Gupta, S.; Mishra, M.K. Electrolytes and Acid-Base Disorders. In Clinical Applications of Biomolecules in Disease Diagnosis; Singh, R.L., Singh, P., Pathak, N., Eds.; Springer: Singapore, 2024; pp. 155–175. [Google Scholar] [CrossRef]
- Solnica, B.; Kieć-Wilk, B. Diagnostyka laboratoryjna zaburzeń gospodarki wodno elektrolitowej i równowagi kwasowo-zasadowej. In Laboratory Diagnostics with Elements of Clinical Biochemistry, 5th ed.; Dembińska-Kieć, A., Naskalski, J.W., Solnica, B., Eds.; Edra Urban & Partner Publishing House: Wrocław, Poland, 2017; pp. 135–152. [Google Scholar]
- Coskun, T.; Baumgartner, H.K.; Chu, S.; Montrose, M.H. Coordinated regulation of gastric chloride secretion with both acid and alkali secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Heer, M.; Baisch, F.; Kropp, J.; Gerzer, R.; Drummer, C. High dietary sodium chloride consumption may not in-duce body fluid retention in humans. Am. J. Physiol. Renal. Physiol. 2002, 278, F585–F595. [Google Scholar] [CrossRef] [PubMed]
- Rabelink, T.J.; Rotmans, J.I. Salt is getting under our skin. Nephrol. Dial. Transplant. 2009, 24, 3282–3283. [Google Scholar] [CrossRef]
- Heer, M.; Frings-Meuthen, P.; Titze, J.; Boschmann, M.; Frisch, S.; Baecker, N.; Beck, L. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid–base balance differently. Br. J. Nutr. 2009, 101, 1286–1294. [Google Scholar] [CrossRef]
- Albarracín, W.; Sánchez, I.C.; Grau, R.; Barat, J.M. Salt in food processing; usage and reduction: A review. Int. J. Food Sci. Technol. 2011, 46, 1329–1336. [Google Scholar] [CrossRef]
- Rysová, J.; Šmídová, Z. Effect of salt content reduction on food processing technology. Foods 2021, 10, 2237. [Google Scholar] [CrossRef]
- de Oliveira, D.D.C.; Cristina Andrade, A.C.; Guimarães, J.; Rodrigues, J.F.; Natividade, M.M.P.; Bastos, S.C. Sodium reduction in butter using microparticulated salt. Br. Food J. 2019, 121, 874–881. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiatkowska, K.; Kwiecień, M.; Baranowska-Wójcik, E.; Wójcik, G.; Krusiński, R. Analysis of the intake of sodium with cereal products by the population of Poland. Food Addit. Contam. Part A 2019, 36, 884–892. [Google Scholar] [CrossRef]
- Cardoso, S.; Pinho, O.; Moreira, P.; Pena, M.J.; Alves, A.; Moreira, J.L.; Mendes, J.; Graça, P.; Gonçalves, C. Salt content in pre-packaged foods available in Portuguese market. Food Control 2019, 106, 106670. [Google Scholar] [CrossRef]
- Inyang, U.E.; Iduh, A.O. Influence of pH and salt concentration on protein solubility, emulsifying and foaming properties of sesame protein concentrate. J. Am. Oil Chem. Soc. 1996, 73, 1663–1667. [Google Scholar] [CrossRef]
- Raikos, V.; Campbell, L.; Euston, S.R. Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Res. Internat. 2007, 40, 347–355. [Google Scholar] [CrossRef]
- Waniska, R.D.; Kinsella, J.E. Foaming properties of proteins: Evaluation of a column aeration apparatus using ovalbumin. J. Food Sci. 1979, 44, 1398–1402. [Google Scholar] [CrossRef]
- Demetriades, K.U.O.M.; Coupland, J.N.; McClements, D.J. Physical properties of whey protein stabilized emulsions as related to pH and NaCl. J. Food Sci. 1997, 62, 342–347. [Google Scholar] [CrossRef]
- Zayas, J.F. Functionality of Proteins in Food, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–373. [Google Scholar]
- Mańko-Jurkowska, D.; Domian, E. The Effect of Heat- and Salt Treatment on the Stability and Rheological Properties of Chickpea Protein-Stabilized Emulsions. Appl. Sci. 2024, 14, 2698. [Google Scholar] [CrossRef]
- Akan, E.; Yerlikaya, O.; Kinik, O. Importance of salt in dairy products and sodium reduction strategies in food and dairy products. Agro Food Ind. Hi-Tech 2017, 28, 60–62. Available online: https://www.researchgate.net/publication/316668166_Importance_of_salt_in_dairy_products_and_sodium_reduction_strategies_in_food_and_dairy_products (accessed on 20 March 2025).
- Guinee, T.P. Salting and the role of salt in cheese. Int. J. Dairy Technol. 2004, 57, 99–109. [Google Scholar] [CrossRef]
- Bae, I.; Park, J.H.; Choi, H.Y.; Jung, H.K. Emerging Innovations to Reduce the Salt Content in Cheese; Effects of Salt on Fla-vor, Texture, and Shelf Life of Cheese; and Current Salt Usage: A Review. Korean J. Food Sci. Anim. Resour. 2017, 37, 793–798. [Google Scholar] [CrossRef]
- Laikoja, K.; Teder, L.; Jõudu, I. Assessment of chemical and sensory quality of unsalted and salted sweet cream butter during storage at different temperatures and time. J. Agric. Sci. 2017, 2, 76–81. [Google Scholar] [CrossRef]
- El Sadek, G.M.; Shehata, A.E.; Maharan, G.A.; Nofal, A.A.; Mehana, A.S. Effect of acidity and salt content on the keeping quality of butter. Élelmiszervizsgálati Közlemények 1974, 333–340. Available online: http://epa.niif.hu/03100/03135/00105/pdf/EPA03135_elelmiszervizsgalati_kozlemenyek_1974_05-06_333-340.pdf (accessed on 20 March 2025).
- Fitzgerald, E.; Buckley, J. Effect of total and partial substitution of sodium chloride on the quality of Cheddar cheese. J. Dairy. Sci. 1985, 68, 3127–3134. [Google Scholar] [CrossRef]
- Ganesan, B.; Brown, K.; Irish, D.A.; Brothersen, C.; McMahon, D.J. Manufacture and sensory analysis of reduced-and low-sodium Cheddar and Mozzarella cheeses. J. Dairy Sci. 2014, 97, 1970–1982. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, P.; Kowalski, R.; Pyrcz, J. Wybrane wyróżniki jakościowe suszonych produktów Przekąskowych z mięsa wołowego. Żywność. Nauka. Technologia. Jakość 2004, 3, 32–39. Available online: https://wydawnictwo.pttz.org/wp-content/uploads/2015/02/03_Konieczny.pdf (accessed on 5 March 2025).
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Toldrá, F. Chapter 9—The Storage and Preservation of Meat: III—Meat Processing. In Lawrie’s Meat Science, 8th ed.; Toldrá, F., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 265–296. [Google Scholar]
- Delgado-Pando, G.; Fischer, E.; Allen, P.; Kerry, J.P.; Sullivan, M.G.O.; Hamill, R.M. Salt content and minimum acceptable levels in whole-muscle cured meat products. Meat Sci. 2018, 139, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, Q.; He, L.; Zhang, Q.; Ma, J. Effects of nitrite concentrations on the quality and protein oxidation of salted meat. J. Food Sci. 2022, 87, 3978–3994. [Google Scholar] [CrossRef] [PubMed]
- Armenteros, M.; Aristoy, M.; Toldra, F. Effects of sodium, potassium, calcium, and magnesium chloride salts on porcine muscle proteases. Eur. Food Res. Technol. 2009, 229, 93–98. [Google Scholar] [CrossRef]
- Zimińska, H. Podstawy metod utrwalania surowców rzeźnych. In Technologia Mięsa; Pezacki, W., Ed.; Wydawnictwo Naukowo Techniczne: Warszawa, Poland, 1981; pp. 324–336. [Google Scholar]
- Majou, D.; Christieans, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef]
- Casey, P.G.; Condon, S. Sodium chloride decreases the bactericidal effect of acid pH on Escherichia coli O157:H45. Int. J. Food Microbiol. 2002, 76, 199–206. [Google Scholar] [CrossRef]
- Konieczny, P.; Pospiech, E.; Politowska, I. Wpływ soli morskiej na wybrane właściwości frakcji tłuszczowej mięsa bydlęcego. Żywność. Nauka. Technologia. Jakość 2005, 3, 108–120. Available online: https://wydawnictwo.pttz.org/wp-content/uploads/2015/02/11_Konieczny.pdf (accessed on 19 March 2025).
- Makała, H. Rola soli w przetworach mięsnych i możliwości obniżenia jej zawartości. Postępy Nauk. I Technol. Przemysłu Rolno-Spożywczego 2016, 71, 30–43. Available online: https://www.ibprs.pl/wp-content/uploads/2018/08/PNiTPRS-2016-nr-3-Rozdzial3.pdf (accessed on 19 March 2025).
- Konieczny, P.; Górecka, D. Mięso w żywieniu człowieka—Aktualne kierunki w produkcji wyrobów mięsnych. Przem. Spoż. 2011, 3, 28–31. [Google Scholar]
- Steen, L.; Fraeye, I.; Goemaere, O.; Sifre, L.; Goderis, B.; Paelinck, H.; Foubert, I. Effect of salt and liver/fat ratio on microstructure, emulsion stability, texture and sensory mouth feel of liver paste. Food Bioprocess. Technol. 2014, 7, 2855–2864. [Google Scholar] [CrossRef]
- Feng, X.; Chen, L.; Lei, N.; Wang, S.; Xu, X.; Zhou, G.; Li, Z. Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (-)-Epigallocatechin-3-gallate and NaCl. J. Agric. Food Chem. 2017, 65, 2816–2826. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Han, Y.; Ge, G.; Zhao, M.; Sun, W. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties. Food Hydrocoll. 2019, 96, 36–42. [Google Scholar] [CrossRef]
- Hamm, R. Biochemistry of Meat Hydration. Adv. Food Res. 1961, 10, 355–463. [Google Scholar] [CrossRef]
- Álvarez, S.; Mullen, A.M.; Hamill, R.; O’Neill, E.; Álvarez, C. Dry-aging of beef as a tool to improve meat quality. Impact of processing conditions on the technical and or-ganoleptic meat properties. Adv. Food Nutr. Res. 2021, 95, 97–130. [Google Scholar] [CrossRef]
- Codină, G.G.; Voinea, A.; Dabija, A. Strategies for Reducing Sodium Intake in Bakery Products, a Review. Appl. Sci. 2021, 11, 3093. [Google Scholar] [CrossRef]
- AACC International Method 54-21.02 Rheological Behavior of Flour by Farinograph: Constant Flour Weight Procedure. 2011. Available online: https://www.scribd.com/document/847695460/AACC54-21-Farinografo#:~:text=The%20document%20outlines%20the%20AACC%20International%20Method,values%20based%20on%20the%20flour's%20moisture%20content (accessed on 5 February 2025).
- Linko, P.; Härkönen, H.; Linko, Y.Y. Effects of sodium chloride in the processing of bread baked from wheat, rye and barley flours. J. Cereal Sci. 1984, 2, 53–62. [Google Scholar] [CrossRef]
- Chen, G.; Ehmke, L.; Sharma, C.; Miller, R.; Faa, P.; Smith, G.; Li, Y. Physicochemical properties and gluten structures of hard wheat flour doughs as affected by salt. Food Chem. 2019, 275, 569–576. [Google Scholar] [CrossRef]
- Tuhumury, H.C.D.; Small, D.M.; Day, L. The effect of sodium chloride on gluten network formation and rheology. J. Cereal Sci. 2014, 60, 229–237. [Google Scholar] [CrossRef]
- Abedi, E.; Majzoobi, M.; Farahnaky, A.; Pourmohammadi, K.; Mahmoudi, M.R. Effect of ionic strength (NaCl and CaCl2) on functional, textural and electrophoretic properties of native and acetylated gluten, gliadin and glutenin. Int. J. Biol. Macromol. 2018, 120, 2035–2047. [Google Scholar] [CrossRef]
- Tuhumury, H.C.; Small, D.M.; Day, L. Effects of Hofmeister salt series on gluten network formation: Part II. Anion series. Food Chem. 2016, 212, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.; Xu, K. Comparative molecular conformation, interaction, and network characteristics of wheat gluten modulated by sodium chloride and sodium carbonate. IFST 2023, 58, 6621–6632. [Google Scholar] [CrossRef]
- Avramenko, N.A.; Tyler, R.T.; Scanlon, M.G.; Hucl, P.; Nickerson, M.T. The chemistry of bread making: The role of salt to ensure optimal functionality of its constituents. Food Rev. Inter. 2018, 34, 204–225. [Google Scholar] [CrossRef]
- Schünemann, C.; Treu, G. Technologie der Backwarenherstellung: Fachkundliches Lehrbuch für Bäcker und Bäckerinnen; Gildebuchverlag GmbH: Hamburg, Germany, 2002; p. 35. [Google Scholar]
- Toyosaki, T.; Sakane, Y.; Kasai, M. Effects of medium-chain triacylglycerols (MCT) on the Maillard reaction. J. Food Process Technol. 2013, 2, 84–89. [Google Scholar] [CrossRef]
- AACC International Method 76-21.01 General Pasting Method for Wheat or Rye Flour or StarchUsing the Rapid Visco Analyser. 1999. Available online: https://www.scribd.com/document/623660661/AACC-metodo-76-21-01-RVA (accessed on 5 February 2025).
- Ochońska-Borowska, Z.; Pietrzyk, A. Oznaczanie geograficznego pochodzenia produktu w czasach „konsumenckiego patriotyzmu”. iKAR 2022, 11, 7–24. [Google Scholar] [CrossRef]
- Chudy, S.; Kępiński, J.; Makowska, A. The Origin Link Between “Śląski” Cheese and the Silesia Region: A Basis for Obtaining Protection for Geographical Indications. Foods 2025, 14, 338. [Google Scholar] [CrossRef] [PubMed]
- eAbrosia. OER Commons. Available online: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/ (accessed on 29 April 2025).
- Available online: https://www.tmdn.org/giview/gi/search (accessed on 29 April 2025).
Number | Country | Production [Million Tons/Year; 109 kg/Year] | ||
---|---|---|---|---|
2003 | 2013 | 2023 e | ||
1 | China | 32.4 | 70.0 | 54.0 |
2 | U.S. | 43.7 | 40.3 | 42.0 |
3 | India | 15.0 | 16.0 | 27.0 |
4 | Germany | 15.7 | 11.9 | 15.0 |
5 | Australia | 9.8 | 11.0 | 12.0 |
6 | Canada | 13.3 | 12.2 | 12.0 |
7 | Mexico | 8.0 | 10.8 | 8.6 |
8 | Chile | nd | 6.6 | 10.0 |
9 | Turkey | nd | 5.3 | 9.1 |
10 | Russia | 2.8 | nd | 8.2 |
11 | Brazil | 6.1 | 7.5 | 6.6 |
12 | Netherlands | nd | nd | 5.3 |
13 | France | 7.0 | 6.1 | 4.6 |
14 | Poland | 1.5 | 4.4 | 4.5 |
15 | Spain | 3.2 | 4.4 | 3.9 |
16 | Ukraine | 2.3 | 6.2 | nd |
World total | 210 | 262 | 270 |
Chemical Compound | Symbol INS | Maximum Level | Year Adopted |
---|---|---|---|
Calcium carbonate | 170 (i) | GMP | 2006 |
Calcium silicate | 552 | GMP * | 2006 |
Sodium ferrocyanide | 535 | 14 mg/kg | 2006 |
Potasum ferrocyanide | 536 | 14 mg/kg | 2006 |
Calcium ferrocyanide | 538 | 14 mg/kg | 2006 |
Magnesium carbonate | 504 (i) | GMP | 2006 |
Magnesium oxide | 530 | GMP | 2006 |
Magnesium silicate, synthetic | 553 (i) | GMP | 2006 |
Methacrylate copolymer, basic | 1205 | GMP | 2021 |
Phosphates | varied | 8800 mg | 2006 |
Polysorbates | 432–436 | 10 mg/kg | 2006 |
Salts of myristic, palmitic and stearic acids with sodium, potassium, calcium and ammonia | 470 (i) | GMP | 2006 |
Silicon dioxide | 551 | GMP | 2006 |
Sodium aluminium silicate | 554 | 1000 mg/kg | 2013 |
Product | Salt Content | Source |
---|---|---|
Cheese | 0.5–2.0 | [72] |
Mold cheese | 3.0–7.0 | |
Butter | 2.16 (2–6% in Brazil) | [73] |
Wheat-rey bread | 0.90 | [74] |
Wheat bread | 0.60 | |
Wheat rolls | 0.53 | |
Shellfish and seafood | 1.20 | [75] |
Sausages and charcuterie | 2.20 |
Product Feature | Dough with 0.0% NaCl | Dough with 1.5% NaCl | Dough with 2.5% NaCl |
---|---|---|---|
Water absorption [%] | 63.6 | 63.5 | 62.3 |
Dough Development Time [min] | 2.3 | 2.3 | 5.2 |
Dough Stability [min] | 2.9 | 1.0 | 18.0 |
Degree of Softening [BU] | 60 | 65 | 2 |
Farinograph Quality Number (FQN) [mm] | 38 | 26 | 200 |
Product Feature | Dough with 0.0% Salt | Dough with 1.5% Salt | Dough with 2.5% Salt |
---|---|---|---|
Pasting temperature [°C] | 60.00 | 61.75 | 61.85 |
Peak Viscosity [cP] | 2547 | 2771 | 2916 |
Trough [cP] | 1577 | 1645 | 1684 |
Breakdown [cP] | 970 | 1126 | 1232 |
Final Viscosity [cP] | 2880 | 2893 | 3065 |
Setback [cP] | 1303 | 1248 | 1381 |
No | Name and Number of the Registration File | Type of Indication |
---|---|---|
1 | អំបិលកំពតកែប/Kampot-Kep Salt; PGI-KH-03286 | PGI |
2 | Paška sol; PDO-HR-02178 | PDO |
3 | Sel de Salies-de-Béarn; PGI-FR-01311 | PGI |
4 | Sel de Camargue/Fleur de sel de Camargue; PGI-FR-02443 | PGI |
5 | Sel de l’Île de Ré/Fleur de sel de l’Île de Ré; PGI-FR-02782 | PGI |
6 | Sel de Guérande/Fleur de sel de Guérande; PGI-FR-0861 | PGI |
7 | Aφρίνα/Afrina; PGI-GR-02822 | PGI |
8 | Garam Amed Bali/Bunga Garam Amed Bali; PDO-ID-02610 | PDO |
9 | Achill Island Sea Salt; PDO-IE-02652 | PDO |
10 | Oriel Sea Salt; PDO-IE-01318 | PDO |
11 | Oriel Sea Minerals; PDO-IE-01319 | PDO |
12 | Sale Marino di Trapani; PGI-IT-0892 | PGI |
13 | Sal de Castro Marim/Flor de Sal de Castro Marim; PDO-PT-02607 | PDO |
14 | Sal de Tavira/Flor de Sal de Tavira; PDO-PT-0913 | PDO |
15 | Sal de Rio Maior/Flor de Sal de Rio Maior; PDO-PT-02589 | PDO |
16 | Piranska sol; PDO-SI-1098 | PDO |
17 | Delice Doğal Kaynak Tuzu; PDO-TR-03223 | PDO |
18 | Anglesey Sea Salt/Halen Môn; PDO-GB-1068 | PDO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chudy, S.; Makowska, A.; Kowalski, R. Sodium Chloride in Food. Foods 2025, 14, 2741. https://doi.org/10.3390/foods14152741
Chudy S, Makowska A, Kowalski R. Sodium Chloride in Food. Foods. 2025; 14(15):2741. https://doi.org/10.3390/foods14152741
Chicago/Turabian StyleChudy, Sylwia, Agnieszka Makowska, and Ryszard Kowalski. 2025. "Sodium Chloride in Food" Foods 14, no. 15: 2741. https://doi.org/10.3390/foods14152741
APA StyleChudy, S., Makowska, A., & Kowalski, R. (2025). Sodium Chloride in Food. Foods, 14(15), 2741. https://doi.org/10.3390/foods14152741