Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,506)

Search Parameters:
Keywords = health information accuracy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3548 KiB  
Article
A Fault Diagnosis Framework for Waterjet Propulsion Pump Based on Supervised Autoencoder and Large Language Model
by Zhihao Liu, Haisong Xiao, Tong Zhang and Gangqiang Li
Machines 2025, 13(8), 698; https://doi.org/10.3390/machines13080698 - 7 Aug 2025
Abstract
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, [...] Read more.
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, this paper proposes a novel diagnostic framework that integrates a supervised autoencoder (SAE) with a large language model (LLM). This framework first employs an SAE to perform task-oriented feature learning on raw vibration signals collected from the pump’s guide vane casing. By jointly optimizing reconstruction and classification losses, the SAE extracts deep features that both represent the original signal information and exhibit high discriminability for different fault classes. Subsequently, the extracted feature vectors are converted into text sequences and fed into an LLM. Leveraging the powerful sequential information processing and generalization capabilities of LLM, end-to-end fault classification is achieved through parameter-efficient fine-tuning. This approach aims to avoid the traditional dependence on manually extracted time-domain and frequency-domain features, instead guiding the feature extraction process via supervised learning to make it more task-specific. To validate the effectiveness of the proposed method, we compare it with a baseline approach that uses manually extracted features. In two experimental scenarios, direct diagnosis with full data and transfer diagnosis under limited-data, cross-condition settings, the proposed method significantly outperforms the baseline in diagnostic accuracy. It demonstrates excellent performance in automated feature extraction, diagnostic precision, and small-sample data adaptability, offering new insights for the application of large-model techniques in critical equipment health management. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

23 pages, 8610 KiB  
Article
Healthcare AI for Physician-Centered Decision-Making: Case Study of Applying Deep Learning to Aid Medical Professionals
by Aleksandar Milenkovic, Andjelija Djordjevic, Dragan Jankovic, Petar Rajkovic, Kofi Edee and Tatjana Gric
Computers 2025, 14(8), 320; https://doi.org/10.3390/computers14080320 - 7 Aug 2025
Abstract
This paper aims to leverage artificial intelligence (AI) to assist physicians in utilizing advanced deep learning techniques integrated into developed models within electronic health records (EHRs) in medical information systems (MISes), which have been in use for over 15 years in health centers [...] Read more.
This paper aims to leverage artificial intelligence (AI) to assist physicians in utilizing advanced deep learning techniques integrated into developed models within electronic health records (EHRs) in medical information systems (MISes), which have been in use for over 15 years in health centers across the Republic of Serbia. This paper presents a human-centered AI approach that emphasizes physician decision-making supported by AI models. This study presents two developed and implemented deep neural network (DNN) models in the EHR. Both models were based on data that were collected during the COVID-19 outbreak. The models were evaluated using five-fold cross-validation. The convolutional neural network (CNN), based on the pre-trained VGG19 architecture for classifying chest X-ray images, was trained on a publicly available smaller dataset containing 196 entries, and achieved an average classification accuracy of 91.83 ± 2.82%. The DNN model for optimizing patient appointment scheduling was trained on a large dataset (341,569 entries) and a rich feature design extracted from the MIS, which is daily used in Serbia, achieving an average classification accuracy of 77.51 ± 0.70%. Both models have consistent performance and good generalization. The architecture of a realized MIS, incorporating the positioning of developed AI tools that encompass both developed models, is also presented in this study. Full article
(This article belongs to the Special Issue AI in Its Ecosystem)
Show Figures

Figure 1

17 pages, 5085 KiB  
Article
A Segmentation Network with Two Distinct Attention Modules for the Segmentation of Multiple Renal Structures in Ultrasound Images
by Youhe Zuo, Jing Li and Jing Tian
Diagnostics 2025, 15(15), 1978; https://doi.org/10.3390/diagnostics15151978 - 7 Aug 2025
Abstract
Background/Objectives: Ultrasound imaging is widely employed to assess kidney health and diagnose renal diseases. Accurate segmentation of renal structures in ultrasound images plays a critical role in the diagnosis and treatment of related kidney diseases. However, challenges such as speckle noise and [...] Read more.
Background/Objectives: Ultrasound imaging is widely employed to assess kidney health and diagnose renal diseases. Accurate segmentation of renal structures in ultrasound images plays a critical role in the diagnosis and treatment of related kidney diseases. However, challenges such as speckle noise and low contrast still hinder precise segmentation. Methods: In this work, we propose an encoder–decoder architecture, named MAT-UNet, which incorporates two distinct attention mechanisms to enhance segmentation accuracy. Specifically, the multi-convolution pixel-wise attention module utilizes the pixel-wise attention to enable the network to focus more effectively on important features at each stage. Furthermore, the triple-branch multi-head self-attention mechanism leverages the different convolution layers to obtain diverse receptive fields, capture global contextual information, compensate for the local receptive field limitations of convolution operations, and boost the segmentation performance. We evaluate the segmentation performance of the proposed MAT-UNet using the Open Kidney US Data Set (OKUD). Results: For renal capsule segmentation, MAT-UNet achieves a Dice Similarity Coefficient (DSC) of 93.83%, a 95% Hausdorff Distance (HD95) of 32.02 mm, an Average Surface Distance (ASD) of 9.80 mm, and an Intersection over Union (IOU) of 88.74%. Additionally, MAT-UNet achieves a DSC of 84.34%, HD95 of 35.79 mm, ASD of 11.17 mm, and IOU of 74.26% for central echo complex segmentation; a DSC of 66.34%, HD95 of 82.54 mm, ASD of 19.52 mm, and IOU of 51.78% for renal medulla segmentation; and a DSC of 58.93%, HD95 of 107.02 mm, ASD of 21.69 mm, and IOU of 43.61% for renal cortex segmentation. Conclusions: The experimental results demonstrate that our proposed MAT-UNet achieves superior performance in multiple renal structure segmentation in ultrasound images. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 242
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

13 pages, 1003 KiB  
Article
Evaluation of an Artificial Intelligence-Generated Health Communication Material on Bird Flu Precautions
by Ayokunle A. Olagoke, Comfort Tosin Adebayo, Joseph Ayotunde Aderonmu, Emmanuel A. Adeaga and Kimberly J. Johnson
Zoonotic Dis. 2025, 5(3), 22; https://doi.org/10.3390/zoonoticdis5030022 - 1 Aug 2025
Viewed by 224
Abstract
The 2025 avian influenza A(H5N1) outbreak has highlighted the urgent need for rapidly generated health communication materials during public health emergencies. Artificial intelligence (AI) systems offer transformative potential to accelerate content development pipelines while maintaining scientific accuracy and impact. We evaluated an AI-generated [...] Read more.
The 2025 avian influenza A(H5N1) outbreak has highlighted the urgent need for rapidly generated health communication materials during public health emergencies. Artificial intelligence (AI) systems offer transformative potential to accelerate content development pipelines while maintaining scientific accuracy and impact. We evaluated an AI-generated health communication material on bird flu precautions among 100 U.S. adults. The material was developed using ChatGPT for text generation based on CDC guidelines and Leonardo.AI for illustrations. Participants rated perceived message effectiveness, quality, realism, relevance, attractiveness, and visual informativeness. The AI-generated health communication material received favorable ratings across all dimensions: perceived message effectiveness (3.83/5, 77%), perceived message quality (3.84/5, 77%), realism (3.72/5, 74%), relevance (3.68/5, 74%), attractiveness (3.62/5, 74%), and visual informativeness (3.35/5 67%). Linear regression analysis revealed that all features significantly predicted perceived message effectiveness in unadjusted and adjusted models (p < 0.0001), e.g., multivariate analysis of outcome on perceived visual informativeness showed β = 0.51, 95% CI: 0.37–0.66, p < 0.0001. Also, mediation analysis revealed that visual informativeness accounted for 23.8% of the relationship between material attractiveness and perceived effectiveness. AI tools can enable real-time adaptation of prevention guidance during epidemiological emergencies while maintaining effective risk communication. Full article
Show Figures

Figure 1

9 pages, 299 KiB  
Article
Assessing the Accuracy and Readability of Large Language Model Guidance for Patients on Breast Cancer Surgery Preparation and Recovery
by Elena Palmarin, Stefania Lando, Alberto Marchet, Tania Saibene, Silvia Michieletto, Matteo Cagol, Francesco Milardi, Dario Gregori and Giulia Lorenzoni
J. Clin. Med. 2025, 14(15), 5411; https://doi.org/10.3390/jcm14155411 - 1 Aug 2025
Viewed by 232
Abstract
Background/Objectives: Accurate and accessible perioperative health information empowers patients and enhances recovery outcomes. Artificial intelligence tools, such as ChatGPT, have garnered attention for their potential in health communication. This study evaluates the accuracy and readability of responses generated by ChatGPT to questions commonly [...] Read more.
Background/Objectives: Accurate and accessible perioperative health information empowers patients and enhances recovery outcomes. Artificial intelligence tools, such as ChatGPT, have garnered attention for their potential in health communication. This study evaluates the accuracy and readability of responses generated by ChatGPT to questions commonly asked about breast cancer. Methods: Fifteen simulated patient queries about breast cancer surgery preparation and recovery were prepared. Responses generated by ChatGPT (4o version) were evaluated for accuracy by a pool of breast surgeons using a 4-point Likert scale. Readability was assessed with the Flesch–Kincaid Grade Level (FKGL). Descriptive statistics were used to summarize the findings. Results: Of the 15 responses evaluated, 11 were rated as “accurate and comprehensive”, while 4 out of 15 were deemed “correct but incomplete”. No responses were classified as “partially incorrect” or “completely incorrect”. The median FKGL score was 11.2, indicating a high school reading level. While most responses were technically accurate, the complexity of language exceeded the recommended readability levels for patient-directed materials. Conclusions: The model shows potential as a complementary resource for patient education in breast cancer surgery, but should not replace direct interaction with healthcare providers. Future research should focus on enhancing language models’ ability to generate accessible and patient-friendly content. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

15 pages, 3532 KiB  
Article
Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model
by Yuya Hishikawa, Takashi Kusaka, Yoshifumi Tanaka, Yukiyasu Domae, Naoki Shirakura, Natsuki Yamanobe, Yui Endo, Mitsunori Tada, Natsuki Miyata and Takayuki Tanaka
Electronics 2025, 14(15), 3055; https://doi.org/10.3390/electronics14153055 - 30 Jul 2025
Viewed by 175
Abstract
With the rapid technological advancements in wearable devices, motion and health management have significantly improved, enabling the measurement of various biometric data with compact equipment. Our research focuses on motion measurement but, in general, full-body motion estimation requires motion capture systems or multiple [...] Read more.
With the rapid technological advancements in wearable devices, motion and health management have significantly improved, enabling the measurement of various biometric data with compact equipment. Our research focuses on motion measurement but, in general, full-body motion estimation requires motion capture systems or multiple inertial sensors, making it necessary to directly measure movement itself. In this study, we propose estimating full-body posture using inverse kinematics based on trunk posture and limb-end information collected through wearable devices. To enhance estimation accuracy in this underdetermined problem, we employ Physics-Informed Neural Networks (PINNs), which efficiently learn using physical laws as a loss function, along with a high-precision inverse kinematics model of a digital human. Through this approach, we enable high-accuracy full-body posture estimation even with wearable devices in underdetermined scenarios. Full article
(This article belongs to the Special Issue New Advances in Machine Learning and Its Applications)
Show Figures

Figure 1

23 pages, 3481 KiB  
Article
Research on Adaptive Identification Technology for Rolling Bearing Performance Degradation Based on Vibration–Temperature Fusion
by Zhenghui Li, Lixia Ying, Liwei Zhan, Shi Zhuo, Hui Li and Xiaofeng Bai
Sensors 2025, 25(15), 4707; https://doi.org/10.3390/s25154707 - 30 Jul 2025
Viewed by 365
Abstract
To address the issue of low accuracy in identifying the transition states of rolling bearing performance degradation when relying solely on vibration signals, this study proposed a vibration–temperature fusion-based adaptive method for bearing performance degradation assessments. First, a multidimensional time–frequency feature set was [...] Read more.
To address the issue of low accuracy in identifying the transition states of rolling bearing performance degradation when relying solely on vibration signals, this study proposed a vibration–temperature fusion-based adaptive method for bearing performance degradation assessments. First, a multidimensional time–frequency feature set was constructed by integrating vibration acceleration and temperature signals. Second, a novel composite sensitivity index (CSI) was introduced, incorporating the trend persistence, monotonicity, and signal complexity to perform preliminary feature screening. Mutual information clustering and regularized entropy weight optimization were then combined to reselect highly sensitive parameters from the initially screened features. Subsequently, an adaptive feature fusion method based on auto-associative kernel regression (AFF-AAKR) was introduced to compress the data in the spatial dimension while enhancing the degradation trend characterization capability of the health indicator (HI) through a temporal residual analysis. Furthermore, the entropy weight method was employed to quantify the information entropy differences between the vibration and temperature signals, enabling dynamic weight allocation to construct a comprehensive HI. Finally, a dual-criteria adaptive bottom-up merging algorithm (DC-ABUM) was proposed, which achieves bearing life-stage identification through error threshold constraints and the adaptive optimization of segmentation quantities. The experimental results demonstrated that the proposed method outperformed traditional vibration-based life-stage identification approaches. Full article
(This article belongs to the Special Issue Fault Diagnosis Based on Sensing and Control Systems)
Show Figures

Figure 1

25 pages, 2863 KiB  
Article
Battery SOH Estimation Based on Dual-View Voltage Signal Features and Enhanced LSTM
by Shunchang Wang, Yaolong He and Hongjiu Hu
Energies 2025, 18(15), 4016; https://doi.org/10.3390/en18154016 - 28 Jul 2025
Viewed by 267
Abstract
Accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is fundamental to ensuring safe operation. However, due to the complex electrochemical processes during battery operation and the limited availability of training data, accurate estimation of the state of health remains [...] Read more.
Accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is fundamental to ensuring safe operation. However, due to the complex electrochemical processes during battery operation and the limited availability of training data, accurate estimation of the state of health remains challenging. To address this, this paper proposes a prediction framework based on dual-view voltage signal features and an improved Long Short-Term Memory (LSTM) neural network. By relying solely on readily obtainable voltage signals, the data requirement is greatly reduced; dual-view features, comprising kinetic and aggregated aspects, are extracted based on the underlying reaction mechanisms. To fully leverage the extracted feature information, Scaled Dot-Product Attention (SDPA) is employed to dynamically score all hidden states of the long short-term memory network, adaptively capturing key temporal information. The experimental results based on the NASA PCoE battery dataset indicate that, under various operating conditions, the proposed method achieves an average absolute error below 0.51% and a root mean square error not exceeding 0.58% in state-of-health estimation, demonstrating high predictive accuracy. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

29 pages, 3125 KiB  
Article
Tomato Leaf Disease Identification Framework FCMNet Based on Multimodal Fusion
by Siming Deng, Jiale Zhu, Yang Hu, Mingfang He and Yonglin Xia
Plants 2025, 14(15), 2329; https://doi.org/10.3390/plants14152329 - 27 Jul 2025
Viewed by 465
Abstract
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper [...] Read more.
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper proposes a tomato leaf disease recognition framework FCMNet based on multimodal fusion, which combines tomato leaf disease image and text description to enhance the ability to capture disease characteristics. In this paper, the Fourier-guided Attention Mechanism (FGAM) is designed, which systematically embeds the Fourier frequency-domain information into the spatial-channel attention structure for the first time, enhances the stability and noise resistance of feature expression through spectral transform, and realizes more accurate lesion location by means of multi-scale fusion of local and global features. In order to realize the deep semantic interaction between image and text modality, a Cross Vision–Language Alignment module (CVLA) is further proposed. This module generates visual representations compatible with Bert embeddings by utilizing block segmentation and feature mapping techniques. Additionally, it incorporates a probability-based weighting mechanism to achieve enhanced multimodal fusion, significantly strengthening the model’s comprehension of semantic relationships across different modalities. Furthermore, to enhance both training efficiency and parameter optimization capabilities of the model, we introduce a Multi-strategy Improved Coati Optimization Algorithm (MSCOA). This algorithm integrates Good Point Set initialization with a Golden Sine search strategy, thereby boosting global exploration, accelerating convergence, and effectively preventing entrapment in local optima. Consequently, it exhibits robust adaptability and stable performance within high-dimensional search spaces. The experimental results show that the FCMNet model has increased the accuracy and precision by 2.61% and 2.85%, respectively, compared with the baseline model on the self-built dataset of tomato leaf diseases, and the recall and F1 score have increased by 3.03% and 3.06%, respectively, which is significantly superior to the existing methods. This research provides a new solution for the identification of tomato leaf diseases and has broad potential for agricultural applications. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

18 pages, 2644 KiB  
Article
Multispectral and Chlorophyll Fluorescence Imaging Fusion Using 2D-CNN and Transfer Learning for Cross-Cultivar Early Detection of Verticillium Wilt in Eggplants
by Dongfang Zhang, Shuangxia Luo, Jun Zhang, Mingxuan Li, Xiaofei Fan, Xueping Chen and Shuxing Shen
Agronomy 2025, 15(8), 1799; https://doi.org/10.3390/agronomy15081799 - 25 Jul 2025
Viewed by 173
Abstract
Verticillium wilt is characterized by chlorosis in leaves and is a devastating disease in eggplant. Early diagnosis, prior to the manifestation of symptoms, enables targeted management of the disease. In this study, we aim to detect early leaf wilt in eggplant leaves caused [...] Read more.
Verticillium wilt is characterized by chlorosis in leaves and is a devastating disease in eggplant. Early diagnosis, prior to the manifestation of symptoms, enables targeted management of the disease. In this study, we aim to detect early leaf wilt in eggplant leaves caused by Verticillium dahliae by integrating multispectral imaging with machine learning and deep learning techniques. Multispectral and chlorophyll fluorescence images were collected from leaves of the inbred eggplant line 11-435, including data on image texture, spectral reflectance, and chlorophyll fluorescence. Subsequently, we established a multispectral data model, fusion information model, and multispectral image–information fusion model. The multispectral image–information fusion model, integrated with a two-dimensional convolutional neural network (2D-CNN), demonstrated optimal performance in classifying early-stage Verticillium wilt infection, achieving a test accuracy of 99.37%. Additionally, transfer learning enabled us to diagnose early leaf wilt in another eggplant variety, the inbred line 14-345, with an accuracy of 84.54 ± 1.82%. Compared to traditional methods that rely on visible symptom observation and typically require about 10 days to confirm infection, this study achieved early detection of Verticillium wilt as soon as the third day post-inoculation. These findings underscore the potential of the fusion model as a valuable tool for the early detection of pre-symptomatic states in infected plants, thereby offering theoretical support for in-field detection of eggplant health. Full article
Show Figures

Figure 1

18 pages, 8446 KiB  
Article
Evaluation of Single-Shot Object Detection Models for Identifying Fanning Behavior in Honeybees at the Hive Entrance
by Tomyslav Sledevič
Agriculture 2025, 15(15), 1609; https://doi.org/10.3390/agriculture15151609 - 25 Jul 2025
Viewed by 282
Abstract
Thermoregulatory fanning behavior in honeybees is a vital indicator of colony health and environmental response. This study presents a novel dataset of 18,000 annotated video frames containing 57,597 instances capturing fanning behavior at the hive entrance across diverse conditions. Three state-of-the-art single-shot object [...] Read more.
Thermoregulatory fanning behavior in honeybees is a vital indicator of colony health and environmental response. This study presents a novel dataset of 18,000 annotated video frames containing 57,597 instances capturing fanning behavior at the hive entrance across diverse conditions. Three state-of-the-art single-shot object detection models (YOLOv8, YOLO11, YOLO12) are evaluated using standard RGB input and two motion-enhanced encodings: Temporally Stacked Grayscale (TSG) and Temporally Encoded Motion (TEM). Results show that models incorporating temporal information via TSG and TEM significantly outperform RGB-only input, achieving up to 85% mAP@50 with real-time inference capability on high-performance GPUs. Deployment tests on the Jetson AGX Orin platform demonstrate feasibility for edge computing, though with accuracy–speed trade-offs in smaller models. This work advances real-time, non-invasive monitoring of hive health, with implications for precision apiculture and automated behavioral analysis. Full article
Show Figures

Figure 1

21 pages, 2406 KiB  
Article
Determining Factors for the Diagnosis of Multidimensional Depression and Its Representation: A Composite Indicator Based on Linear Discriminant Analysis
by Matheus Pereira Libório, Angélica C. G. Santos, Marcos Flávio Silveira Vasconcelos D’angelo, Hasheem Mannan, Cristiane Neri Nobre, Ariane Carla Barbosa da Silva, Petr Iakovlevitch Ekel and Allysson Steve Mota Lacerda
Appl. Sci. 2025, 15(15), 8275; https://doi.org/10.3390/app15158275 - 25 Jul 2025
Viewed by 273
Abstract
This study proposes a novel approach to constructing composite indicators, utilizing discriminant analysis to identify the determining factors for the diagnosis of multidimensional depression and to provide an index that represents the multidimensionality of this construct. By focusing solely on factors that significantly [...] Read more.
This study proposes a novel approach to constructing composite indicators, utilizing discriminant analysis to identify the determining factors for the diagnosis of multidimensional depression and to provide an index that represents the multidimensionality of this construct. By focusing solely on factors that significantly correlate with the diagnosis of multidimensional depression, this method provides a more precise and objective representation of the problem. The application of the method to the 2019 Brazilian Health Survey data demonstrated its effectiveness, resulting in a composite indicator that separates individuals who self-declare as having depression from individuals who self-declare as not having depression. The results highlight individuals who have a limiting chronic condition, high levels of education, less support from friends and family, perform unhealthy work, and are male. In contrast, individuals with the opposite characteristics are associated with a negative multidimensional depression diagnosis. The proposed composite indicator not only improves the measurement accuracy but also offers a new means of visualizing and understanding the multidimensional nature of depression diagnosis, providing valuable information for the formulation of targeted public health policies aimed at reducing the time for which people show symptoms of depression. Full article
(This article belongs to the Special Issue State-of-the-Art of Intelligent Decision Support Systems)
Show Figures

Figure 1

24 pages, 4430 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Viewed by 321
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
Show Figures

Figure 1

19 pages, 8743 KiB  
Article
Role of Feature Diversity in the Performance of Hybrid Models—An Investigation of Brain Tumor Classification from Brain MRI Scans
by Subhash Chand Gupta, Shripal Vijayvargiya and Vandana Bhattacharjee
Diagnostics 2025, 15(15), 1863; https://doi.org/10.3390/diagnostics15151863 - 24 Jul 2025
Viewed by 318
Abstract
Introduction: Brain tumor, marked by abnormal and rapid cell growth, poses severe health risks and requires accurate diagnosis for effective treatment. Classifying brain tumors using deep learning techniques applied to Magnetic Resonance Imaging (MRI) images has attracted the attention of many researchers, [...] Read more.
Introduction: Brain tumor, marked by abnormal and rapid cell growth, poses severe health risks and requires accurate diagnosis for effective treatment. Classifying brain tumors using deep learning techniques applied to Magnetic Resonance Imaging (MRI) images has attracted the attention of many researchers, and specifically, reducing the bias of models and enhancing robustness is still a very pertinent active topic of attention. Methods: For capturing diverse information from different feature sets, we propose a Features Concatenation-based Brain Tumor Classification (FCBTC) Framework using Hybrid Deep Learning Models. For this, we have chosen three pretrained models—ResNet50; VGG16; and DensetNet121—as the baseline models. Our proposed hybrid models are built by the fusion of feature vectors. Results: The testing phase results show that, for the FCBTC Model-3, values for Precision, Recall, F1-score, and Accuracy are 98.33%, 98.26%, 98.27%, and 98.40%, respectively. This reinforces our idea that feature diversity does improve the classifier’s performance. Conclusions: Comparative performance evaluation of our work shows that, the proposed hybrid FCBTC Models have performed better than other proposed baseline models. Full article
(This article belongs to the Special Issue Machine Learning in Precise and Personalized Diagnosis)
Show Figures

Figure 1

Back to TopTop