Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,951)

Search Parameters:
Keywords = harvest rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 417 KiB  
Article
Minimally Invasive Off-Pump Coronary Artery Bypass as Palliative Revascularization in High-Risk Patients
by Magdalena Rufa, Adrian Ursulescu, Samir Ahad, Ragi Nagib, Marc Albert, Rafael Ayala, Nora Göbel, Tunjay Shavahatli, Mihnea Ghinescu, Ulrich Franke and Bartosz Rylski
Clin. Pract. 2025, 15(8), 147; https://doi.org/10.3390/clinpract15080147 - 6 Aug 2025
Abstract
Background: In high-risk and frail patients with multivessel coronary artery disease (MV CAD), guidelines indicated complete revascularization with or without the use of cardiopulmonary bypass (CPB) bears a high morbidity and mortality risk. In cases where catheter interventions were deemed unsuitable and conventional [...] Read more.
Background: In high-risk and frail patients with multivessel coronary artery disease (MV CAD), guidelines indicated complete revascularization with or without the use of cardiopulmonary bypass (CPB) bears a high morbidity and mortality risk. In cases where catheter interventions were deemed unsuitable and conventional coronary artery bypass grafting (CABG) posed an unacceptable perioperative risk, patients were scheduled for minimally invasive direct coronary artery bypass (MIDCAB) grafting or minimally invasive multivessel coronary artery bypass grafting (MICS-CABG). We called this approach “palliative revascularization.” This study assesses the safety and impact of palliative revascularization on clinical outcomes and overall survival. Methods: A consecutive series of 57 patients undergoing MIDCAB or MICS-CABG as a palliative surgery between 2008 and 2018 was included. The decision for palliative surgery was met in heart team after carefully assessing each case. The patients underwent single or double-vessel revascularization using the left internal thoracic artery and rarely radial artery/saphenous vein segments, both endoscopically harvested. Inpatient data could be completed for all 57 patients. The mean follow-up interval was 4.2 ± 3.7 years, with a follow-up rate of 91.2%. Results: Mean patient age was 79.7 ± 7.4 years. Overall, 46 patients (80.7%) were male, 26 (45.6%) had a history of atrial fibrillation and 25 (43.9%) of chronic kidney disease. In total, 13 patients exhibited a moderate EuroSCORE II, while 27 were classified as high risk, with a EuroSCORE II exceeding 5%. Additionally, 40 patients (70.2%) presented with three-vessel disease, 17 (29.8%) suffered an acute myocardial infarction within three weeks prior to surgery and 50.9% presented an impaired ejection fraction. There were 48 MIDCAB and nine MICS CABG with no conversions either to sternotomy or to CPB. Eight cases were planned as hybrid procedures and only 15 patients (26.3%) were completely revascularized. During the first 30 days, four patients (7%) died. A myocardial infarction occurred in only one case, no patient necessitated immediate reoperation. The one-, three- and five-year survival rates were 83%, 67% and 61%, respectively. Conclusions: MIDCAB and MICS CABG can be successfully conducted as less invasive palliative surgery in high-risk multimorbid patients with MV CAD. The early and mid-term results were better than predicted. A higher rate of hybrid procedures could improve long-term outcome in selected cases. Full article
12 pages, 1362 KiB  
Article
Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment
by Giulia Modica, Fabio Arcidiacono, Stefano La Malfa, Alessandra Gentile and Alberto Continella
Horticulturae 2025, 11(8), 928; https://doi.org/10.3390/horticulturae11080928 (registering DOI) - 6 Aug 2025
Abstract
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by [...] Read more.
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by hot and dry summer that affects plant physiology. Methods: The experiment was carried out in Sicily (South Italy) on 12-year-old avocado cv. Hass grafted onto Walter Hole rootstock. Two subplots each of forty homogenous trees were selected and treated (1) with calcium carbonate (DECCO Shield®) and (2) with water (control) at the following phenological phases: 711, 712 and 715 BBCH. The climatic parameters were recorded throughout the year. Physiological measurements (leaf transpiration, net photosynthesis, stomatal conductance, leaf water potential) were measured at 105, 131 and 168 days after full bloom. Fruit growth was monitored, and physico-chemical analyses were carried out at harvest. Results: The antitranspirant increased photosynthesis and stomatal conductance and reduced leaf transpiration (−26.1%). Fruit growth rate increased during summer, although no morphological and qualitative difference was observed at harvest. PCA highlighted the positive effect of the calcium carbonate on overall plant physiology. Conclusions: Antitranspirant foliar application reduced heat stress effects by improving physiological responses of avocado trees. Full article
Show Figures

Figure 1

19 pages, 19033 KiB  
Article
Multi-Strategy Fusion RRT-Based Algorithm for Optimizing Path Planning in Continuous Cherry Picking
by Yi Zhang, Xinying Miao, Yifei Sun, Zhipeng He, Tianwen Hou, Zhenghan Wang and Qiuyan Wang
Agriculture 2025, 15(15), 1699; https://doi.org/10.3390/agriculture15151699 - 6 Aug 2025
Abstract
Automated cherry harvesting presents a significant opportunity to overcome the high costs and inefficiencies of manual labor in modern agriculture. However, robotic harvesting in dense canopies requires sophisticated path planning to navigate cluttered branches and selectively pick target fruits. This paper introduces a [...] Read more.
Automated cherry harvesting presents a significant opportunity to overcome the high costs and inefficiencies of manual labor in modern agriculture. However, robotic harvesting in dense canopies requires sophisticated path planning to navigate cluttered branches and selectively pick target fruits. This paper introduces a complete robotic harvesting solution centered on a novel path-planning algorithm: the Multi-Strategy Integrated RRT for Continuous Harvesting Path (MSI-RRTCHP) algorithm. Our system first employs a machine vision system to identify and locate mature cherries, distinguishing them from unripe fruits, leaves, and branches, which are treated as obstacles. Based on this visual data, the MSI-RRTCHP algorithm generates an optimal picking trajectory. Its core innovation is a synergistic strategy that enables intelligent navigation by combining probability-guided exploration, goal-oriented sampling, and adaptive step size adjustments based on the obstacle’s density. To optimize the picking sequence for multiple targets, we introduce an enhanced traversal algorithm (σ-TSP) that accounts for obstacle interference. Field experiments demonstrate that our integrated system achieved a 90% picking success rate. Compared with established algorithms, the MSI-RRTCHP algorithm reduced the path length by up to 25.47% and the planning time by up to 39.06%. This work provides a practical and efficient framework for robotic cherry harvesting, showcasing a significant step toward intelligent agricultural automation. Full article
(This article belongs to the Section Agricultural Technology)
20 pages, 1788 KiB  
Article
Legume–Cereal Cover Crops Improve Soil Properties but Fall Short on Weed Suppression in Chickpea Systems
by Zelalem Mersha, Michael A. Ibarra-Bautista, Girma Birru, Julia Bucciarelli, Leonard Githinji, Andualem S. Shiferaw, Shuxin Ren and Laban Rutto
Agronomy 2025, 15(8), 1893; https://doi.org/10.3390/agronomy15081893 - 6 Aug 2025
Abstract
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of [...] Read more.
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of fall-planted winter rye (WR) alone in 2021 and mixed with hairy vetch (HV) in 2022 and 2023 at Randolph farm in Petersburg, Virginia. The objectives were two-fold: (a) to examine the effect of CCs on soil properties using monthly growth dynamics and biomass harvested from fifteen 0.25 m2-quadrants and (b) to evaluate the efficiency of five termination methods: (1) green manure (GM); (2) GM plus pre-emergence herbicide (GMH); (3) burn (BOH); (4) crimp mulch (CRM); and (5) mow-mulch (MW) in suppressing weeds in chickpea fields. Weed distribution, particularly nutsedge, was patchy and dominant on the eastern side. Growth dynamics followed an exponential growth rate in fall 2022 (R2 ≥ 0.994, p < 0.0002) and a three-parameter sigmoidal curve in 2023 (R2 ≥ 0.972, p < 0.0047). Biomass averaged 55.8 and 96.9 t/ha for 2022 and 2023, respectively. GMH consistently outperformed GM in weed suppression, though GM was not significantly different from no-till systems by the season’s end. Kabuli-type chickpeas under GMH had significantly higher yields than desi types. Pooled data fitted well to a three-parametric logistic curve, predicting half-time to 50% weed coverage at 35 (MM), 38 (CRM), 40 (BOH), 46 (GM), and 53 (GMH) days. Relapses of CCs were consistent in no-till systems, especially BOH and MW. Although soil properties improved, CCs alone did not significantly suppress weed. Full article
(This article belongs to the Section Weed Science and Weed Management)
21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

24 pages, 6757 KiB  
Article
Design and Testing of a Pneumatic Jujube Harvester
by Huaming Hou, Wei Niu, Qixian Wen, Hairui Yang, Jianming Zhang, Rui Zhang, Bing Xv and Qingliang Cui
Agronomy 2025, 15(8), 1881; https://doi.org/10.3390/agronomy15081881 - 3 Aug 2025
Viewed by 111
Abstract
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our [...] Read more.
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our research group conducted a study on mechanical harvesting technology for fresh jujubes. A pneumatic jujube harvester was designed. This harvester is composed of a self-regulating picking mechanism, a telescopic conveying pipe, a negative pressure generator, a cleaning mechanism, a double-chamber collection box, a single-door shell, a control assembly, a generator, a towing mobile chassis, etc. During the harvest, the fresh jujubes on the branches are picked under the combined effect of the flexible squeezing of the picking roller and the suction force of the negative pressure air flow. They then enter the cleaning mechanism through the telescopic conveying pipe. Under the combined effect of the upper and lower baffles of the cleaning mechanism and the negative-pressure air flow, the fresh jujubes are separated from impurities such as jujube leaves and branches. The clean fresh jujubes fall into the collection box. We considered the damage rate of fresh jujubes, impurity rate, leakage rate, and harvesting efficiency as the indexes, and the negative-pressure suction wind speed, picking roller rotational speed, and the inclination angle of the upper and lower baffles of the cleaning and selection machinery as the test factors, and carried out the harvesting test of fresh jujubes. The test results show that when the negative-pressure suction wind speed was 25 m/s, the picking roller rotational speed was 31 r/min, and the inclination angles of the upper and lower baffle plates for cleaning and selecting were −19° and 19.5°, respectively, the breakage rate of fresh jujube harvesting was 0.90%, the rate of impurity was 1.54%, the rate of leakage was 2.59%, and the efficiency of harvesting was 73.37 kg/h, realizing the high-efficiency and low-loss harvesting of fresh jujubes. This study provides a reference for the research and development of fresh jujube mechanical harvesting technology and equipment. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

32 pages, 5440 KiB  
Article
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 - 1 Aug 2025
Viewed by 149
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry [...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 167
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

20 pages, 2854 KiB  
Article
Trait-Based Modeling of Surface Cooling Dynamics in Olive Fruit Using Thermal Imaging and Mixed-Effects Analysis
by Eddy Plasquy, José M. Garcia, Maria C. Florido and Anneleen Verhasselt
Agriculture 2025, 15(15), 1647; https://doi.org/10.3390/agriculture15151647 - 30 Jul 2025
Viewed by 254
Abstract
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled [...] Read more.
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled cooling conditions. Surface temperature was recorded using infrared thermal imaging, and morphological and compositional traits were quantified. Temperature decay was modeled using Newton’s Law of Cooling, extended with a quadratic time term to capture nonlinear trajse thectories. A linear mixed-effects model was fitted to log-transformed, normalized temperature data, incorporating trait-by-time interactions and hierarchical random effects. The results confirmed that fruit weight, specific surface area (SSA), and specific heat capacity (SHC) are key drivers of cooling rate variability, consistent with theoretical expectations, but quantified here using a trait-based statistical model applied to olive fruit. The quadratic model consistently outperformed standard exponential models, revealing dynamic effects of traits on temperature decline. Residual variation at the group level pointed to additional unmeasured structural influences. This study demonstrates that olive fruit cooling behavior can be effectively predicted using interpretable, trait-dependent models. The findings offer a quantitative basis for optimizing postharvest cooling protocols and are particularly relevant for maintaining quality under high-temperature harvest conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

20 pages, 3729 KiB  
Article
Can AIGC Aid Intelligent Robot Design? A Tentative Research of Apple-Harvesting Robot
by Qichun Jin, Jiayu Zhao, Wei Bao, Ji Zhao, Yujuan Zhang and Fuwen Hu
Processes 2025, 13(8), 2422; https://doi.org/10.3390/pr13082422 - 30 Jul 2025
Viewed by 365
Abstract
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in [...] Read more.
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in conceptual and technical design, functional module design, and the training of the perception ability to accelerate prototyping. Taking the design of an apple-harvesting robot, for example, we demonstrate a basic framework of the AIGC-assisted robot design methodology, leveraging the generation capabilities of available multimodal large language models, as well as the human intervention to alleviate AI hallucination and hidden risks. Second, we study the enhancement effect on the robot perception system using the generated apple images based on the large vision-language models to expand the actual apple images dataset. Further, an apple-harvesting robot prototype based on an AIGC-aided design is demonstrated and a pick-up experiment in a simulated scene indicates that it achieves a harvesting success rate of 92.2% and good terrain traversability with a maximum climbing angle of 32°. According to the tentative research, although not an autonomous design agent, the AIGC-driven design workflow can alleviate the significant complexities and challenges of intelligent robot design, especially for beginners or young engineers. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Viewed by 357
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

24 pages, 17213 KiB  
Review
Empowering Smart Soybean Farming with Deep Learning: Progress, Challenges, and Future Perspectives
by Huihui Sun, Hao-Qi Chu, Yi-Ming Qin, Pingfan Hu and Rui-Feng Wang
Agronomy 2025, 15(8), 1831; https://doi.org/10.3390/agronomy15081831 - 28 Jul 2025
Viewed by 419
Abstract
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies [...] Read more.
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies (e.g., model lightweighting, transfer learning), and sensor data fusion techniques, the review identifies their roles and performances in complex agricultural environments. It also highlights key challenges including data quality limitations, difficulties in real-world deployment, and the lack of standardized evaluation benchmarks. In response, promising directions such as reinforcement learning, self-supervised learning, interpretable AI, and multi-source data fusion are proposed. Specifically for soybean automation, future advancements are expected in areas such as high-precision disease and weed localization, real-time decision-making for variable-rate spraying and harvesting, and the integration of deep learning with robotics and edge computing to enable autonomous field operations. This review provides valuable insights and future prospects for promoting intelligent, efficient, and sustainable development in soybean production through deep learning. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

22 pages, 747 KiB  
Review
Viticultural and Pre-Fermentation Strategies to Reduce Alcohol Levels in Wines
by Francesca Coppola, Bruno Testa, Mariantonietta Succi, Gianluca Paventi, Catello Di Martino and Massimo Iorizzo
Foods 2025, 14(15), 2647; https://doi.org/10.3390/foods14152647 - 28 Jul 2025
Viewed by 329
Abstract
Changes in lifestyles, as well as the growing attention to healthy nutrition, led to the increasing demand for wines with reduced alcohol content. The reduction in fermentable sugars in the pre-fermentation stage of wine is one of the common methods for the production [...] Read more.
Changes in lifestyles, as well as the growing attention to healthy nutrition, led to the increasing demand for wines with reduced alcohol content. The reduction in fermentable sugars in the pre-fermentation stage of wine is one of the common methods for the production of wines with lower alcohol content. Viticultural practices such as early harvesting, use of growth regulators, reducing leaf area to limit photosynthetic rate, and pre-harvest irrigation are utilized. Additionally, techniques such as juice dilution, juice filtration with membranes, and the use of enzymes (e.g., glucose oxidase) are also employed in the pre-fermentation stage. This review summarizes and describes the classic and innovative viticultural and pre-fermentation techniques used to reduce the alcohol content and their main impact on the compositional characteristics of wine. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

23 pages, 6813 KiB  
Article
Mapping Multi-Crop Cropland Abandonment in Conflict-Affected Ukraine Based on MODIS Time Series Analysis
by Nuo Xu, Hanchen Zhuang, Yijun Chen, Sensen Wu and Renyi Liu
Land 2025, 14(8), 1548; https://doi.org/10.3390/land14081548 - 28 Jul 2025
Viewed by 284
Abstract
Since the outbreak of the Russia–Ukraine conflict in 2022, Ukraine’s agricultural production has faced significant disruption, leading to widespread cropland abandonment. These croplands were abandoned at different stages, primarily due to war-related destruction and displacement of people. Existing methods for detecting abandoned cropland [...] Read more.
Since the outbreak of the Russia–Ukraine conflict in 2022, Ukraine’s agricultural production has faced significant disruption, leading to widespread cropland abandonment. These croplands were abandoned at different stages, primarily due to war-related destruction and displacement of people. Existing methods for detecting abandoned cropland fail to account for crop type differences and distinguish abandonment stages, leading to inaccuracies. Therefore, this study proposes a novel framework combining crop-type classification with the Bias-weighted Time-Weighted Dynamic Time Warping (BTWDTW) method, distinguishing between sowing and harvest abandonment. Additionally, the proposed framework improves accuracy by integrating a more nuanced analysis of crop-specific patterns, thus offering more precise insights into abandonment dynamics. The overall accuracy of the proposed method reached 88.9%. The results reveal a V-shaped trajectory of cropland abandonment, with abandoned areas increasing from 28,184 km2 in 2022 to 33,278 km2 in 2024, with 2023 showing an abandoned area of 24,007.65 km2. Spatially, about 70% of sowing abandonment occurred in high-conflict areas, with hotspots of unplanted abandonment shifting from southern Ukraine to the northeast, while unharvested abandonment was observed across the entire country. Significant variations were found across crop types, with maize experiencing the highest rate of unharvested abandonment, while wheat exhibited a more balanced pattern of sowing and harvest losses. The proposed method and results provide valuable insights for post-conflict agricultural recovery and decision-making in recovery planning. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

30 pages, 92065 KiB  
Article
A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies
by Jin Lu, Zhongji Cao, Jin Wang, Zhao Wang, Jia Zhao and Minjie Zhang
Agriculture 2025, 15(15), 1622; https://doi.org/10.3390/agriculture15151622 - 26 Jul 2025
Viewed by 290
Abstract
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, [...] Read more.
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, it is extremely difficult to accurately and efficiently identify and segment grape pedicels and then reliably locate the picking points. This is attributable to the low distinguishability between grape pedicels and the surrounding environment such as branches, as well as the impacts of other conditions like weather, lighting, and occlusion, which are coupled with the requirements for model deployment on edge devices with limited computing resources. To address these issues, this study proposes a novel picking point localization method for table grapes based on an instance segmentation network called Progressive Global-Local Structure-Sensitive Segmentation (PGSS-YOLOv11s) and a simple combination strategy of morphological operators. More specifically, the network PGSS-YOLOv11s is composed of an original backbone of the YOLOv11s-seg, a spatial feature aggregation module (SFAM), an adaptive feature fusion module (AFFM), and a detail-enhanced convolutional shared detection head (DE-SCSH). And the PGSS-YOLOv11s have been trained with a new grape segmentation dataset called Grape-⊥, which includes 4455 grape pixel-level instances with the annotation of ⊥-shaped regions. After the PGSS-YOLOv11s segments the ⊥-shaped regions of grapes, some morphological operations such as erosion, dilation, and skeletonization are combined to effectively extract grape pedicels and locate picking points. Finally, several experiments have been conducted to confirm the validity, effectiveness, and superiority of the proposed method. Compared with the other state-of-the-art models, the main metrics F1 score and mask mAP@0.5 of the PGSS-YOLOv11s reached 94.6% and 95.2% on the Grape-⊥ dataset, as well as 85.4% and 90.0% on the Winegrape dataset. Multi-scenario tests indicated that the success rate of positioning the picking points reached up to 89.44%. In orchards, real-time tests on the edge device demonstrated the practical performance of our method. Nevertheless, for grapes with short pedicels or occluded pedicels, the designed morphological algorithm exhibited the loss of picking point calculations. In future work, we will enrich the grape dataset by collecting images under different lighting conditions, from various shooting angles, and including more grape varieties to improve the method’s generalization performance. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop