Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (262)

Search Parameters:
Keywords = hardwood forests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2100 KiB  
Article
Spatial Patterning and Growth of Naturally Regenerated Eastern White Pine in a Northern Hardwood Silviculture Experiment
by David A. Kromholz, Christopher R. Webster and Michael D. Hyslop
Forests 2025, 16(8), 1235; https://doi.org/10.3390/f16081235 - 26 Jul 2025
Viewed by 222
Abstract
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is [...] Read more.
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is often uncommon in contemporary hardwood stands. To gain insights into the potential utility of hardwood management strategies for simultaneously regenerating white pine, we leveraged a northern hardwood silvicultural experiment with scattered overstory pine. Seven growing seasons post-harvest, we conducted a complete census of white pine regeneration (height ≥ 30 cm) and mapped their locations and the locations of potential seed trees. Pine regeneration was sparse and strongly spatially aggregated, with most clusters falling within potential seed shadows of overstory pines. New recruits were found to have the highest density in a scarified portion of the study area leeward of potential seed trees. Low regeneration densities within treatment units, strong spatial aggregation, and the spatial arrangement of potential seed trees precluded generalizable inferences regarding the utility of specific treatment combinations. Nevertheless, our results underscore the critical importance of residual overstory pines as seed sources and highlight the challenges associated with realizing their potential in managed northern hardwoods. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 1247 KiB  
Article
Niche Overlap in Forest Tree Species Precludes a Positive Diversity–Productivity Relationship
by Kliffi M. S. Blackstone, Gordon G. McNickle, Morgan V. Ritzi, Taylor M. Nelson, Brady S. Hardiman, Madeline S. Montague, Douglass F. Jacobs and John J. Couture
Plants 2025, 14(15), 2271; https://doi.org/10.3390/plants14152271 - 23 Jul 2025
Viewed by 251
Abstract
Niche complementarity is suggested to be a main driver of productivity overyielding in diverse environments due to enhanced resource use efficiency and reduced competition. Here, we combined multiple different approaches to demonstrate that niche overlap is the most likely cause to explain a [...] Read more.
Niche complementarity is suggested to be a main driver of productivity overyielding in diverse environments due to enhanced resource use efficiency and reduced competition. Here, we combined multiple different approaches to demonstrate that niche overlap is the most likely cause to explain a lack of overyielding of three tree species when grown in different species combinations. First, in an experimental planting we found no relationship between productivity and species diversity for leaf, wood, or root production (no slope was significantly different from zero), suggesting a lack of niche differences among species. Second, data extracted from the United States Department of Agriculture Forest Inventory and Analysis revealed that the species do not significantly co-occur in natural stands (p = 0.4065) as would be expected if coexistence was common across their entire range. Third, we compared trait differences among our species and found that they are not significantly different in multi-dimensional trait space (p = 0.1724). By combining multiple analytical approaches, we provide evidence of potential niche overlap that precludes coexistence and a positive diversity–productivity relationship between these three tree species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 4559 KiB  
Article
Predicting Forest Trail Degradation Susceptibility Using GIS-Based Explainable Machine Learning
by Hyeryeon Jo, Youngeun Kang and Seungwoo Son
Forests 2025, 16(7), 1074; https://doi.org/10.3390/f16071074 - 27 Jun 2025
Viewed by 447
Abstract
Effective trail management is essential for preventing environmental degradation and promoting sustainable recreational use. This study proposes a GIS-based, explainable machine learning framework for predicting forest trail degradation using exclusively environmental variables, eliminating the need for costly visitor monitoring data that remains unavailable [...] Read more.
Effective trail management is essential for preventing environmental degradation and promoting sustainable recreational use. This study proposes a GIS-based, explainable machine learning framework for predicting forest trail degradation using exclusively environmental variables, eliminating the need for costly visitor monitoring data that remains unavailable in most operational forest settings. Field surveys conducted in Geumjeongsan, South Korea, classified trail segments as degraded or non-degraded based on physical indicators such as erosion depth, trail width, and soil hardness. Environmental predictors—including elevation, slope, trail slope alignment (TSA), topographic wetness index (TWI), vegetation type, and soil texture—were derived from spatial analysis. Three machine learning algorithms (Binary Logistic Regression, Random Forest, and Gradient Boosting) were systematically compared using confusion matrix metrics and AUC-ROC (Area Under the Receiver Operating Characteristic Curve). Random Forest (RF) was selected for its strong performance (AUC-ROC = 0.812) and seamless integration with SHAP (SHapley Additive exPlanations) for transparent interpretation. Spatial block cross-validation achieved an AUC-ROC of 0.729, confirming robust spatial generalization. SHAP analysis revealed vegetation type as the most significant predictor, with hardwood forests showing higher degradation susceptibility than mixed forests. A susceptibility map generated from the RF model indicated that 40.7% of the study area faces high to very high degradation risk. This environmental-only approach enables proactive trail management across data-limited forest systems globally, providing actionable insights for sustainable trail maintenance without requiring visitor use data. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

34 pages, 2745 KiB  
Article
Prediction of Exotic Hardwood Carbon for Use in the New Zealand Emissions Trading Scheme
by Michael S. Watt, Mark O. Kimberley, Benjamin S. C. Steer and Micah N. Scholer
Forests 2025, 16(7), 1070; https://doi.org/10.3390/f16071070 - 27 Jun 2025
Viewed by 363
Abstract
New Zealand’s Emissions Trading Scheme (ETS) enables growers to earn payments by accumulating carbon units as their forests increase in carbon stock. For forests of less than 100 hectares, growers use predefined lookup tables (LUTs) to estimate carbon stock changes based on forest [...] Read more.
New Zealand’s Emissions Trading Scheme (ETS) enables growers to earn payments by accumulating carbon units as their forests increase in carbon stock. For forests of less than 100 hectares, growers use predefined lookup tables (LUTs) to estimate carbon stock changes based on forest age. Using a combination of growth models and productivity surfaces, underpinned by data from 1360 growth plots, the objective of this study was to provide draft updates for the Exotic Hardwoods LUTs. The updated LUTs were based on growth rates of three Eucalyptus species, E. fastigata, E. regnans, and E. nitens, which comprise a major proportion of the Exotic Hardwoods forest type in New Zealand. Carbon tables were first derived for each species. Then, a draft LUT was generated for New Zealand’s North Island, using a weighted average of the species-specific tables based on the relative importance of the species, while the E. nitens table was used for the South Island where this is the predominant Eucalyptus species. Carbon stock predictions at ages 30 and 50 years were 820 and 1340 tonnes CO2 ha−1 for the North Island, and slightly higher at 958 and 1609 tonnes CO2 ha−1 for the South Island. Regional variation was significant, with the highest predicted carbon in Southland (1691 tonnes CO2 ha−1 at age 50) and lowest in Hawke’s Bay/Southern North Island (1292 tonnes CO2 ha−1). Predictions closely matched the current Exotic Hardwood LUT to age 20 years but exceeded it by up to 45% at age 35. Growth and carbon sequestration rates were similar to other established Eucalyptus species and slightly higher than Acacia species, though further research is recommended. These findings suggest that the three Eucalyptus species studied here could serve as the default species for a revised Exotic Hardwoods LUT and that the current national tables could be regionalised. However, the government may consider factors other than the technical considerations outlined here when updating the LUTs. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

15 pages, 2316 KiB  
Article
Fuels Treatments and Tending Reduce Simulated Wildfire Impacts in Sequoia sempervirens Under Single-Tree and Group Selection
by Jade D. Wilder, Keith A. Shuttle, Jeffrey M. Kane and John-Pascal Berrill
Forests 2025, 16(6), 1000; https://doi.org/10.3390/f16061000 - 13 Jun 2025
Viewed by 470
Abstract
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire [...] Read more.
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire behavior over a century in stands dominated by coast redwood (Sequoia sempervirens (Lamb. ex. D. Don) Endl.) on California’s north coast. We used the fire and fuels extension to the forest vegetation simulator (FFE-FVS) to compare group selection (GS) to single-tree selection silviculture with either low-density (LD) or high-density (HD) retention on a 20-year harvest return interval. These three approaches were paired with six options involving vegetation management (i.e., hardwood control or pre-commercial thinning (PCT)) with and without fuels treatments (i.e., prescribed fire or pile burning), or no subsequent vegetation or fuel treatment applied after GS, HD, or LD silviculture. Fuel treatment involving prescribed fire reduced hazardous fuel loading but lowered stand density and hence productivity. Hardwood control followed by prescribed fire mitigated potential wildfire behavior and promoted dominance of merchantable conifers. PCT of small young trees regenerating after selection harvests, followed by piling and burning of these cut trees, sustained timber production while reducing potential wildfire behavior by approximately 40% relative to selection silviculture without vegetation/fuel management, which exhibited the worst potential wildfire behavior. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

28 pages, 2448 KiB  
Article
Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest
by Simon D. Baker, Kristen M. Waring, David Auty and Nicholas Wilhelmi
Forests 2025, 16(6), 967; https://doi.org/10.3390/f16060967 - 7 Jun 2025
Viewed by 611
Abstract
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) [...] Read more.
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) The purpose of this study was to examine post-fire stand dynamics over a 10-year period, using a network of permanent plots established prior to wildfire events across Arizona and New Mexico. We assessed changes in overstory composition, regeneration, and fuel loading across different fire severities. (3) High severity fire caused near-total overstory mortality, with little to no conifer regeneration and abundant sprouting hardwood regeneration. Lower severity fire was more favorable to fire-tolerant conifer species; however, mortality among mature trees was high, and fire-intolerant conifers were either diminished or extirpated completely. (4) In high severity fires, changes in overstory and understory structure and composition may be long-lasting. Additionally, increased fuel loads following high severity fire suggests a heightened risk of reburns, potentially perpetuating ecotype conversion. Our findings highlight the need for active management strategies, including reforestation and fuel reduction treatments, to support forest resilience for mixed conifer ecosystems in the US Southwest and similar forest types in other regions in the face of ongoing climate and fire regime changes. Full article
Show Figures

Figure 1

15 pages, 2295 KiB  
Article
Parameters of Medium-Size Wood Deliveries Depending on the Season, Moisture Content and Assortment of the Load
by Grzegorz Trzciński and Łukasz Tymendorf
Forests 2025, 16(6), 897; https://doi.org/10.3390/f16060897 - 27 May 2025
Viewed by 301
Abstract
In the years 2022 to 2023, the harvesting of medium-sized round wood by the State Forests Service in Poland was estimated at between 22.2 and 23.6 million solid cubic meters per year. This is a significant amount of timber to be transported by [...] Read more.
In the years 2022 to 2023, the harvesting of medium-sized round wood by the State Forests Service in Poland was estimated at between 22.2 and 23.6 million solid cubic meters per year. This is a significant amount of timber to be transported by road. It is a challenge for both transport companies and round wood buyers. The high variability of wood density depending on the species in combination with its moisture content is a significant issue in logistics operations. This study focuses on the influence of the absolute moisture content on selected parameters of wood deliveries, taking into account the differences in the seasons. The total weight of a transport set (GVW) and empty set (Tare) and the weight of the load (Net) were determined on the basis of weighing the transports on stationary scales at the recipient. The moisture content of each wood load was determined using the dryer-weigher method for sawdust taken from the cutting of several logs from the delivery. This study analyzed a total of 13,602 transports of ten tree species and two wood assortments of pulpwood (S2a) and industrial wood (S2ap) in four seasons in the years 2020–2022. Pine was the dominant species in 5352 deliveries, and spruce was the dominant species in 3161. In terms of seasons, 3983 transports were recorded in the summer, 3650 were recorded in the spring, and 3492 were recorded in the autumn. The lowest number of 2475 was in winter. The mean volume of delivered wood (from 13,602 transports) was 28.18 m3, with a range of results from 19.00 to 51.29 m3 and SD = 2.40. The mean weight of the shipment was 24.95 Mg, with SD = 3.36. The range was from 13.92 Mg to 38.20 Mg. The mean absolute moisture content (AMC) of all wood loads (regardless of species and quality) was 42.91%. The results varied significantly (SD = 6.41). The minimum value was 15.64%, and the maximum value was 66.79%. The absolute moisture content of round wood is related to the season, species and assortment of transported wood. Loads of hardwood have lower average solid cubic meter values than softwood. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

20 pages, 34946 KiB  
Article
Feasibility of Bamboo Sawdust as Sustainable Alternative Substrate for Auricularia heimuer Cultivation
by Ya-Hui Wang, Cong-Sheng Yan, Yong-Jin Deng, Zheng-Fu Zhu, Hua-An Sun, Hui-Ping Li, Hong-Yuan Zhao and Guo-Qing Li
J. Fungi 2025, 11(5), 387; https://doi.org/10.3390/jof11050387 - 17 May 2025
Viewed by 714
Abstract
With the increasing scarcity of traditional hardwood sawdust resources, developing sustainable substrates for edible fungi cultivation has become an urgent industrial priority. This study systematically evaluated the effects of bamboo sawdust substitutions (20%, 30%, 40%, and 50%) on mycelial growth, fruiting body development, [...] Read more.
With the increasing scarcity of traditional hardwood sawdust resources, developing sustainable substrates for edible fungi cultivation has become an urgent industrial priority. This study systematically evaluated the effects of bamboo sawdust substitutions (20%, 30%, 40%, and 50%) on mycelial growth, fruiting body development, and nutritional quality of Auricularia heimuer, while elucidating the underlying molecular mechanisms through transcriptome sequencing. The results demonstrated that bamboo substitution of ≤30% maintained normal mycelial growth and fruiting body differentiation, with 20% and 30% substitutions increasing yields by 5.30% and 3.70%, respectively, compared to the control. However, 50% substitution significantly reduced yield by 9.49%. Nutritional analysis revealed that 20–40% bamboo substitution significantly enhanced the contents of crude protein, polysaccharides, and essential minerals (calcium, iron, and selenium) in fruiting bodies. Transcriptome analysis identified upregulation of glycosyl hydrolase family genes and downregulation of redox-related genes with increasing bamboo proportions. Biochemical assays confirmed these findings, showing decreased oxidative substances and increased reductive compounds in mycelia grown with high bamboo content, which indicate disrupted cellular redox homeostasis. This study provides both a practical solution to alleviate the “edible mushrooms derived from lignicolous fungi–forest conflict” and fundamental insights into fungal adaptation mechanisms to non-wood substrates, thus establishing a theoretical foundation for the valorization of agricultural and forestry wastes. Full article
Show Figures

Figure 1

11 pages, 956 KiB  
Article
Recovering of Biodiversity in Bottomland Hardwood Forests After a Tornado and Salvage Logging in Southern Illinois (USA)
by Laura A. Schammel, Eric J. Holzmueller, John W. Groninger, Charles M. Ruffner and John L. Nelson
Ecologies 2025, 6(2), 27; https://doi.org/10.3390/ecologies6020027 - 1 Apr 2025
Viewed by 507
Abstract
Catastrophic wind events play important but poorly documented roles in shaping bottomland hardwood forest structure and composition. The objective of this study was to survey a forested wetland area in Illinois, USA, twenty years following a severe tornado (wind speeds ranging from 333–418 [...] Read more.
Catastrophic wind events play important but poorly documented roles in shaping bottomland hardwood forest structure and composition. The objective of this study was to survey a forested wetland area in Illinois, USA, twenty years following a severe tornado (wind speeds ranging from 333–418 km/h). Part of the damaged area had a subsequent salvage logging operation, and we compared the stand structure and composition of these damaged areas to adjacent reference sites. Stem density, basal area, and diversity differed significantly but slightly among disturbance types (p < 0.05). The density of Quercus spp. decreased in regenerated stands, while the density of Fraxinus pennsylvanica and invasive non-native species cover increased (p < 0.05). Salvage logging further increased the density of key bottomland taxa: Salix spp., Taxodium distichum, and Nyssa aquatica, as well as early successional species such as Liriodendron tulipifera (p < 0.05). Productivity did not differ between wind-impacted areas that were logged and not logged (p > 0.05). Recognizing the need for caution when informing management with case studies, this study highlights the value of delaying the assessment of even extreme wind disturbance impacts in hardwood forest recovery until the contribution of crown regrowth of severely wind-damaged trees, along with post-disturbance origin regeneration, can be ascertained. Full article
Show Figures

Figure 1

23 pages, 6424 KiB  
Article
Effect of Different Mixing Patterns on Carbon and Nitrogen Dynamics During the Decomposition of Deadwood in Subtropical Forest Ecosystems
by Ying Sang, Zhonglin Xu, Weibin You, Yan Cao, Wenli Xing and Dongjin He
Forests 2025, 16(4), 579; https://doi.org/10.3390/f16040579 - 26 Mar 2025
Viewed by 305
Abstract
As global forest areas decline and face increased risk from extreme events, optimizing forest types for long-term stability becomes crucial. However, empirical evidence for the effects of mixing methods on carbon and nitrogen dynamics in forest ecosystems remains limited. This study investigates five [...] Read more.
As global forest areas decline and face increased risk from extreme events, optimizing forest types for long-term stability becomes crucial. However, empirical evidence for the effects of mixing methods on carbon and nitrogen dynamics in forest ecosystems remains limited. This study investigates five forest types in Southern China: the Tsuga longibracteata W.C.Cheng pure forests, the Tsuga longibracteata–hardwood mixed forests, the Tsuga longibracteataPhyllostachys edulis (Carr.) J.Houz. mixed forests, the Tsuga longibracteataRhododendron simiarum Hance mixed forests, and the Tsuga longibracteata–hardwood–Rhododendron simiarum mixed forests (the tree species are all dominant community species). We examined one monoculture and four mixed forests, categorized into pure tree forests and tree–shrub mixed forests, and categorized by tree species richness levels of 1, 2, and 3. We measured carbon (C) and nitrogen (N) content, along with the C:N, of coarse woody debris (CWD) at various decay stages and in the adjacent topsoil (0–10 cm) to analyze decomposition rates and their effects on soil nutrients. Our results indicate that the C content and density of CWD differed significantly among forest types (p < 0.001). The Tsuga longibracteataPhyllostachys edulis mixed forest exhibited the highest C and N content in CWD, but the lowest in adjacent topsoil, alongside the fastest decomposition rate. Soil C content and the C:N ratio showed highly significant differences among forest types (p < 0.001), and N content showed a significant difference (p < 0.05). Optimal outcomes occurred at a species richness level of 2, as excessive or insufficient species richness can diminish decomposition rates. The ecological benefits of tree–shrub mixed forests surpassed pure tree forests. Overall, these findings suggest that mixed forests do not always provide greater ecological advantages than pure forests, and that improper mixing can deplete soil. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

25 pages, 2715 KiB  
Article
Spatial and Temporal Pervasiveness of Indigenous Settlement in Oak Landscapes of Southern New England, US, During the Late Holocene
by Stephen J. Tulowiecki, Brice B. Hanberry and Marc D. Abrams
Land 2025, 14(3), 525; https://doi.org/10.3390/land14030525 - 3 Mar 2025
Cited by 1 | Viewed by 1219
Abstract
The relative influence of climate and Indigenous cultural burning on past forest composition in southern New England, US, remains debated. Employing varied analyses, this study compared data on Indigenous settlements from over 5000 years before present (YBP) with relative tree abundances estimated from [...] Read more.
The relative influence of climate and Indigenous cultural burning on past forest composition in southern New England, US, remains debated. Employing varied analyses, this study compared data on Indigenous settlements from over 5000 years before present (YBP) with relative tree abundances estimated from pollen and land survey records. Results suggested that fire-tolerant vegetation, mainly oak (Quercus spp.), was more abundant near Indigenous settlements from 4955 to 205 YBP (i.e., 86–91% fire-tolerant trees), and significantly (p < 0.05) higher from 3205 to 205 YBP; fire-tolerant vegetation was less abundant away from settlements, where it also experienced greater fluctuations. Correlative models showed that warmer temperatures and distance to Indigenous settlement, which are both indicators of fire, were important predictors in the 17th–18th centuries of fire-tolerant tree abundance; soil variables were less important and their relationships with vegetation were unclear. A marked increase in oak abundance occurred above 8 °C mean annual temperature and within 16 km of major Indigenous settlements. Pyrophilic vegetation was most correlated with distance to Indigenous villages in areas with 7–9 °C mean annual temperature, typical of higher latitudes and elevations that usually supported northern hardwoods. Widespread burning in warmer areas potentially weakened relationships between distance and pyrophilic abundance. Indigenous land use imprinted upon warmer areas conducive to burning created patterns in fire-tolerant vegetation in southern New England, plausibly affecting most low-elevation areas. Results imply that restoration of fire-dependent species and of barrens, savannas, and woodlands of oak in southern New England benefit from cultural burning. Full article
Show Figures

Figure 1

16 pages, 2758 KiB  
Article
De Novo Leaf Transcriptome Assembly and Metagenomic Studies of Coast Live Oak (Quercus agrifolia)
by Savanah Senn, Ray A. Enke, Steven J. Carrell, Bradley Nations, Meika Best, Mathew Kostoglou, Karu Smith, Jieyao Yan, Jillian M. Ford, Les Vion and Gerald Presley
Appl. Microbiol. 2025, 5(1), 24; https://doi.org/10.3390/applmicrobiol5010024 - 22 Feb 2025
Viewed by 1113
Abstract
Coast Live Oak (Quercus agrifolia) is a native keystone hardwood species of the California coastal and semi-arid forest environment. Q. agrifolia is threatened by pathogens such as the oomycete Phytophthora ramorum, which is known to cause Sudden Oak Death in [...] Read more.
Coast Live Oak (Quercus agrifolia) is a native keystone hardwood species of the California coastal and semi-arid forest environment. Q. agrifolia is threatened by pathogens such as the oomycete Phytophthora ramorum, which is known to cause Sudden Oak Death in environments from Southern California to Oregon. This study considers oaks and their rootzone microbes recovering from moderate and low-intensity fires in rapid succession, compared to high- and low-intensity fires with a large time gap between them. cDNA libraries from nine oak leaf tissue samples were sequenced on DNBseq. Soil samples were sent out for shotgun metagenomics and for 16S community profiling. The de novo Q. agrifolia assembly yielded 521,817 transcripts with an average length of 805.2 bp. Among identified DEGs (differentially expressed genes) between the trail areas, several candidate genes were identified including shikimate dehydrogenase and myrcene synthase. The MegaBLAST results showed a high degree of similarity to WGS sequences from Q. agrifolia that had been previously annotated in other closely related Quercus species. There was a differential abundance of microbial genera associated with the different burn areas, including Pedobacter, Filimonas, Cohnella, and Sorangium. The data embody the first Q. agrifolia transcriptome that with further development could be used to screen oak seedlings for resistance; beneficial microbial populations have been identified that are associated with fire recovery under varied conditions. Full article
Show Figures

Figure 1

12 pages, 1273 KiB  
Article
Leaf Water Storage Capacity Among Eight US Hardwood Tree Species: Differences in Seasonality and Methodology
by Natasha Scavotto, Courtney M. Siegert, Heather D. Alexander and J. Morgan Varner
Hydrology 2025, 12(2), 40; https://doi.org/10.3390/hydrology12020040 - 18 Feb 2025
Viewed by 787
Abstract
Canopy hydrology and forest water inputs are directly linked to the physical properties of tree crowns (e.g., foliar and woody surfaces), which determine a tree’s capacity to intercept and retain incident rainfall. The changing forest structure, notably the decline of oak’s (Quercus [...] Read more.
Canopy hydrology and forest water inputs are directly linked to the physical properties of tree crowns (e.g., foliar and woody surfaces), which determine a tree’s capacity to intercept and retain incident rainfall. The changing forest structure, notably the decline of oak’s (Quercus) dominance and encroachment of non-oak species in much of the upland hardwood forests of the eastern United States, challenges our understanding of how species-level traits scale up to control the forest hydrologic budget. The objective of this study was to determine how the leaf water storage capacity varies across species and canopy layers, and how these relationships change throughout the growing season. We measured the leaf water storage capacity of overstory and midstory trees of native deciduous oaks (Q. alba, Q. falcata, Q. stellata) and non-oak species (Carya tomentosa, Acer rubrum, Ulmus alata, Liquidambar styraciflua, Nyssa sylvatica) using two methods (water displacement and rainfall simulation). Overstory Q. alba leaves retained 0.5 times less water per unit leaf area than other overstory species (p < 0.001) in the early growing season, while in the late growing season, C. tomentosa leaves had the lowest storage capacity (p = 0.024). Quercus falcata leaves displayed a minimal change in storage between seasons, while Q. alba and Q. stellata leaves had higher water storage in the late growing season. Midstory U. alata leaves had 3.5 times higher water storage capacity in the early growing season compared to all the other species (p < 0.001), but this difference diminished in the late growing season. Furthermore, the water storage capacities from the simulated rainfall experiments were up to two times higher than those in the water displacement experiments, particularly during the early growing season. These results underscore the complexity of leaf water storage dynamics, the methodology, and the implications for forest hydrology and species interactions. Broader efforts to understand species-level controls on canopy water portioning through leaf and other crown characteristics are necessary. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

7 pages, 1409 KiB  
Communication
Monitoring Wildlife Using Camera Traps: Effect of Bait Type in Pine Plantations and Natural Hardwood Stands
by Todd Fredericksen and Wylie Martin
Forests 2025, 16(2), 324; https://doi.org/10.3390/f16020324 - 12 Feb 2025
Viewed by 574
Abstract
Camera traps across from cages baited with either sardines or suet were installed in forests on the campus of Ferrum College in Virginia, USA, during the Fall and Spring seasons over two years. The objective of this study was to determine the vertebrate [...] Read more.
Camera traps across from cages baited with either sardines or suet were installed in forests on the campus of Ferrum College in Virginia, USA, during the Fall and Spring seasons over two years. The objective of this study was to determine the vertebrate wildlife abundance and species composition in natural hardwood forests with mixed pine species compared to pine plantations. We found that the forest type and bait preference differed among the species by season. The relative abundance of natural foods and the need for winter thermal cover may explain the capture success in this study. Full article
(This article belongs to the Special Issue Wildlife Ecology and Conservation in Forest Habitats)
Show Figures

Figure 1

30 pages, 1994 KiB  
Review
Phytochemistry and Anti-Inflammatory and Antioxidant Activities of Cinnamomum osmophloeum and Its Bioactive Constituents: A Review
by Renan Oliveira Silva Damasceno, João Lucas Silva Pinheiro, Lorena Duarte da Silva, Lucas Henrique Marques Rodrigues, Jeremias Justo Emídio, Tamires Cardoso Lima and Damião Pergentino de Sousa
Plants 2025, 14(4), 562; https://doi.org/10.3390/plants14040562 - 12 Feb 2025
Cited by 1 | Viewed by 1531
Abstract
Cinnamomum osmophloeum, commonly known as indigenous cinnamon, is a tree species native to Taiwan’s hardwood forests. It has been extensively investigated for its chemical composition and bioactivities. Several reports have shown that C. osmophloeum leaves are rich in aromatic oils, which are [...] Read more.
Cinnamomum osmophloeum, commonly known as indigenous cinnamon, is a tree species native to Taiwan’s hardwood forests. It has been extensively investigated for its chemical composition and bioactivities. Several reports have shown that C. osmophloeum leaves are rich in aromatic oils, which are grouped into various chemotypes based on their major constituents. Components of the volatile oils included phenylpropanoids, monoterpenoids, sesquiterpenoids, phenols, coumarins, and other miscellaneous compounds. In addition, other secondary metabolites previously identified in this species included flavonol glycosides, phenolic acids, lignans, proanthocyanidins, and cyclopropanoids. C. osmophloeum is widely recognized for its medicinal and industrial applications, particularly its essential oils. In general, essential oils exhibit remarkable anti-inflammatory and antioxidant actions, enabling them to modulate key inflammatory mediators and neutralize free radicals. This review explored the phytochemical composition of the essential oils and extracts from C. osmophloeum as well as therapeutic potential of this species, focusing on the action mechanisms and clinical potential. We hope that this review will contribute to a better understanding of the biological effects of this plant and its potential applications in the management of conditions associated with inflammation and oxidative stress. Full article
Show Figures

Figure 1

Back to TopTop