Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = halite precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8399 KiB  
Article
Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China
by Liang Guo, Yuanyuan Ding, Haisong Fang, Chunxue An, Wanjun Jiang and Nuan Yang
Water 2025, 17(14), 2074; https://doi.org/10.3390/w17142074 - 11 Jul 2025
Viewed by 275
Abstract
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid [...] Read more.
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid regions. This study integrated hydrochemical analysis, stable isotopes, and inverse hydrochemical modeling to identify groundwater recharge sources, hydrochemical evolution, and controlling mechanisms in an arid endorheic watershed, northwestern China. A stable isotope signature indicated that groundwater is primarily recharged by high-altitude meteoric precipitation and glacial snowmelt. The regional hydrochemical type evolved from HCO3·Cl-Ca·Mg·Na types in phreatic aquifers to more complex HCO3·Cl-Ca·Mg Na and HCO3·Cl-Na Mg types in confined aquifers and a Cl-Mg·Na type in high-salinity groundwater. The dissolution of halite, gypsum, calcite, K-feldspar, and albite was identified as the primary source of dissolved substances and a key factor controlling the hydrochemical characteristics. Meanwhile, hydrochemical evolution is influenced by cation exchange, mineral dissolution–precipitation, and carbonate equilibrium mechanisms. Inverse hydrochemical modeling demonstrated that high-salinity groundwater has experienced intensive evaporation and quantified the transfer amounts of associated minerals. This study offers deeper insight into hydrochemical evolution in the Golmud River watershed and elucidates mineral transport and enrichment mechanisms, providing a theoretical basis for investigating hydrochemical metallogenic processes. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

17 pages, 2222 KiB  
Article
Hydrogeochemical Characteristics and Evolutionary Mechanisms of the Nanping Geothermal Field, Southeastern Hainan Island, China
by Xiaolin Wang, Xiaoxue Yan, Wei Zhang, Bo Ma, Changzhu Liu, Yongpeng Yang, Ruoxi Yuan, Jie Chen and Wencun Su
Sustainability 2025, 17(13), 6189; https://doi.org/10.3390/su17136189 - 5 Jul 2025
Viewed by 474
Abstract
The southeastern Hainan Island boasts abundant hydrothermal resources, most of which are exposed as thermal springs. Analyzing the hydrochemical characteristics, hydrochemical evolutionary mechanisms, and material transition of these resources is significant for their exploitation and utilization. This study investigated the Nanping geothermal field [...] Read more.
The southeastern Hainan Island boasts abundant hydrothermal resources, most of which are exposed as thermal springs. Analyzing the hydrochemical characteristics, hydrochemical evolutionary mechanisms, and material transition of these resources is significant for their exploitation and utilization. This study investigated the Nanping geothermal field in southeastern Hainan Island, using five groups of geothermal water samples collected in 2022, as well as seven groups of geothermal water samples, one group of shallow groundwater samples, and one group of surface water samples taken in 2023. Specifically, this study examined water–rock interactions in the geothermal field using the Gibbs model, ion ratios, chloro-alkaline indices (CAIs), and the sodium adsorption ratio (SAR). Moreover, the mineral transfer process in groundwater was analyzed using inverse hydrogeochemical simulation. The results indicate that in the study area the geothermal water temperatures range from 64 °C to 80 °C, pH values from 8.32 to 8.64, and TDS concentrations from 431 mg/L to 623 mg/L. The primary hydrochemical types of geothermal water in the study area include Cl-Na and Cl·HCO3-Na, suggesting low-temperature, slightly alkaline geothermal water. The hydrochemical components of geothermal water in the study area are primarily affected by water–rock interactions. Besides the dissolution of silicate minerals and halite, cation exchange reactions contribute greatly to the formation of Na+ and K+ in geothermal water. Geothermal water receives recharge from the atmospheric precipitation of the Diaoluo Shan area in the northwest of the study area, with the recharge elevation ranging from 967 to 1115 m. The inverse hydrogeochemical simulation results reveal that during the water–rock interactions, silicate minerals, clay minerals, gypsum, and halite dissolve, while quartz and carbonate minerals precipitate. Additionally, these processes are accompanied by cation exchange reactions dominated by the replacement of Na+ in surrounding rocks by Ca2+ in geothermal water. This study can provide a geological basis for the exploitation, utilization, and management of the Nanping geothermal field. Full article
Show Figures

Figure 1

27 pages, 4959 KiB  
Article
Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
by Pavel Belkin, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov and Elena Tomilina
Minerals 2025, 15(6), 662; https://doi.org/10.3390/min15060662 - 19 Jun 2025
Viewed by 244
Abstract
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, [...] Read more.
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, and contains alkaline saline industrial wastes. The origin of this waste was related to sludge from the Solvay soda production process, which had been deposited in this pond over a long period of time. However, along with the soda waste, the pond also received wastewater from other industries. As a result, the accumulated sediment is characterized by variation in morphological properties both in depth and laterally. Five undisturbed columns were taken to study the composition of the accumulated sediment. The obtained samples were analyzed by X-ray diffraction (XRD), synchronous thermal analysis (STA), and X-ray fluorescence (XRF) analysis. The results showed that the mineral composition of bottom sediments in each layer of all studied columns is characterized by the predominance of calcite precipitated from wastewater. Along with calcite, due to the presence of magnesium and sodium in the solution, other carbonates precipitated—dolomite and soda (natron), as well as complex transitional carbonate phases (northupite and trona). Together with carbonate minerals, the chloride salts halite and sylvin, sulfate minerals gypsum and bassanite, and pyrite and nugget sulfur were established. The group of terrigenous mineral components is represented by quartz, feldspars, and aluminosilicates. The chemical composition of sediments in the upper part of the section generally corresponds to the mineral composition. In the lower sediment layers, the role of amorphous phase and non-mineral compounds increased, which was determined by the results of thermal analysis. The content of heavy metals and metalloids also increases in the middle and lower sediment layers. When categorized according to the Igeo value, an excessive degree of contamination (class 6) was observed in all investigated columns for copper content (Igeo 5.2–6.1). Chromium content corresponds to class 5 (Igeo 4.1–4.6), antimony to class 4 (Igeo 3.0–4.0), and lead, arsenic, and vanadium to classes 2 and 3 (moderately polluted and highly polluted). The data obtained on variations in the mineral and chemical composition of sediments represent the initial information for the selection of methods of accumulated waste management. Full article
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Viewed by 343
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

23 pages, 12059 KiB  
Article
Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides
by Tatiana V. Safronova, Alexandra S. Sultanovskaya, Sergei A. Savelev, Tatiana B. Shatalova, Yaroslav Y. Filippov, Olga V. Boytsova, Vadim B. Platonov, Tatiana V. Filippova, Albina M. Murashko, Xinyan Feng and Muslim R. Akhmedov
Compounds 2025, 5(2), 22; https://doi.org/10.3390/compounds5020022 - 16 Jun 2025
Viewed by 432
Abstract
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or [...] Read more.
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or magnesium chlorides. Starting solutions were taken in quantities which could provide precipitation of hydrated calcium and/or magnesium silicates with molar ratios Ca/Si = 1 (CaSi), Mg/Si = 1 (MgSi) or (Ca+Mg)/Si = 1 (CaMgSi). Hydrated calcium and/or magnesium silicates, hydrated silica, magnesium carbonate, hydrated magnesium carbonate or hydrated magnesium silicate containing carbonate ions are suspected as components of quasi-amorphous phases presented in synthesized powders. Heat treatment of synthesized powders at 400, 600, 800 °C and pressed preceramic samples at 900, 1000, 1100 and 1200 °C were used for investigation of thermal evolution of the phase composition and microstructure of powders and ceramic samples. Mass loss of powder samples under investigation during heat treatment was provided due to evacuation of H2O (m/z = 18), CO2 (m/z = 44) and NaCl at temperatures above its melting point. After sintering at 1100 °C, the phase composition of ceramic samples included wollastonite CaSiO3 (CaSi_1100); enstatite MgSiO3, clinoenstatite MgSiO3 and forsterite Mg2SiO4 (MgSi_1100); and diopside CaMgSi2O6 (CaMgSi_1100). After sintering at 1200 °C, the phase composition of ceramics CaSi_1200 included pseudo-wollastonite CaSiO3. After heat treatment at 1300 °C, the phase composition of MgSi_1300 powder included preferably protoenstatite MgSiO3. The phase composition of all samples after heat treatment belongs to the oxide system CaO–MgO–SiO2. Ceramic materials in this system are of interest for use in different areas, including refractories, construction materials and biomaterials. Powders prepared in the present investigation, both via precipitation and via heat treatment, can be used for the creation of materials with specific properties and in model experiments as lunar regolith simulants. Full article
Show Figures

Figure 1

22 pages, 4895 KiB  
Article
Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
by Hanwen Xue, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang and Haoming Li
Minerals 2025, 15(5), 518; https://doi.org/10.3390/min15050518 - 14 May 2025
Viewed by 505
Abstract
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. [...] Read more.
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. Six mineralization stages are identified: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate ones. Fluid inclusions (FIs) analysis reveals that Stage I garnet and Stage II–III quartz host liquid-rich (VL-type), vapor-rich two-phase (LV-type), and halite-bearing three-phase (SL-type) inclusions. Stage IV quartz and fluorite, along with Stage V quartz, are dominated by VL- and LV-type inclusions, while Stage VI calcite contains exclusively VL-type inclusions. The FIs in Stages I to VI homogenized at 392–513, 317–429, 272–418, 224–347, 201–281, and 163–213 °C, with corresponding salinities of 3.05–56.44, 2.56–47.77, 2.89–45.85, 1.39–12.42, 0.87–10.62, and 4.48–8.54 wt% NaCl equiv., respectively. The H–O–C isotopes data imply that fluids of the anhydrous skarn stage (δD = −101.2 to −91.4‰, δ18OH2O = 5.0 to 6.0‰) were of magmatic origin, the fluids of hydrous skarn and oxide stages (δD = −106.3 to −104.7‰, δ18OH2O = 4.3 to 4.9‰) were characterized by fluid mixing with minor meteoric water, while the fluids of sulfide stages (δD = −117.4 to −108.6‰, δ18OH2O = −3.4 to 0.3‰, δ13CV-PDB= −12.2 to −10.9‰, and δ18OV-SMOW = −2.2 to −0.7‰) were characterized by mixing of significant amount of meteoric water. The ore-forming fluids evolved from a high-temperature, high-salinity NaCl−H2O boiling system to a low-temperature, low-salinity NaCl−H2O mixing system. The garnet U-Pb dating constrains the formation of skarn to 132.1 ± 4.7 Ma (MSWD = 0.64), which aligns, within analytical uncertainty, with the weighted-mean U−Pb age of zircon grains in ore-related K-feldspar granite (132.6 ± 0.9 Ma; MSWD = 1.5). On the basis of these findings, the Huanggang deposit, formed in the Early Cretaceous, is a typical skarn-type system, in which ore precipitation was principally controlled by fluid boiling and mixing. Full article
Show Figures

Figure 1

23 pages, 6275 KiB  
Article
The Evolution and Drivers of Hydrochemistry in Nam Co Lake, the Third Largest Lake on the Tibetan Plateau, over the Last 20 Years
by Wenhao Ren, Yanyan Gao, Hui Qian, Wengang Qu, Xiaoxin Shi, Yaoming Ma, Zhongbo Su and Weiqiang Ma
Sustainability 2025, 17(5), 2180; https://doi.org/10.3390/su17052180 - 3 Mar 2025
Cited by 1 | Viewed by 759
Abstract
The Tibetan Plateau, a critical regulator of the global water cycle and climate system, represents a highly sensitive region to environmental changes, with significant implications for sustainable development. This study focuses on Nam Co Lake, the third largest lake on the Tibetan Plateau, [...] Read more.
The Tibetan Plateau, a critical regulator of the global water cycle and climate system, represents a highly sensitive region to environmental changes, with significant implications for sustainable development. This study focuses on Nam Co Lake, the third largest lake on the Tibetan Plateau, and investigates the hydrochemical evolution of the lake and the driving mechanisms in regard to the lake–river–groundwater system within the Nam Co Basin over the last 20 years. Our findings provide critical insights for sustainable water resource management in regard to fragile alpine lake ecosystems. The hydrochemical analyses revealed distinct temporal patterns in the total dissolved solids, showing an increasing trend during the 2000s, followed by a decrease in the 2010s. Piper diagrams demonstrated a gradual change in the anion composition from the Cl type to the HCO3 type over the study period. The ion ratio analyses identified rock weathering (particularly silicate, halite, sulfate, and carbonate weathering), ion exchange, and evaporation processes as primary controlling processes, with notable differences between water bodies: while all four weathering processes contributed to the lake’s water chemistry, only halite and carbonate weathering influenced river and groundwater compositions. The comparative analysis revealed more pronounced ion exchange processes in lake water than in river and groundwater systems. Climate change impacts were manifested through two primary mechanisms: (1) enhanced evaporation, leading to elevated ion concentrations and isotopic enrichment; and (2) temperature-related effects on the water chemistry through increased dilution from precipitation and glacial meltwater. Understanding these mechanisms is essential for developing adaptive strategies to maintain water security and ecosystem sustainability. The relationships established between climate drivers and hydrochemical responses provide a scientific basis for predicting future changes and informing sustainable management practices for inland lake systems across the Tibetan Plateau. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

17 pages, 12038 KiB  
Article
Hydrogeochemical Evolution, Isotopic Insights, and Genetic Models of Geothermal Water in Anhui Province, China
by Xiaoping Zhou, Yinxue Peng, Yunfeng Li and Honghui Sang
Water 2025, 17(2), 236; https://doi.org/10.3390/w17020236 - 16 Jan 2025
Cited by 1 | Viewed by 802
Abstract
Anhui Province is rich in geothermal water resources, making the study of its hydrochemical evolution and genetic models essential for scientific development and sustainable utilization. This study combines hydrochemical and hydrogen–oxygen isotopic data from different regions of Anhui Province to analyze the hydrogeochemical [...] Read more.
Anhui Province is rich in geothermal water resources, making the study of its hydrochemical evolution and genetic models essential for scientific development and sustainable utilization. This study combines hydrochemical and hydrogen–oxygen isotopic data from different regions of Anhui Province to analyze the hydrogeochemical evolution characteristics and recharge mechanisms of basin-type and mountainous-type geothermal waters. The results show that basin-type geothermal water is predominantly of the Cl–Na type, with water–rock interactions mainly including halite dissolution, gypsum dissolution, dedolomitization, and silicate hydrolysis. The groundwater system is relatively closed off, with slow flow rates. In contrast, mountainous geothermal water is mainly of the HCO3–Na·Ca, SO4–Na·Ca, and SO4–Na types, with water–rock interactions primarily involving calcite dissolution, dolomite dissolution, and gypsum dissolution. Enhanced precipitation infiltration due to fault structures leads to stronger recharge and an open-system characteristic. The genetic models of the two types of geothermal water reveal the structural and recharge mechanisms of thermal reservoirs under different geological settings, highlighting the significant control of geological background on geothermal water formation. Full article
(This article belongs to the Special Issue New Application of Isotopes in Hydrology and Hydrogeology)
Show Figures

Figure 1

10 pages, 2330 KiB  
Article
The 288.2 K Isothermal Evaporation Experiment of Potassium Precipitation Brine in West Taijinair Salt Lake
by Yousheng Yang, Xiaowang Wu, Xudong Yu, Jiazheng Qin, Jianjun Su, Caixiong Quan and Pan Xu
Separations 2024, 11(12), 348; https://doi.org/10.3390/separations11120348 - 9 Dec 2024
Viewed by 1086
Abstract
Rubidium and cesium are important strategic resources, and West Taijinar Salt Lake is rich in rubidium and cesium reserves, while the concentration is low and the relationship with coexisting potassium and magnesium ions is complex. In order to understand the evaporative enrichment and [...] Read more.
Rubidium and cesium are important strategic resources, and West Taijinar Salt Lake is rich in rubidium and cesium reserves, while the concentration is low and the relationship with coexisting potassium and magnesium ions is complex. In order to understand the evaporative enrichment and salt precipitation patterns of rare elements such as lithium, rubidium, cesium, and boron of the brine after potassium precipitation in West Taijinar Salt Lake, the 288.2 K isothermal evaporation experiment was carried out. The experimental results show that during the evaporation process at 288.2 K, the following salts precipitate from the brine after potassium crystallization: halite (NaCl), bischofite (MgCl2·6H2O), carnallite (KCl·MgCl2·6H2O), hexahydrite (MgSO4·6H2O), epsomite (MgSO4·7H2O), boric acid (H3BO3), and lithium sulfate monohydrate (Li2SO4·H2O). The concentrations of lithium and boron are significantly enriched, the content of Li+ was enriched from 1.7 g/L to 5.63 g/L, and the B2O3 content was enriched from 6.72 g/L to 50.78 g/L. The isomorphism phenomenon of Rb+, Cs+, and K+ makes Rb+ and Cs+ enter potassium ore to form solid solution-type carnallite ((K, Rb)MgCl3·6H2O, (K, Cs)MgCl3·6H2O)) and reduce the content of brine. This study provides data support for the development and comprehensive utilization of lithium, boron, rubidium, and cesium resources in West Taijinar Salt Lake. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

23 pages, 6708 KiB  
Article
Mineral Powder Extraction by the Natural Drying of Water from the Public Springs in Borsec
by Simona Elena Avram, Denisa Viviana Platon, Lucian Barbu Tudoran, Gheorghe Borodi and Ioan Petean
Appl. Sci. 2024, 14(23), 10806; https://doi.org/10.3390/app142310806 - 22 Nov 2024
Cited by 3 | Viewed by 1418
Abstract
Borsec is one of the most important mineral water spa resorts in Romania and is also an important mineral water bottling facility. There are several public springs with significant mineral content. The present paper focuses on mineral powder extraction by the drying of [...] Read more.
Borsec is one of the most important mineral water spa resorts in Romania and is also an important mineral water bottling facility. There are several public springs with significant mineral content. The present paper focuses on mineral powder extraction by the drying of water samples collected from springs no. 3, 5, 6, 10, and 11. These springs have a continuous flow being available for everyone who wants to fill a bottle; meanwhile, the rest of the water is discarded into the river. Thus, the dissolved ions such as Ca2+, Mg2+, Na+, and Cl are wasted. This study aims to investigate the possibility of mineral content extraction as crystalline powder by drying. The dissolved ions’ reaction with carbonic acid generates carbonates which crystallize progressively with the water evaporation. Mineralogical investigation including X-ray diffraction (XRD) and polarized light optical microscopy (POM) reveal that calcite (rhombohedral and pseudo-hexagonal crystals of about 5–25 µm) is the dominant mineral followed by pseudo-dolomite (columnar crystals of about 5–20 µm), aragonite (rhombic and granular crystals of 2.5–15 µm), and natron (prismatic crystals of about 5–20 µm), in addition to small amounts of halite. Scanning electron microscopy (SEM) investigation combined with energy dispersive (EDS) elemental analysis indicates that traces of K are uniformly distributed in the calcite mass and some S traces for springs 3 and 11 are distributed predominantly into the pseudo-dolomite crystals. The crystalline germs precipitate from the supersaturated solution via homogeneous germination and progressively grow. The latest stage is characterized by the formation of a dendritic crust of calcite mixed with halite that embeds the individually grown crystals. The amount of the formed crystals strongly depends on the water’s total dissolved solids (TDS) and salinity: the springs with high TDS and salinity form a large number of crystals and spectacular dendritic crusts such as spring 10 followed by springs 6 and 5. Lower mineralization was observed in springs 3 and 5, which was related with the S traces. Also, it is evident that mineralization is seasonally dependent: the mineral amount was lower in November 2023 than for the samples collected in March 2024. The obtained mineral powder might be used for spa baths or for the electrolytic balance regulation in dietary supplements due to the high calcium and magnesium content. Full article
(This article belongs to the Special Issue Latest Research on Geotechnical Engineering)
Show Figures

Figure 1

20 pages, 8835 KiB  
Article
Origin of Intercrystalline Brine Formation in the Balun Mahai Basin, Qaidam: Constraints from Geochemistry and H-O-Sr Isotopes
by Ning Feng, Xiwei Qin, Yuliang Ma, Tong Pan, Jianzhou Chen, Chengwang Ding, Ziwen Jiang, Dong Zhang, Chenglin Liu, Qingkuan Li, Erfeng Ren and Fan Zhang
Water 2024, 16(22), 3286; https://doi.org/10.3390/w16223286 - 15 Nov 2024
Viewed by 1098
Abstract
The Balun Mahai Basin (BLMH), located in the northern Qaidam Basin (QB), is endowed with substantial brine resources; however, the genetic mechanisms and potential of these brine resources remain inadequately understood. This study investigated the intercrystalline brine (inter-brine) in BLMH, performing a comprehensive [...] Read more.
The Balun Mahai Basin (BLMH), located in the northern Qaidam Basin (QB), is endowed with substantial brine resources; however, the genetic mechanisms and potential of these brine resources remain inadequately understood. This study investigated the intercrystalline brine (inter-brine) in BLMH, performing a comprehensive geochemical analysis of elemental compositions and H-O-Sr isotopes. It evaluated the water source, solute origin, evolutionary process, and genetic model associated with this brine. Moreover, a mass balance equation based on the 87Sr/86Sr isotopic ratio was developed to quantitatively evaluate the contributions of Ca-Cl water and river water to the inter-brine in the study area. The results suggest that the hydrochemical type of inter-brine in the north part of BLMH is Cl-SO4-type and in the south part is Ca-Cl-type. The solutes in brine are mainly derived from the dissolution of minerals such as halite, sylvite, and gypsum. The hydrochemical process of brine is controlled by evaporation concentration, water–rock interaction, and ion exchange interaction. Hydrogen and oxygen isotopes suggest that the inter-brine originates from atmospheric precipitation or ice melt water and has experienced intense evaporation concentration and water–rock interaction. The strontium isotopes suggest that the inter-brine was affected by the recharge and mixing of Ca-Cl water and river water, which controlled the spatial distribution and formation of brine hydrochemical types. The analysis of ionic ratios suggest that the inter-brine is derived from salt dissolution and filtration, characterized by poor sealing and short sealing time in the salt-bearing formation. The differences in hydrochemical types and spatial distribution between the north and the south are fundamentally related to the replenishment and mixing of these two sources, which can be summarized as mixed origin model of “dissolution and filtration replenishment + deep replenishment” in BLMH. Full article
(This article belongs to the Special Issue Saline Water and Brine Geochemistry)
Show Figures

Figure 1

14 pages, 4407 KiB  
Article
Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China
by Zhi-lin Zheng, Bin Xie, Chun-mei Wu, Lei Zhou, Ke Zhang, Bin-chen Zhang and Ping-heng Yang
Water 2024, 16(19), 2859; https://doi.org/10.3390/w16192859 - 9 Oct 2024
Cited by 2 | Viewed by 1533
Abstract
Deeply situated brine is abundant in rare metal minerals, possessing significant economic worth. To the authors’ knowledge, brine present within the Cambrian carbonate-dominated succession in the northeastern region of Chongqing, Southwestern China, has not been previously reported. In this investigation, brine samples were [...] Read more.
Deeply situated brine is abundant in rare metal minerals, possessing significant economic worth. To the authors’ knowledge, brine present within the Cambrian carbonate-dominated succession in the northeastern region of Chongqing, Southwestern China, has not been previously reported. In this investigation, brine samples were collected from an abandoned brine well, designated as Tianyi Well, for the purpose of analyzing the hydrochemical characteristics and geochemical evolution of the brine. Halide concentrations, associated ions, and their ionic ratios within the sampled brine were analyzed. The brine originating from the deep Cambrian aquifer was characterized by high salinity levels, with an average TDS value of 242 ± 11 g/L, and was dominated by a Na-Cl facies. The studied brine underwent a moderate degree of seawater evaporation, occurring between the saturation levels of gypsum and halite, accompanied by some halite dissolution. Compared to modern seawater evaporation, the depletion of Mg2+, HCO3, and SO42− concentrations, along with the enrichment of Ca2+, Li+, K+, and Sr2+, is likely primarily attributed to water–rock interactions. These interactions include dolomitization, combination of halite dissolution, upwelling of lithium- and potassium-bearing groundwater, calcium sulfate precipitation, biological sulfate reduction (BSR), and the common ion effect within the brine system. This research offers valuable insights into the genesis of the brine within the Cambrian carbonate succession and provides theoretical backing for the development of brine resources in the future. Full article
Show Figures

Figure 1

14 pages, 6874 KiB  
Article
Core Flooding Experiments on the Impact of CO2-EOR on the Petrophysical Properties and Oil Recovery Parameters of Reservoir Sandstones in Kazakhstan
by Ainash Shabdirova, Ashirgul Kozhagulova, Yernazar Samenov, Rinat Merbayev, Ainur Niyazbayeva and Daryn Shabdirov
Geosciences 2024, 14(7), 185; https://doi.org/10.3390/geosciences14070185 - 11 Jul 2024
Cited by 4 | Viewed by 2776
Abstract
This study investigates the impact of CO2-enhanced oil recovery (CO2-EOR) on the petrophysical properties and oil recovery potential of sandstone reservoirs in the oilfields located in the east-southern Precaspian region of Kazakhstan. Despite the recognized potential of CO2 [...] Read more.
This study investigates the impact of CO2-enhanced oil recovery (CO2-EOR) on the petrophysical properties and oil recovery potential of sandstone reservoirs in the oilfields located in the east-southern Precaspian region of Kazakhstan. Despite the recognized potential of CO2-EOR for improving oil recovery and aiding carbon sequestration, there is limited understanding of how CO2-EOR specifically affects the petrophysical properties of sandstone reservoirs in this region. Laboratory experiments were conducted using two core samples from the selected oilfields to examine changes in porosity, permeability, and oil recovery coefficients. The results demonstrated that porosity changes ranged from a slight increase of 1.1% to a decrease of 1.5%, while permeability reduction was significant, with decreases ranging from 29% to 50% due to clay alteration and halite precipitation. The oil recovery coefficient after CO2 flooding was found to be between 0.49 and 0.54. These findings underscore the complex interactions between CO2 and reservoir rocks, emphasizing the need for tailored EOR strategies in different geological settings. Full article
Show Figures

Figure 1

22 pages, 9295 KiB  
Article
Geological and Hydrochemical Processes Driving Karst Development in Southeastern Riyadh, Central Saudi Arabia
by Mansour H. Al-Hashim, Alawi Al-Aidaros and Faisal K. Zaidi
Water 2024, 16(14), 1937; https://doi.org/10.3390/w16141937 - 9 Jul 2024
Cited by 4 | Viewed by 2292
Abstract
This study investigates the processes leading to karst development in the southeastern part of Riyadh city extending up to Al Kharj. Numerous solution features such as sinkholes, collapsed dolines, and solution caverns are common in the area. The role of water in the [...] Read more.
This study investigates the processes leading to karst development in the southeastern part of Riyadh city extending up to Al Kharj. Numerous solution features such as sinkholes, collapsed dolines, and solution caverns are common in the area. The role of water in the development of the karst features was investigated using an integrated geological and hydrochemical approach. Geological investigations included the petrographic analysis of rock samples collected from zones of intense karstification with special emphasis on mineral dissolution. The study showed that the Sulaiy Formation is commonly fractured, brecciated, foliated, and contains numerous cavities, vugs, and openings. These features have formed by mineral dissolution by circulating groundwater, which has removed anhydrite beds from the underlying Arab–Hith sequence. Karstification likely started from the tectonically weak zones when there was more groundwater recharge. Studies show that during the early to mid-Holocene period, the climate in the Arabian Peninsula was humid, promoting groundwater recharge and subsequent mineral dissolution, though the process of karstification must have started much earlier. Hydrochemical findings reveal that mineral dissolution (halite and calcium sulfate) is the main process affecting groundwater chemistry. The Piper plot revealed two main hydrochemical facies: the (Ca2+ + Mg2+)–(Cl+ SO42−) Type (Type A) and the (Na+ + K+)–(SO42− + Cl) Type (Type B). Most of the samples belong to Type B, typical of groundwater facies affected by dissolution of halite and anhydrite mineral. The absence of the (Ca2+ + Mg2+)–(CO32− + HCO3) type of groundwater facies indicates a lack of recent groundwater recharge and the removal of carbonate minerals from the system through precipitation, as evidenced by the saturation indices. Plots of the major ionic pairs (cations vs. anions) in groundwater indicate strong halite and gypsum/anhydrite dissolution. Of the three carbonate minerals, calcite has the highest average saturation index followed by aragonite and dolomite. This suggests significant past rock–water interaction leading to carbonate dissolution. Presently, any additional calcium or carbonate ions introduced into the water lead to calcite precipitation. The study indicates that the process of karst development may not be active today. Currently, groundwater chemistry is mainly influenced by rock–water interaction leading to gypsum/anhydrite dissolution, which has resulted in a high concentration of Na+, Ca2+, Cl and SO42− ions in groundwater. The dissolution of gypsum and halite from the Hith Formation weakens the structural integrity of the overlying Sulaiy Formation, creating large underground cavities. These cavities increase the risk of roof collapse, leading to cover-collapse sinkholes as the roof becomes too thin to support the weight above. Full article
Show Figures

Figure 1

10 pages, 533 KiB  
Communication
Thermodynamics of Halite Scaling in Superhot Geothermal Systems
by Lodin Ellingsen and Tore Haug-Warberg
Energies 2024, 17(12), 2812; https://doi.org/10.3390/en17122812 - 7 Jun 2024
Viewed by 946
Abstract
Over the past decades, considerable research has been conducted on extracting energy from superhot geothermal reservoirs, where temperatures are higher than at the critical point of water. A major challenge when operating wells under such conditions is managing scaling in an effective manner. [...] Read more.
Over the past decades, considerable research has been conducted on extracting energy from superhot geothermal reservoirs, where temperatures are higher than at the critical point of water. A major challenge when operating wells under such conditions is managing scaling in an effective manner. In this study, the thermodynamics of the precipitation and scaling of crystalline NaCl (halite) under superhot conditions is explored using the H2ONaCl system as a proxy. Phase diagrams in pressure–enthalpy and pressure–entropy coordinates are used to illustrate how scaling occurs in idealized processes, such as the isenthalpic expansion of geothermal fluid to the wellhead or the isentropic power generation of a steam turbine. Particular emphasis is placed on explaining the non-trivial graphical composition of these phase diagrams in an accessible manner. A wellhead sample and an estimate of the downhole conditions are used as points of reference in the discussion of scaling. All thermodynamic properties, including the solubility of NaCl in water vapor, are calculated using a newly developed equation of state by the same authors as in this article. Full article
(This article belongs to the Special Issue The Status and Development Trend of Geothermal Resources)
Show Figures

Figure 1

Back to TopTop