Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = hair cell regeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 382
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 509
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

16 pages, 1093 KiB  
Article
Topical Application of Bio-Pulsed Avian MSC-Derived Extracellular Vesicles Enhances Hair Regrowth and Skin Rejuvenation: Evidence from Clinical Evaluation and miRNA Profiling
by Ju-Sheng Shieh, Yu-Tang Chin, Tsu-Te Yeh, Jiong Jiong Guo, Fung-Wei Chang, Hui-Rong Cheng, Hung-Han Hsu, Wei-Lun Huang, Han-Hsiang Huang, Ya-Yu Hsieh, Chien-Ping Chiang and Shih-Ching Wang
Curr. Issues Mol. Biol. 2025, 47(7), 539; https://doi.org/10.3390/cimb47070539 - 11 Jul 2025
Viewed by 533
Abstract
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have emerged as promising therapeutic agents in regenerative dermatology. This study evaluated the safety and efficacy of Bio-Pulsed avian mesenchymal stem cell-derived sEVs (AMSC-sEVs), topically applied for hair follicle stimulation and skin rejuvenation. Two [...] Read more.
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have emerged as promising therapeutic agents in regenerative dermatology. This study evaluated the safety and efficacy of Bio-Pulsed avian mesenchymal stem cell-derived sEVs (AMSC-sEVs), topically applied for hair follicle stimulation and skin rejuvenation. Two prospective, single-arm clinical trials were conducted: one involving 30 participants using a hair ampoule over 60 days, and the other involving 30 participants applying a facial essence for 28 days. Objective measurements demonstrated significant improvements in the anagen/telogen hair ratio, reduced shedding, increased collagen density, and reduced wrinkle depth and pigmentation. Small RNA sequencing and qPCR profiling confirmed that Bio-Pulsed AMSC-sEVs were enriched with regenerative microRNAs, such as miR-21-5p and miR-199a-5p, associated with anti-inflammatory and anti-aging effects. No adverse events were reported. These findings suggest that Bio-Pulsed AMSC-sEVs may offer a safe, non-invasive, and cell-free approach to enhance skin and hair regeneration in human subjects. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

18 pages, 5892 KiB  
Article
CXCL12 Drives Reversible Fibroimmune Remodeling in Androgenetic Alopecia Revealed by Single-Cell RNA Sequencing
by Seungchan An, Mei Zheng, In Guk Park, Leegu Song, Jino Kim, Minsoo Noh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(14), 6568; https://doi.org/10.3390/ijms26146568 - 8 Jul 2025
Viewed by 643
Abstract
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) [...] Read more.
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) have been suggested as androgen-responsive stromal cells and a potential source of CXCL12, a chemokine implicated in fibroimmune pathology, but their precise role in AGA has not been fully established. In this study, we performed single-cell transcriptomic profiling of a testosterone-induced mouse model of AGA, with or without treatment of CXCL12-neutralizing antibody, to elucidate the pathological role of CXCL12 in mediating stromal-immune interactions. Our analysis suggested that DFs are the primary androgen-responsive population driving CXCL12 expression. Autocrine CXCL12-ACKR3 signaling in DFs activated TGF-β pathways and promoted fibrotic extracellular matrix deposition. In parallel, paracrine CXCL12-CXCR4 signaling reprogrammed Sox2+Twist1+ dermal papilla cells (DPCs) and promoted the accumulation of pro-fibrotic Trem2+ macrophages, contributing to impaired hair follicle regeneration. Notably, CXCL12 blockade attenuated these stromal and immune alterations, restored the regenerative capacity of DPCs, reduced pro-fibrotic macrophage infiltration, and promoted hair regrowth. Together, these findings identify CXCL12 as a central mediator of androgen-induced fibroimmune remodeling and highlight its potential as a therapeutic target in AGA. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

18 pages, 2575 KiB  
Article
Progenitor Cell Dynamics in Androgenetic Alopecia: Insights from Spatially Resolved Transcriptomics
by Sasin Charoensuksira, Piyaporn Surinlert, Aungkana Krajarng, Thararat Nualsanit, Witchuda Payuhakrit, Pimchanok Panpinyaporn, Wilunplus Khumsri, Wilai Thanasarnaksorn, Atchima Suwanchinda, Suradej Hongeng and Saranyoo Ponnikorn
Int. J. Mol. Sci. 2025, 26(12), 5792; https://doi.org/10.3390/ijms26125792 - 17 Jun 2025
Viewed by 652
Abstract
Androgenetic alopecia (AGA) is marked by the progressive miniaturization of hair follicles (HFs) and hair thinning, driven by a decline in the progenitor cells critical for hair regeneration. Despite this, the mechanisms responsible for progenitor cell depletion remain largely unclear. To investigate transcriptional [...] Read more.
Androgenetic alopecia (AGA) is marked by the progressive miniaturization of hair follicles (HFs) and hair thinning, driven by a decline in the progenitor cells critical for hair regeneration. Despite this, the mechanisms responsible for progenitor cell depletion remain largely unclear. To investigate transcriptional alterations in the progenitor cell regions of AGA patients while maintaining the spatial tissue context, we employed the GeoMX Digital Spatial Profiling (DSP) platform, which enables a precise comparison with healthy controls. Our analysis revealed the significant upregulation of genes associated with extracellular matrix (ECM) organization and the epithelial–mesenchymal transition (EMT), including FN1, TWIST1, and TGFB2 in the progenitor cell region of the HFs. Correspondingly, protein expression data confirmed increased levels of the protein products of these genes in the affected areas, underscoring their roles in the disease’s progression. These molecular changes suggest an environment conducive to the EMT, potentially contributing to the loss of progenitor cells and indicating a fibrogenic shift within the HF microenvironment. Additionally, our study highlights the influence of peri-infundibular immune cell infiltration on these molecular changes, suggesting that immune-mediated microinflammation may contribute to the fibrogenic environment and progenitor cell loss in the AGA. These findings demonstrate the utility of spatial transcriptomics in identifying potential therapeutic targets and advancing our understanding of AGA’s molecular mechanisms, offering avenues for developing targeted treatment strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 6048 KiB  
Article
(7E)-7,8-Dehydroheliobuphthalmin from Platycladus orientalis L.: Isolation, Characterization, and Hair Growth Promotion
by Zikai Lin, Yan Sun, Chengzhao Li, Xiaowei Zhou, Yuting Guo, Zhenhua Wang and Gang Li
Int. J. Mol. Sci. 2025, 26(11), 5189; https://doi.org/10.3390/ijms26115189 - 28 May 2025
Viewed by 557
Abstract
Androgenetic alopecia (AGA) is a prevalent form of non-scarring hair loss, affecting approximately 32.13% of the population. Seborrheic alopecia is the most frequently observed among its various types, contributing to over 25% of hair loss cases in men. Identifying effective natural compounds or [...] Read more.
Androgenetic alopecia (AGA) is a prevalent form of non-scarring hair loss, affecting approximately 32.13% of the population. Seborrheic alopecia is the most frequently observed among its various types, contributing to over 25% of hair loss cases in men. Identifying effective natural compounds or therapeutic agents that stimulate hair growth remains a key research focus. Platycladus orientalis L., known for its medicinal properties, shows potential in promoting hair darkening and regeneration, although its mechanisms remain unclear. In this study, Fr2 of Platycladus orientalis L. was found to significantly enhance hair growth in mice. Similarly, (7E)-7,8-Dehydroheliobuphthalmin (DHHB) was successfully isolated and purified for the first time through a combination of medium-pressure liquid chromatography and two-dimensional high-performance liquid chromatography. In an alopecia areata (AGA) model using dermal papilla cells (DPCs), DHHB was found to significantly promote cell proliferation and differentiation by down-regulating the expression of androgen receptor (AR) proteins, and activating the Wnt/β-catenin signaling pathway, as compared with the dihydrotestosterone-induced model group. These results indicate that DHHB is a major bioactive compound in Platycladus orientalis L. and represents a promising candidate for promoting hair growth. Full article
Show Figures

Figure 1

27 pages, 2549 KiB  
Article
Rat Hair Follicle Stem Cell-Derived Exosomes: Isolation, Characterization and Comparative Analysis of Their In Vitro Wound Healing Potential
by Patrícia Sousa, Bruna Lopes, Ana Catarina Sousa, Alícia de Sousa Moreira, Alexandra Rêma, Rui Alvites, Stefano Geuna, Nuno Alves and Ana Colette Maurício
Int. J. Mol. Sci. 2025, 26(11), 5081; https://doi.org/10.3390/ijms26115081 - 25 May 2025
Viewed by 950
Abstract
Stem cell-derived secretome and exosomes present a promising cell-free strategy for tissue repair and wound healing. This study aimed to isolate and characterize, for the first time, exosomes derived from rat hair follicle stem cells (rHFSCs) and to evaluate their wound-healing potential alongside [...] Read more.
Stem cell-derived secretome and exosomes present a promising cell-free strategy for tissue repair and wound healing. This study aimed to isolate and characterize, for the first time, exosomes derived from rat hair follicle stem cells (rHFSCs) and to evaluate their wound-healing potential alongside rHFSC secretome. Exosomes were isolated via ultracentrifugation and characterized using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), biomarker profiling and protein quantification. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) confirmed their spherical morphology, diameter and elemental composition. Protein quantification showed higher protein content in the secretome than in exosomes. RT-PCR and biomarker profiling highlighted the therapeutic relevance of the exosomal cargo compared to parent rHFSCs. Functional analysis of 30 wound-healing biomolecules validated their pro-regenerative potential. Cytocompatibility was confirmed via the PrestoBlue™ viability assay, while scratch assays demonstrated significant wound closure in the treated groups, both with and without mitomycin C. These findings highlight the potential of rHFSC-derived exosomes and secretome as innovative, cell-free therapeutic agents for cutaneous regeneration. This study advances our understanding of their role in wound healing and underscores their broader applicability in regenerative medicine. Full article
Show Figures

Figure 1

19 pages, 4096 KiB  
Article
Repairing Qinling Giant Panda Skin Wounds Using Adipose Mesenchymal Stem Cell-Derived Extracellular Vesicles
by Suhua Gong, Hongyu Niu, Yanni Jia, Mengjie Liu, Xiaoyu Ren, Danhui Zhang, Jiena Shen, Chuangxue Yang, Yinghu Lei, Pengpeng Zhao and Pengfei Lin
Animals 2025, 15(9), 1270; https://doi.org/10.3390/ani15091270 - 29 Apr 2025
Viewed by 506
Abstract
The Qinling giant panda has a high susceptibility to skin damage, which affects its survival. Although their healing efficacy in panda injuries remains unexplored, extracellular vesicles from adipose-derived mesenchymal stem cells (ADMSC-EVs) have shown promise in regenerative medicine. In this study, ADMSC-EVs were [...] Read more.
The Qinling giant panda has a high susceptibility to skin damage, which affects its survival. Although their healing efficacy in panda injuries remains unexplored, extracellular vesicles from adipose-derived mesenchymal stem cells (ADMSC-EVs) have shown promise in regenerative medicine. In this study, ADMSC-EVs were successfully obtained from Qinling giant pandas using ultracentrifugation, and proteomic techniques were used to analyze their composition and function. Primary skin fibroblasts from Qinling giant pandas were isolated and cultured to explore the effects of ADMSC-EVs on cell proliferation and migration. Additionally, a mouse model of skin injury was used to assess their wound healing effects. The ADMSC-EVs contained various substances, particularly proteins, with fifty unique proteins involved in transport, catabolism, and signal transduction identified. The application of ADMSC-EVs in a mouse model accelerated wound healing and promoted the regeneration of the epidermal and dermal layers. It facilitated the repair of skin appendages, including hair follicles and sebaceous glands. Additionally, ADMSC-EVs enhanced collagen deposition, stimulated angiogenesis, and reduced inflammation. Our findings confirm that ADMSC-EVs significantly improve skin healing, thus supporting the theoretical framework for the clinical use of giant panda extracellular vesicles and underscoring their potential for preserving the genetic resources of the Qinling giant panda. Full article
Show Figures

Figure 1

20 pages, 7045 KiB  
Article
Iris germanica L. Rhizome-Derived Exosomes Ameliorated Dihydrotestosterone-Damaged Human Follicle Dermal Papilla Cells Through the Activation of Wnt/β-Catenin Pathway
by Mujun Kim, Jung Woo, Jinsick Kim, Minah Choi, Hee Jung Shin, Youngseok Kim, Junoh Kim and Dong Wook Shin
Int. J. Mol. Sci. 2025, 26(9), 4070; https://doi.org/10.3390/ijms26094070 - 25 Apr 2025
Viewed by 835
Abstract
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated [...] Read more.
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated the therapeutic potential of exosomes derived from the rhizomes of Iris germanica L. (Iris-exosomes) in HFDPCs damaged by dihydrotestosterone (DHT). Iris-exosomes significantly reduced reactive oxygen species (ROS) levels, restoring mitochondrial membrane potential and ATP production, thereby mitigating oxidative stress and improving mitochondrial function. These effects occurred alongside enhanced cellular processes critical for hair follicle regeneration, including increased cell migration, alkaline phosphatase (ALP) activity, and three-dimensional (3D) spheroid formation, which replicates the follicle-like microenvironment and promotes inductive potential. Furthermore, Iris-exosomes stimulated the Wnt/β-catenin signaling pathway by enhancing glycogen synthase kinase-3β (GSK-3β), AKT, and extracellular signal-regulated kinase (ERK), leading to β-catenin stabilization and nuclear translocation, thereby supporting the expression of genes essential for hair growth. Taken together, these findings suggest that Iris-exosomes can be promising ingredients for alleviating hair loss. Full article
(This article belongs to the Special Issue Molecular Insights into Hair Regeneration)
Show Figures

Graphical abstract

19 pages, 6098 KiB  
Article
Exogenous Alpha-Ketoglutaric Acid Alleviates the Rabbit Dermal Papilla Cell Oxidative Damage Caused by Hydrogen Peroxide Through the ERK/Nrf2 Signaling Pathway
by Xiaosong Wang, Shu Li, Jiali Chen, Lei Liu and Fuchang Li
Antioxidants 2025, 14(4), 455; https://doi.org/10.3390/antiox14040455 - 11 Apr 2025
Cited by 1 | Viewed by 810
Abstract
As an endogenous metabolite, α-ketoglutarate (AKG) exhibits potent antioxidant properties, yet its molecular mechanisms remain unclear. Dermal Papilla Cells (DPCs), functioning as the regulatory hub of hair follicle morphogenesis, serve as a pivotal model system for deciphering follicular functionality and regeneration mechanisms through [...] Read more.
As an endogenous metabolite, α-ketoglutarate (AKG) exhibits potent antioxidant properties, yet its molecular mechanisms remain unclear. Dermal Papilla Cells (DPCs), functioning as the regulatory hub of hair follicle morphogenesis, serve as a pivotal model system for deciphering follicular functionality and regeneration mechanisms through their orchestration of signaling networks. Using a hydrogen peroxide (H2O2)-induced oxidative stress model in DPCs, we investigated AKG’s protective effects. AKG attenuated H2O2-triggered reactive oxygen species (ROS) overproduction, restored mitochondrial membrane potential, and suppressed apoptosis-related protein dysregulation. It enhanced cellular stress resistance by increasing the Bcl-2/Bax ratio, boosting antioxidant levels, and inhibiting inflammation. Mechanistically, H2O2 activated the Nrf2 pathway, while AKG amplified Nrf2 nuclear translocation and expression. Crucially, ERK inhibition abrogated AKG-mediated Nrf2 regulation, intensifying ROS accumulation and cell death. These results identify the ERK/Nrf2 axis as central to AKG’s antioxidative cytoprotection. This study advances AKG’s therapeutic potential and deepens insights into its multifunctional roles. Full article
(This article belongs to the Special Issue Antioxidant Effects of Natural Compounds on Cell Metabolism)
Show Figures

Figure 1

19 pages, 437 KiB  
Review
Recent Advances in Drug Development for Hair Loss
by Jino Kim, Seung-Yong Song and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(8), 3461; https://doi.org/10.3390/ijms26083461 - 8 Apr 2025
Viewed by 11120
Abstract
Hair loss disorders pose a substantial global health burden, affecting millions of individuals and significantly impacting quality of life. Despite the widespread use of approved therapeutics like minoxidil and finasteride, their clinical efficacy remains limited. These challenges underscore the pressing need for more [...] Read more.
Hair loss disorders pose a substantial global health burden, affecting millions of individuals and significantly impacting quality of life. Despite the widespread use of approved therapeutics like minoxidil and finasteride, their clinical efficacy remains limited. These challenges underscore the pressing need for more targeted and effective therapeutic solutions. This review examines the latest innovations in hair loss drug discovery, with a focus on small-molecule inhibitors, biologics, and stem cell-based therapies. By integrating insights from molecular mechanisms and leveraging advancements in research methods, the development of next-generation therapeutics holds the potential to transform the clinical management of hair loss disorders. Future drug development for hair loss disorders should prioritize antibody therapy and cell-based treatments, as these approaches offer unprecedented opportunities to address the limitations of existing options. Antibody therapies enable precise targeting of key molecular pathways involved in hair follicle regulation, providing highly specific and effective interventions. Similarly, cell-based therapies, including stem cell transplantation and dermal papilla cell regeneration, directly address the regenerative capacity of hair follicles, offering transformative potential for hair restoration. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 7917 KiB  
Article
Tekt3 Safeguards Proper Functions and Morphology of Neuromast Hair Bundles
by Dongmei Su, Sirun Lu, Ling Zheng and Dong Liu
Int. J. Mol. Sci. 2025, 26(7), 3115; https://doi.org/10.3390/ijms26073115 - 28 Mar 2025
Viewed by 502
Abstract
The inner ear and/or lateral line are responsible for hearing and balance of vertebrate. The otic sensory hair cells (HCs) employ cilium organelles, namely stereocilia and/or kinocilia, to mediate mechanical stimuli to electrical signal transition. Tektins (Tekts) are known as the cilium microtubule [...] Read more.
The inner ear and/or lateral line are responsible for hearing and balance of vertebrate. The otic sensory hair cells (HCs) employ cilium organelles, namely stereocilia and/or kinocilia, to mediate mechanical stimuli to electrical signal transition. Tektins (Tekts) are known as the cilium microtubule stabilizer and inner-space filler, and four Tekt(1-4)-encoding genes are identified in zebrafish HCs, but the subcellular location of Tekts in HCs remains unknown. In the present study, we first found that tekt3 is expressed in the inner ear and lateral line neuromast. Antibody staining revealed that Tekt3 is present in neuromast and utricular HCs. It is absent in the saccule, the authentic hearing end-organ of zebrafish and the crista of semi-circular canals. Furthermore, Tekt3 were enriched at the apical side of neuromast and utricular HCs, mainly in the cytosol. Similar subcellular distribution of Tekt3 was also evident in the outer HCs of mature mouse cochlea, which are not directly linked to the hearing sense. However, only neuromast HCs exerted morphological defect of kinocilia in tekt3 mutant. The disrupted or distorted HC kinocilia of mutant neuromast ultimately resulted in slower vital dye intake, delayed HC regeneration after neomycin treatment, and reduced startle response to vibration stimulation. All functional defects of tekt3 mutant were largely rescued by wild-type tekt3 mRNA. Our study thus suggests that zebrafish Tekt3 maintains the integrity and function of neuromast kinocilia to against surrounding and persistent low-frequency noises, perhaps via the intracellular distribution of Tekt3. Nevertheless, TEKT3/Tekt3 could be used to clarify HC sub-types in both zebrafish and mice, to highlight the non-hearing HCs. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 3888 KiB  
Article
Wound-Induced Regeneration in Feather Follicles: A Stepwise Strategy to Regenerate Stem Cells
by Ting-Xin Jiang, Ping Wu, Ang Li, Randall B. Widelitz and Cheng-Ming Chuong
J. Dev. Biol. 2025, 13(2), 10; https://doi.org/10.3390/jdb13020010 - 27 Mar 2025
Viewed by 2166
Abstract
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic [...] Read more.
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic stem cell niche. During normal feather cycling, growth-phase proximal follicle collar bulge stem cells adopt a ring configuration. At the resting and initiation phases, these stem cells descend to the dermal papilla to form papillary ectoderm and ascend to the proximal follicle in a new growth phase. Plucking resting-phase feathers accelerates papillary ectoderm cell activation. Plucking growth-phase feathers depletes collar bulge stem cells; however, a blastema reforms the collar bulge stem cells, expressing KRT15, LGR6, Sox9, integrin-α6, and tenascin C. Removing the follicle base and dermal papilla prevents feather regeneration. Yet, transplanting an exogenous dermal papilla to the follicle base can induce re-epithelialization from the lower follicle sheath, followed by feather regeneration. Thus, there is a stepwise regenerative strategy using stem cells located in the collar bulge, papillary ectoderm, and de-differentiated lower follicle sheath to generate new feathers after different levels of injuries. This adaptable regenerative mechanism is based on the hierarchy of stem cell regenerative capacity and underscores the remarkable resilience of feather follicle regenerative abilities. Full article
(This article belongs to the Special Issue Skin Wound Healing and Regeneration in Vertebrates)
Show Figures

Figure 1

38 pages, 1377 KiB  
Review
Advances in Molecular Function and Recombinant Expression of Human Collagen
by Wenli Sun, Mohamad Hesam Shahrajabian, Kun Ma and Shubin Wang
Pharmaceuticals 2025, 18(3), 430; https://doi.org/10.3390/ph18030430 - 18 Mar 2025
Cited by 3 | Viewed by 2509
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical [...] Read more.
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications. Full article
Show Figures

Figure 1

32 pages, 24604 KiB  
Article
The Recovery of Epidermal Proliferation Pattern in Human Skin Xenograft
by Olga Cherkashina, Alexandra Tsitrina, Danila Abolin, Elena Morgun, Anastasiya Kosykh, Marat Sabirov, Ekaterina Vorotelyak and Ekaterina Kalabusheva
Cells 2025, 14(6), 448; https://doi.org/10.3390/cells14060448 - 17 Mar 2025
Cited by 1 | Viewed by 1008
Abstract
Abnormalities in epidermal keratinocyte proliferation are a characteristic feature of a range of dermatological conditions. These include hyperproliferative states in psoriasis and dermatitis as well as hypoproliferative states in chronic wounds. This emphasises the importance of investigating the proliferation kinetics under conditions of [...] Read more.
Abnormalities in epidermal keratinocyte proliferation are a characteristic feature of a range of dermatological conditions. These include hyperproliferative states in psoriasis and dermatitis as well as hypoproliferative states in chronic wounds. This emphasises the importance of investigating the proliferation kinetics under conditions of healthy skin and identifying the key regulators of epidermal homeostasis, maintenance, and recovery following wound healing. Animal models contribute to our understanding of human epidermal self-renewal. Human skin xenografting overcomes the ethical limitations of studying human skin during regeneration. The application of this approach has allowed for the identification of a single population of stem cells and both slowly and rapidly cycling progenitors within the epidermal basal layer and the mapping of their location in relation to rete ridges and hair follicles. Furthermore, we have traced the dynamics of the proliferation pattern reorganization that occurs during epidermal regeneration, underlining the role of YAP activity in epidermal relief formation. Full article
(This article belongs to the Collection Feature Papers in 'Cell Proliferation and Division')
Show Figures

Graphical abstract

Back to TopTop