Advances in Molecular Function and Recombinant Expression of Human Collagen
Abstract
:1. Introduction
2. Classification and Function of Human Collagen
3. Collagen I
4. Collagen II
5. Collagen III
6. Collagen V
7. Collagen IV
8. Collagen VI
9. Collagen VII
10. Collagen VIII
11. Collagen X
12. Collagen XI
13. Collagen IX
14. Collagen XII
15. Collagen XIII
16. Collagen XIV
17. Collagen XV
18. Collagen XVI
19. Collagen XVII
20. Collagen XVIII
21. Collagen XIX
22. Collagen XX
23. Collagen XXI
24. Collagen XXII
25. Collagen XXIII
26. Collagen XXV
27. Collagen XXVI
28. Collagen XXIV
29. Collagen XXVII
30. Collagen XXVIII
31. Collagen XXIX
32. The Main System of Recombinant Collagen Expression and Its Expression Research Status
33. Necessary Factors for the Formation of Collagen Structure: Proline Hydroxylation and Glycosylation
34. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galdyszynska, M.; Zwolinski, R.; Piera, L.; Szymanski, J.; Jaszewski, R.; Drobnik, J. Stiff substrates inhibit collagen accumulation via integrin α2β1, FAK, Src kinases in human atrial fibroblast and myofibroblast cultures derived from patients with aortal stenosis. Biomed. Pharmacother. 2023, 159, 114289. [Google Scholar] [CrossRef] [PubMed]
- Munisso, M.C.; Saito, S.; Tsuge, I.; Morimoto, N. Three-dimensional analysis of load-dependent changes in the orientation of dermal collagen fibers in human skin: A pilot study. J. Mechanic. Behav. Biomed. Mater. 2023, 138, 105585. [Google Scholar] [CrossRef] [PubMed]
- Gronlien, K.G.; Pedersen, M.E.; Ronning, S.B.; Solberg, N.T.; Tonnesen, H.H. Tuning of 2D cultured human fibroblast behavior using lumichrome photocrosslinked collagen hydrogels. Mat. Today Commun. 2022, 31, 103635. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum. Vaccin. Immunother. 2020, 17, 62–83. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat. Prod. Commun. 2020, 15, 1–20. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res. 2020, 2020, 1237–1247. [Google Scholar] [CrossRef]
- Silverman, A.A.; Olszewski, J.D.; Siadat, S.M.; Rubeti, J.W. Tension in the ranks: Cooperative cell contractions drive force-dependent collagen assembly in human fibroblast culture. Matter 2024, 7, 1533–1557. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The importance of traditional Chinese medicine in the intervention and treatment of HIV while considering its safety and efficacy. Curr. HIV Res. 2023, 21, 331–346. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Iranian traditional medicine (ITM) and natural remedies for treatment of the common cold and flu. Rev. Recent Clin. Trials. 2023, 19, 91–100. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023, 2, 290–308. [Google Scholar] [CrossRef]
- Patrawalla, N.Y.; Kajave, N.S.; Zlbanna, M.Z.; Kishore, V. Collagen and beyond: A comprehensive comparison of human ECM properties derived from various tissue sources for regenerative medicine applications. J. Funct. Biomater. 2023, 14, 363. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. Multidimensional uses of bitter melon (Momordica charantia L.) considering the important functions of its chemical components. Curr. Org. Synth. 2024, 21, 1–15. [Google Scholar] [CrossRef]
- Yao, L.; Blasi, J.; Shippy, T.; Brice, R. Transcriptomic analysis reveals the immune response of human microglia to a soy protein and collagen hybrid bioscaffold. Heliyon 2023, 9, e13352. [Google Scholar] [CrossRef] [PubMed]
- Mukae, S.; Ogura, Y.; Hara, Y. Characterization of the collagen network of human cheek skin using ultrasonic microscopy. Ultrasonics 2024, 139, 107299. [Google Scholar] [CrossRef]
- Carvalho, D.N.; Gelinsky, M.; Williams, D.S.; Mearns-Spragg, A.; Reis, R.L.; Silva, T.H. Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering. Int. J. Biol. Macromol. 2023, 241, 124510. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr. Pharm. Anal. 2023, 19, 267–281. [Google Scholar] [CrossRef]
- Akoa, D.M.; Helary, C.; Foda, A.; Chaussain, C.; Poliard, A.; Coradin, T. Silicon impacts collagen remodelling and mineralization by human dental pulp stem cells in 3D pulp-like matrices. Dent. Mater. 2024, 40, 1390–1399. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Gao, Y.; Xu, Z.; Yang, S.; Jin, M. Establishing a novel 3D printing bioinks system with recombinant human collagen. Int. J. Biol. Macromol. 2022, 211, 400–409. [Google Scholar] [CrossRef]
- Poomrattanangoon, S.; Pissuwan, D. Gold nanoparticles coated with collagen-I and their wound healing activity in human skin fibroblast cells. Heliyon 2024, 10, e33302. [Google Scholar] [CrossRef]
- Pu, S.-Y.; Huang, Y.-L.; Pu, C.-M.; Kang, Y.-N.; Hoang, K.D.; Chen, K.-H.; Chen, C. Effects of oral collagen for skin anti-aging: A systematic review and meta-analysis. Nutrients 2023, 15, 2080. [Google Scholar] [CrossRef]
- Ryabov, N.A.; Volova, L.T.; Alekseev, D.G.; Kovaleva, S.A.; Medvedeva, T.N.; Vlasov, M.Y. Mass spectrometry of collagen-containing allogeneic human bone tissue material. Polymers 2024, 16, 1895. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, H.; Wang, T.; Yang, T.; Yang, X.; Guo, K.; Hu, L.; Ming, J. Recombinant humanized collagen type III with high antitumor activity inhibits breast cancer cells autophagy, proliferation, and migration through DDR1. Int. J. Biol. Macrmol. 2023, 243, 125130. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Carob (Ceratonia siliqua L.), pharmacological and phytochemical activities of neglected legume of the Mediterranean basin, as functional food. Rev. Recent Clin. Trials. 2024, 19, 127–142. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research method. Mini-Rev. Med. Chem. 2024, 24, 453–477. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; Nahal, H. Theoretical and observed C/N ratios in human bone collagen. J. Archaeol. Sci. 2021, 131, 105396. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Characterization of intrinsically disordered proteins in healthy and diseased states by nuclear magnetic resonance. Rev. Recent Clin. Trials. 2024, 19, 176–188. [Google Scholar] [CrossRef]
- Rosu, S.A.; Aguilar, J.; Urbano, B.F.; Tarraga, W.A.; Ramella, N.A.; Longo, G.S.; Finarelli, G.S.; Donoso, S.A.S.; Tricerri, M.A. Interactions of variants of human apoliproprotein A-I with biopolymeric model matrices. Effect of collagen and heparin. Arch. Biochem. Biophys. 2023, 750, 109805. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Y.; Zheng, C.; Huo, Q.; Liu, X. Development of novel hyaluronic acid/human-like collagen bio-composite membranes: A facile surface modification-assembly approach. Int. J. Biol. Macromol. 2021, 193, 378–386. [Google Scholar] [CrossRef]
- Voziyan, P.; Uppuganti, S.; Leser, M.; Rose, K.L.; Nyman, J.S. Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA Adv. 2023, 3, 100079. [Google Scholar] [CrossRef]
- Synytsya, A.; Janstova, D.; Smidova, M.; Synytsya, A. Evaluation of IR and Raman spectroscopic markers of human collagens: Insides for indicating colorectal carcinogenesis. Spectrochim. Acta Part A. Mol. Biomol. Spectroscop. 2023, 296, 122664. [Google Scholar] [CrossRef] [PubMed]
- Pappelbaum, K.I.; Virgilio, N.; Epping, L.; Steen, B.V.D.; Jimenez, F.; Funk, W.; Prawitt, J.; Bertolini, M. Revealing novel insights on how oral supplementation with collagen peptides may prevent hair loss: Lessons from the human hair follicle organ culture. J. Funct. Foods. 2024, 116, 106124. [Google Scholar] [CrossRef]
- Prade, I.; Schropfer, M.; Seidel, C.; Krumbiegel, C.; Hille, T.; Sonntag, F.; Behrens, S.; Schmieder, F.; Voigt, B.; Meyer, M. Human endothelial cells from an endothelium in freestanding collagen hollow filaments fabricated by direct extrusion printing. Biomater. Biosyst. 2022, 8, 100067. [Google Scholar] [CrossRef]
- Xi, Y.; Deng, X.; Shu, Z.; Yang, C. Probing nanoscale structural response of collagen fibril in human Acilles tendon during loading using in situ SAXS. J. Mechanic. Behav. Biomed. Mater. 2024, 156, 106599. [Google Scholar] [CrossRef]
- Islam, M.M.I.; Saha, A.; Trisha, F.A.; Gonzalez-Andrades, M.; Patra, H.K.; Griffith, M.; Chodosh, J.; Rajaiya, J. An in vitro 3-dimensional collagen-based corneal construct with innervation using human corneal cell lines. Ophthamol. Sci. 2024, 4, 100544. [Google Scholar] [CrossRef]
- Qiao, H.; Shibaki, A.; Long, H.A.; Wang, G.; Li, Q.; Nishie, W.; Abe, R.; Akiyama, M.; Shimizu, H.; McMillan, J.R. Collagen XVII participates in keratinocyte adhesion to collagen IV, and in p38MAPK-dependent migration and cell signaling. J. Investig. Dermatol. 2009, 129, 2288–2295. [Google Scholar] [CrossRef]
- Wang, D.; Chang, F.; Guo, Z.; Chen, M.; Feng, T.; Zhang, M.; Cui, X.; Jian, Y.; Li, J.; Li, Y.; et al. The influence of type I and III collagen on the proliferation, migration and differentiation of myoblasts. Tissue Cell 2024, 90, 102506. [Google Scholar] [CrossRef]
- Wu, B.; Cheng, K.; Liu, M.; Liu, J.; Jiang, D.; Ma, S.; Yan, B.; Lu, Y. Construction of hyperelastic model of human periodontal ligament based on collagen fibers distribution. J. Mechanic. Behav. Biomed. Mater. 2022, 135, 105484. [Google Scholar] [CrossRef]
- Vignesh, V.; Kavalappa, Y.P.; Ponesakki, G.; Madhan, B.; Shanmugam, G. Lutein, a carotenoid found in numerous plants and the human eye, demonstrates the capacity to bundle collagen fibrils. Int. J. Biol. Macromol. 2024, 274, 133389. [Google Scholar] [CrossRef]
- Ben, C.; Liu, X.; Shen, T.; Song, Y.; Li, H.; Pan, B.; Hou, W.; Liu, T.; Luo, P.; Ma, B.; et al. A recombinant human collagen hydrogel for the treatment of partial-thickness burns: A prospective, self-controlled clinical study. Burns 2021, 47, 634–642. [Google Scholar] [CrossRef]
- Matsuda, A.; Hasegawa, T.; Ikeda, Y.; Wada, A.; Ikeda, S. Histological and molecular restoration of type VII collagen in recessive dystrophic epidemolysis bullosa mouse skin by topical injection of keratinocyte-like cells differentiated from human adipose-derived mesenchymal stromal cells. J. Dermatol. Sci. 2024, 115, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Heidrova, A.; Hermanova, M.; Bednarik, Z.; Joukal, M.; Bursa, J. Structural parameters defining distribution of collagen fiber directions in human carotid arteries. J. Mechanic. Behav. Biomed. Mater. 2024, 153, 106494. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hu, Z.; Chen, J.; Zhang, Z.; Liu, Q.; Li, J.; Yang, J.; Ma, Z.; Zhao, J.; Hu, J.; et al. Injectable TG-linked recombinant human collagen hydrogel loaded with bFGF for rat cranial defect repair. Int. J. Biol. Macromol. 2023, 236, 123864. [Google Scholar] [CrossRef]
- Wang, H.; Geng, X.; AI, F.; Yu, Z.; Zhang, Y.; Zhang, B.; Lv, C.; Gao, R.; Yue, B.; Dou, W. Nuciferine alleviates collagen-induced arthritic in rats by inhibiting the proliferation and invasion of human arthritis-derived fibroblast-like synoviocytes and rectifying Th17/Treg imbalance. Chin. J. Nat. Med. 2024, 22, 341–355. [Google Scholar] [CrossRef]
- Lin, S.-N.; Musso, A.; Wang, J.; Mukherjee, P.K.; West, G.A.; Mao, R.; Lyu, R.; Li, J.; Zhao, S.; Elias, M.; et al. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells- A novel mechanism for maintenance of intestinal inflammation. Matrix Biol. 2022, 113, 1–21. [Google Scholar] [CrossRef]
- Tang, X.; Liu, L.; Liu, S.; Song, S.; Li, H. MicroRNA-29a inhibits collagen expression and induces apoptosis in human fetal scleral fibroblasts by targeting the Hsp47/Smad3 signaling pathway. Exp. Eye Res. 2022, 225, 109275. [Google Scholar] [CrossRef]
- Kaviani, M.; Keshtkar, S.; Sarvestani, F.S.; Azarpira, N.; Yaghobi, R.; Aghdaei, M.H.; Geramizadeh, B.; Esfandiari, E.; Shamsaeefar, A.; Nikeghbalian, S.; et al. The potential of the incorporated collagen microspheres in alginate hydrogel as an engineered three-dimensional microenvironment to attenuate apoptosis in human pancreatic islets. Acta Histochem. 2021, 123, 151775. [Google Scholar] [CrossRef]
- Zamani, M.; Zahedian, A.; Tanideh, N.; Khodabandeh, Z.; Koohpeyman, F.; Khazraei, H.; Zare, S.; Zarei, M.; Hosseini, S.V. Comparison effect of collagen/P3HB composite scaffold and human amniotic membrane loaded with mesenchymal stem cells on colon anastomosis healing in male rats. Biochem. Biophys. Res. Commun. 2023, 682, 281–292. [Google Scholar] [CrossRef]
- Sun, M.; Connizzo, B.K.; Adams, S.M.; Freedman, B.R.; Wenstrup, R.J.; Soslowsky, L.J.; Birk, D.E. Targeted deletion of collagen V in tendos and ligaments results in a classic Ehlers-Danlos syndrome joint phenotype. Am. J. Pathol. 2015, 185, 1436–1447. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. The insight and survey on medicinal properties and nutritive components of shallot. J. Med. Plants. Res. 2019, 13, 452–457. [Google Scholar] [CrossRef]
- Mohabeer, A.L.; Kroetsch, J.T.; McFadden, M.; Khosraviani, N.; Broekelmann, T.J.; Hou, G.; Zhang, H.; Zhou, Y.-Q.; Wang, M.; Gramolini, A.O.; et al. Deletion of type VIII collagen reduces blood pressure, increases carotid artery functional distensibility and promotes elastin deposition. Matrix Biol. Plus. 2021, 12, 100085. [Google Scholar] [CrossRef] [PubMed]
- Mohabeer, A.L.; Hou, G.; Zhang, H.; Kroetsch, J.; Bolz, S.S.; Heximer, S.; Assoian, R.; Bendeck, M. The role of type VIII collagen in arterial vessel stiffening. Atheroscler. Suppl. 2018, 32, 98. [Google Scholar] [CrossRef]
- Stavusis, J.; Micule, I.; Wright, N.T.; Straub, V.; Topf, A.; Oliveira, L.P.-D.; Dominguez-Gonzalez, C.; Inashkina, I.; Kidere, D.; Chrestian, N.; et al. Collagen VI-related limb-girdle syndrome caused by frequent mutation in COL6A3 gene with conflicting reports of pathogencicity. Neuromuscul. Disorder. 2020, 30, 483–491. [Google Scholar] [CrossRef]
- Ehnis, T.; Dieterich, W.; Bauer, M.; Lampe, B.V.; Schuppan, D. A chondroitin/dermatan sulfate form of CD44 is a receptor for collagen XIV (Undulin). Exp. Cell Res. 1996, 229, 388–397. [Google Scholar] [CrossRef]
- Wong, H.H.; Seet, S.H.; Bascom, C.C.; Isfort, R.J.; Bard, F.A. Tonic repression of collagen I by the bradykinin receptor 2 in skin fibroblasts. Matrix Biol. 2023, 118, 110–128. [Google Scholar] [CrossRef]
- Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Development of a novel method for analyzing collagen O-glycoylations by hydrazide chemistry. Mol. Cell. Proteom. 2012, 11, M111.010397. [Google Scholar] [CrossRef]
- Voziyan, P.; Bown, K.L.; Uppuganti, S.; Leser, M.; Rose, K.L.; Nyman, J.S. A map of glycation and glycoxidation sites in collagen I of human cortical bone: Effects of sex and type 2 diabetes. Bone 2024, 187, 117209. [Google Scholar] [CrossRef]
- Wu, Z.; Korntner, S.H.; Mullen, A.M.; Zeugolis, D.I. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. Biomater. Biosys. 2021, 4, 100030. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, H.-N.; Lin, T.; Xia, Z.-J. Silencing of cysteine and serine rich nuclear protein 1 inhibits apoptosis, senescence and collagen degradation in human-derived vaginal fibroblasts in response to oxidative stress or DNA damage. Exp. Cell Res. 2024, 440, 114139. [Google Scholar] [CrossRef]
- Horiba, S.; Kawamoto, M.; Tobita, R.; Kami, R.; Ogura, Y.; Hosoi, J. M1/M2 macrophage skewing is related to reduction in types I, V, and VI collagens with aging in sun-exposed human skin. JID Innovat. 2023, 3, 100222. [Google Scholar] [CrossRef]
- Hou, G.; Mulholland, D.; Gronska, M.A.; Bendeck, M.P. Type VIII collagen stimulates smooth muscle cell migration and matrix metalloproteinase synthesis after arterial injury. Am. J. Pathol. 2000, 156, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ye, H.; Wang, X.; Sun, J.; Tu, K.; Lv, J. Ursolic acid inhibits human dermal fibroblasts hyperproliferation, migration, and collagen deposition induced by TGF-β via regulation the Smad2/3 pathway. Gene 2023, 867, 147367. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, Q.; He, J.; Li, L.; Xie, X.; Liang, H. Has-miR-142-3p reduces collagen I in human scleral fibroblasts by targeting TGF-β1 in high myopia. Exp. Eye Res. 2022, 219, 109023. [Google Scholar] [CrossRef]
- Marin, S.; Godet, I.; Nidadavolu, L.S.; Tian, J.; Dickinson, L.E.; Walston, J.D.; Gilkes, D.M.; Abadir, P.M. Valsartan and sacubitril combination treatment enhances collagen production in older adult human skin cells. Exp. Gerontol. 2022, 165, 111835. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 eta. Appl. Sci. 2021, 11, 7889. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini-Rev. Med. Chem. 2021, 21, 724–730. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Ahmed, M.; Verma, A.K.; Malik, M.A.; Alzahrani, K.A.; Patel, R. Probing the impact of alkyl chain length of imidazolium ionic liquids on the conformational stability of collagen type-I from skin of Lutjanus erythropterus. J. Mol. Struct. 2023, 1290, 135855. [Google Scholar] [CrossRef]
- Khalilimofrad, Z.; Baharifar, H.; Asefnejad, A.; Khoshnevisan, K. Collagen type I cross-linked to gelatin/chitosan electrospun mats: Application for skin tissue engineering. Mater. Today Commun. 2023, 35, 105889. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, Y.; Zhao, H.; Wang, J.; Liu, Y.; Bai, J.; Hu, C.; Shang, Z. Lactate-driven type I collagen deposition facilitates cancer stem cell-like phenotype of head and neck squamous cell carcinoma. iScience 2024, 27, 109340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, T.; Han, Y.; Xue, D.; Jiang, S.; Li, Q. Improvement of structural, rheological, and physicochemical properties of type I collagen by calcium lactate combined with ultrasound. Ultrason. Sonochem. 2023, 95, 106373. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ma, K.; Kang, Y.; Liu, W.; Liu, X.; Long, X.; Hayashi, T.; Hattori, S.; Mizuno, K.; Fujisaki, H.; et al. Type I collagen reduces lipid accumulation during adipogenesis of preadipocytes 3T3-L1 via the YAP-mTOR-autophagy axis. Biochim. Biophys. Acta. Mol. Cell Biol. Lipid. 2022, 1867, 159181. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.K.; Udupa, P.; Shrikondawar, A.N.; Bhavani, G.S.L.; Shah, H.; Ranjan, A.; Girisha, K.M. Mutant MESD links cellular stress to type I collagen aggregation in osteogenesis imperfecta type XX. Matrix Biol. 2023, 115, 81–106. [Google Scholar] [CrossRef]
- Preston, S.E.J.; Bartish, M.; Richard, V.R.; Aghigh, A.; Goncalves, C.; Smith-Voudouris, J.; Huang, F.; Thebault, P.; Cleret-Buhot, A.; Lapointe, R.; et al. Phosphorylation of eIF4E in the stroma drives the production and spatial organization of collagen type I in the mammary gland. Matrix Biol. 2022, 111, 264–288. [Google Scholar] [CrossRef]
- Noohi, P.; Mahdavi, S.S.; Abdekhodaie, M.J.; Nekoofar, M.H.; Baradaran-Raffi, A. Photoreactive hydrogels based on type I collagen extracted from different sources as scaffolds for tissue engineering applications: A comparative study. Materialia 2023, 27, 101651. [Google Scholar] [CrossRef]
- Ito, A.; Yamamoto, M.; Ikeda, K.; Sato, M.; Kawabe, Y.; Kamihira, M. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. J. Biosci. Bioengin. 2015, 119, 596–603. [Google Scholar] [CrossRef]
- Wu, B.; Meng, C.; Wang, H.; Jia, C.; Zhao, Y. Changes of proteoglycan and collagen II of the adjacent intervertebral disc in the cervical instability models. Biomed. Pharmacother. 2016, 84, 754–758. [Google Scholar] [CrossRef]
- Chung, H.J.; Jensen, D.A.; Gawron, K.; Steplewski, A.; Fertala, A. R992C (p.R1192C) substitution in collagen II alters the structure of mutant molecules and induces the unfolded protein response. J. Mol. Biol. 2009, 390, 306–318. [Google Scholar] [CrossRef]
- Li, W.; Kobayashi, T.; Meng, D.; Miyamoto, B.; Tsutsumi, N.; Ura, K.; Takagi, Y. Free radical scavenging activity of type II collagen peptides and chondroitin sulfate oligosaccharides from by-products of mottled skate processing. Food Biosci. 2021, 41, 100991. [Google Scholar] [CrossRef]
- Meng, D.; Tanaka, H.; Kobayashi, T.; Hatayama, H.; Zhang, X.; Ura, K.; Yunoki, S.; Takagi, Y. The effect of alkaline pretreatment on the biochemical characteristics and fibril-forming abilities of types I and II collagen extracted from bester sturgeon by-products. Int. J. Biol. Macromol. 2019, 131, 572–580. [Google Scholar] [CrossRef]
- Iqbal, M.; Waqas, M.; Mo, Q.; Shahzad, M.; Zeng, Z.; Qamar, H.; Mehmood, K.; Kulyar, M.F.A.; Nawaz, S.; Li, J. Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions. Ecotoxicol. Environ. Saf. 2023, 268, 115689. [Google Scholar] [CrossRef] [PubMed]
- Caradu, C.; Brunet, C.; Spampinato, B.; Stenson, K.; Ducasse, E.; Puges, M.; Berard, X. Contemporary results with the biosynthetic glutaraldehyde denatured ovine collagen graft (Omniflow II) in lower extremity arterial revascularization in a septic context. Annal. Vasc. Surg. 2022, 85, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Tiku, M.L.; Madhan, B. Preserving the longevity of long-lived type II collagen and its implication for cartilage therapeutics. Age. Res. Rev. 2016, 28, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Yuan, Y.; Chen, L.; Chen, M.; Chiou, B.-S.; Liu, F.; Zhong, F. Effects of gastrointestinal digestion on the cell bioavailability of sodium alginate coated liposomes containing DPP-IV inhibition active collagen peptides. Food Biosci. 2023, 56, 103426. [Google Scholar] [CrossRef]
- Zhu, M.; Metzen, F.; Hopkinson, M.; Betz, J.; Heilig, J.; Sodhi, J.; Imhof, T.; Niehoff, A.; Birk, D.E.; Izu, Y.; et al. Ablation of collagen XII disturbs joing extracellular matrix organization and causes patellar subluxation. iScience 2023, 26, 107225. [Google Scholar] [CrossRef]
- Hua, W.-B.; Wu, X.-H.; Zhang, Y.-K.; Song, Y.; Tu, J.; Kang, L.; Zhao, K.-C.; Li, S.; Wang, K.; Liu, W.; et al. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration. Biochimie 2017, 139, 74–80. [Google Scholar] [CrossRef]
- Viljanen, J.; Lonnblom, E.; Ge, C.; Yang, J.; Cheng, L.; Aldi, S.; Cai, W.; Kastbom, A.; Sjowall, C.; Gjertsson, I.; et al. Synthesis of an array of triple-helical peptides from type II collagen for multiplex analysis of autoantibodies in rheumatoid arthritis. ACS Chem. Biol. 2020, 15, 2605–2615. [Google Scholar] [CrossRef]
- Ugurlu, E.; Duysak, O.; Kardas, G.; Sayin, S.; Saygili, E.I.; Dogan, S. Alginate modified collagen for rapid, durable and effective biosorption of Pb(II) ions from an aqueous solution. Regional Stud. Marine Sci. 2023, 65, 103091. [Google Scholar] [CrossRef]
- Vazquez-Portalatin, N.; Kilmer, C.E.; Panitch, A.; Liu, J.C. Characterization of collagen type I and II blended hydrogels for articular cartilage tissue engineering. Biomacromolecules 2016, 17, 3145–3152. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, K.; Piao, X.; Song, Y.; Wang, L.; Zhou, R.; Gao, P.; Khong, H.Y. Collagens for surimi gel fortification: Type-dependent effects and the difference between type I and type II. Food Chem. 2023, 407, 135157. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jin, M.; Sun, K.; Zhang, Z.; Wu, Z.; Shi, J.; Liu, P.; Yao, H.; Wang, D.-A. Type II collagen scaffolds repair critical-sized osteochondral defects under induced conditions of osteoarthritis in rat knee joints via inhibiting TGF-B-Smad1/5/8 signaling pathway. Bioact. Mater. 2024, 35, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Nham, G.T.H.; Zhang, X.; Asou, Y.; Shinomura, T. Expression of type II collagen and aggrecan genes is regulated through distinct epigenetic modifications of their multiple enhancer elements. Gene 2019, 704, 134–141. [Google Scholar] [CrossRef] [PubMed]
- An, B.; Abbonante, V.; Yigit, S.; Balduini, A.; Kaplan, D.L.; Brodsky, B. Definition of the native and denatured type II collagen binding site for fibronectin using a recombinant collagen system. J. Biol. Chem. 2014, 289, 4941–4951. [Google Scholar] [CrossRef]
- Chang, D.P.; Guilak, F.; Jay, G.D.; Zauscher, S. Interaction of lubricin with type II collagen surfaces: Adsorption, friction, and normal forces. J. Biomech. 2014, 47, 659–666. [Google Scholar] [CrossRef]
- Yao, L.; Flynn, N. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J. 2018, 18, 1070–1080. [Google Scholar] [CrossRef]
- Santiago, S.; Enwereji, N.; Jiang, C.; Durrani, K.; Chaudhry, S.; Lu, J. Ocular and eyelid involvement in collagen vascular diseases. Part II. Dermatomyositis, scleroderma, and sarcoidosis. Clin. Dermatol. 2024, 42, 9–16. [Google Scholar] [CrossRef]
- Arita, M.; Fertala, J.; Hou, C.; Steplewski, A.; Fertala, A. Mechanisms of aberrant organization of growth plates in conditional transgenic mouse model of spondyloepiphyseal dysplasia associated with the R992C substitution in collagen II. Am. J. Pathol. 2015, 185, 214–229. [Google Scholar] [CrossRef]
- Greene, C.A.; Green, C.R.; Dickinson, M.E.; Johnson, V.; Sherwin, T. Keratocytes are induced to produce collagen type II: A new strategy for in vivo corneal matrix regeneration. Exp. Cell Res. 2016, 347, 241–249. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J.; Hu, Y. Dimethyl fumarate protection against collagen II degradation. Biochem. Biophys. Res. Commun. 2014, 454, 257–261. [Google Scholar] [CrossRef]
- Wang, W.; Ji, Y.; Yang, W.; Zhang, C.; Angwa, L.; Jin, B.; Liu, J.; Lv, M.; Ma, W.; Yang, J.; et al. Inhibitors of apoptosis proteins (IAPs) are associated with T-2 toxin-induced decreased collagen II in mouse chondrocytes in vitro. Toxicon 2020, 176, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Fertala, A. Three decades of research on recombinant collagens: Reinventing the wheel or developing new biomedical products? Bioengineering 2020, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- Groen, S.S.; Sinkeviciute, D.; Bay-Jensen, A.-C.; Thudium, C.S.; Karsdal, M.A.; Thomsen, S.F.; Lindemann, S.; Wekmann, D.; Bliar, J.; Staunstrup, L.M.; et al. A serological type II collagen neoepitope biomarker reflects cartilage breakdown in patients with osteoarthritis. Osteoarthr. Cartil. Open 2021, 3, 100207. [Google Scholar] [CrossRef]
- Xu, R.; Zheng, L.; Su, G.; Luo, D.; Lai, C.; Zhao, M. Protein solubility, secondary structure and microstructure changes in two types of undenatured type II collagen under different gastrointestinal digestion conditions. Food Chem. 2021, 343, 128555. [Google Scholar] [CrossRef]
- Fakatava, N.; Mitarai, H.; Yuda, A.; Haraguchi, A.; Wada, H.; Hasegawa, D.; Maeda, H.; Wada, N. Actin alpha 2, smooth muscle, a transforming growth factor-β1-induced factor, regulates collagen production in human periodontal ligament cells via Smad2/3 pathway. J. Dent. Sci. 2023, 18, 567–576. [Google Scholar] [CrossRef]
- Barber, L.A.; Abbott, C.; Nakhate, V.; Do, A.N.D.; Blissett, A.R.; Marini, J.C. Longitudinal growth curves for children with classical osteogenesis imperfecta (types III and IV) caused by structural pathogenic variants in type I collagen. Genet. Med. 2019, 21, 1233–1239. [Google Scholar] [CrossRef]
- Guiliani, A.M.; Frederiksen, P.; Skovgaard, E.; Lonsmann, I.; Karsdal, M.; Bendtsen, F.; Pedersen, J.S.; Trebicka, J.; Leeming, D. THU-243 macrophage driven fibrosis resolution assessed by a cross-linked and MMP degraded type III collagen fragment (CTX-III) declines with age and is prognostic for survival in chronic liver disease. J. Hepatol. 2024, 80, S579–S580. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Lu, L.; He, Q.; Xi, B.; Yu, H.; Luo, R.; Wang, Y.; Zhang, X. A tailored extracellular matrix (ECM)-Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen. Biomaterials 2021, 276, 121055. [Google Scholar] [CrossRef]
- Dong, S.; Wang, H.; Ji, H.; Hu, Y.; Zhao, S.; Yan, B.; Wang, G.; Lin, Z.; Zhu, W.; Lu, J.; et al. Development and validation of a collagen signature to predict the prognosis of patients with stage II/III colorectal cancer. iScience 2023, 26, 106746. [Google Scholar] [CrossRef]
- Jia, Y.; Han, Y.; Zhang, Y.; Li, L.; Zhang, B.; Yan, X. Multifunctional type III recombinant human collagen incorporated sodium alginate hydrogel with sustained release of extra cellular vehicles for wound healing multimodal therapy in diabetic mice. Regenerative Ther. 2024, 27, 329–341. [Google Scholar] [CrossRef]
- Hsueh, C.-M.; Tseng, T.-Y.; Lin, H.-M.; Lee, S.-L.; Huang, Y.-D.; Dong, C.-Y. Optical discrimination of type I and type III collagen through second order susceptibility imaging. Optik 2018, 169, 264–268. [Google Scholar] [CrossRef]
- Li, H.; You, S.; Yang, X.; Liu, S.; Hu, L. Injectable recombinant human collagen-derived material with high cell adhesion activity limits adverse remodelling and improves pelvic floor function in pelvic floor dysfunction rats. Biomater. Adv. 2022, 134, 112715. [Google Scholar] [CrossRef]
- Fang, J.; Ma, Z.; Liu, D.; Wang, Z.; Cheng, S.; Zheng, S.; Wu, H.; Xia, P.; Chen, X.; Yang, R.; et al. Co-expression of recombinant human collagen α1(III) chain with viral prolyl 4-hydroxylase in Pichia pastoris GS115. Protein Express. Purif. 2023, 201, 106184. [Google Scholar] [CrossRef]
- Yang, Y.; Ritchie, A.C.; Everitt, N.M. Using type III recombinant human collagen to construct a series of highly porous scaffolds for tissue regeneration. Colloids Surf. Bioninter. 2021, 208, 112139. [Google Scholar] [CrossRef]
- Uchida, Y.; Shimoyama, E.; Hiruta, N.; Tabata, T. Detection of early stage of human coronary atherosclerosis by angioscopic imaging of collagen subtypes. J. Cardiol. 2021, 77, 452–456. [Google Scholar] [CrossRef]
- Sofii, I.; Dipoyono, W.; Prima, H.; Sari, Y.M.; Fauzi, A.R.; Gunadi. The effect of different suturing materials for abdominal fascia wound closure on the collagen I/III expression ration in rats. Annal Med. Surg. 2020, 60, 106–109. [Google Scholar] [CrossRef]
- Fu, D.; Xiang, Y.; Xiang, Z.; Zhang, J.; Yang, F.; Yang, L.; Zhao, J.; Wang, Y. Optimizing small-diameter vascular grafts: Harnessing the power of recombinant human type III collagen (rhCOLIII) for enhanced antiplatelet and endothelialization performance. Chem. Eng. J. 2024, 496, 153806. [Google Scholar] [CrossRef]
- Genovese, F.; Goncalves, I.; Nielsen, S.H.; Karsdal, M.A.; Edsfeldt, A.; Nilsson, J.; Shore, A.C.; Natali, A.; Khan, F.; Shami, A. Plasma levels of PRO-C3, a type III collagen synthesis marker, are associated with arterial stiffness and increased risk of cardiovascular death. Atherosclerosis 2024, 388, 117420. [Google Scholar] [CrossRef]
- Pires, V.; Pecher, J.; Nascimento, S.D.; Maurice, P.; Bonnefoy, A.; Saddoniville, A.; Amant, C.; Fauvel-Lafeve, F.; Legrand, C.; Rochette, J.; et al. Type III collagen mimetic peptides designed with anti- or pro-aggregant activities on human platelets. Eur. J. Med. Chem. 2007, 42, 694–701. [Google Scholar] [CrossRef]
- Ge, Y.; Guo, G.; Liu, K.; Yang, F.; Yang, L.; Wang, Y.; Zhang, X. A strategy of functional crosslinking acellular matrix in blood-contacting implantable devices with recombinant humanized collagen type III (rhCOLIII). Compos. Part B Eng. 2022, 234, 109667. [Google Scholar] [CrossRef]
- Boudako, S.P.; Engel, J. Structure formation in the C terminus of type III collagen guides disulfide cross-linking. J. Mol. Biol. 2004, 335, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Shuai, Q.; Liang, Y.; Xu, X.; Halbiyat, Z.; Wang, X.; Cheng, J.; Liu, J.; Huang, T.; Peng, Z.; Wang, L.; et al. Sodium alginate hydrogel integrated with type III collagen and mesenchymal stem cell to promote endometrium regeneration and fertility restoration. Int. J. Biol. Macromol. 2023, 253, 127314. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Chen, W.; Hu, J.-Q.; Wang, Y.-D.; Wang, S.-D.; Zeng, Y.-Q.; Wang, H. miRNA-29a targets COL3A1 to regulate the level of type III collagen in pig. Gene 2016, 592, 140–147. [Google Scholar] [CrossRef]
- Adams, D.H.; Shou, Q.; Wohlmuth, H.; Cowin, A.J. Native Australian plant extracts differentially induce collagen I and collagen III in vitro and could be important targets for the development of new wound healing therapies. Fitoterapia 2016, 109, 45–51. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Tromp, G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019, 707, 151–171. [Google Scholar] [CrossRef]
- Makuszewska, M.; Bonda, T.; Cieslinska, M.; Bialuk, I.; Winnicka, M.M.; Niemczyk, K. Expression of collagen type III in healing tympanic membrane. Int. J. Pediatr. Otorhinolaryngol. 2020, 136, 110196. [Google Scholar] [CrossRef]
- Weerakoon, A.T.; Condon, N.; Cox, T.R.; Sexton, C.; Cooper, C.; Meyers, I.A.; Thomson, D.; Ford, P.J.; Roy, S.; Symons, A.L. Dynamic dentin: A quantitative microscopic assessment of age and spatial changes to matrix architecture, peritubular dentin, and collagens types I and III. J. Struct. Biol. 2022, 214, 107899. [Google Scholar] [CrossRef]
- Wang, C.; Brisson, B.K.; Terajima, M.; Li, Q.; Hoxha, K.H.; Han, B.; Goldberg, A.M.; Liu, X.S.; Marcolongo, M.S.; Enomoto-Iwamoto, M.; et al. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biol. 2020, 85–86, 47–67. [Google Scholar] [CrossRef]
- Liu, T.; Qiu, C.; Lu, H.; Li, H.; Zhu, S.; Ma, L. A novel recombinant human collagen hydrogel as minced split-thickness skin graft overlay to promote full-thickness skin defect reconstruction. Burns 2023, 49, 169–181. [Google Scholar] [CrossRef]
- Pinheiro, L.C.L.; Pupim, A.C.E.; Pereira, E.R.; Ahrens, T.M.; Mendonca, A.C.; Francelino, A.L.; Araujo, E.J.D.A.; Guembarovski, A.F.M.L.; Fuganti, P.E.; Vanzela, A.L.L.; et al. Deposition of collagen III and alterations in basement membrane integrity as candidate prognostic markers in prostate cancer. Exp. Cell Res. 2024, 439, 114077. [Google Scholar] [CrossRef]
- Mou, S.; Wang, Q.; Shi, B.; Gu, L.; Ni, Z. Hepatocyte growth factor suppresses transforming growth factor-Beta-1 and type III collagen in human primary renal fibroblasts. Kaohsiung J. Med. Sci. 2009, 25, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Nurmenniemi, S.; Koivula, M.-K.; Nyberg, P.; Tervahartiala, T.; Sorsa, T.; Mattila, P.S.; Salo, T.; Risteli, J. Type I and III collagen degradation products in serum predict patient survival in head and neck squamous cell carcinoma. Oral Oncol. 2012, 48, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Jaleel, G.A.A.; Saleh, D.O.; Al-Awdan, S.W.; Hassan, A.; Asaad, G.F. Impact of type III collagen on monosodium iodoacetate-induced osteoarthritis in rats. Heliyon 2020, 6, e04083. [Google Scholar] [CrossRef] [PubMed]
- Abbonante, V.; Gruppi, C.; Battiston, M.; Zulian, A.; Buduo, C.A.D.; Chrisam, M.; Sereni, L.; Laurent, P.-A.; Semplicini, C.; Lombardi, E.; et al. Ablation of collagen VI leads to the release of platelets with altered function. Blood Adv. 2021, 5, 5150–5163. [Google Scholar] [CrossRef]
- Jaikumar, D.; Baskaran, B.; Vaidyanathan, V.G. Effect of chromium (III) gallate complex on stabilization of collagen. Int. J. Biol. Macromol. 2017, 96, 429–435. [Google Scholar] [CrossRef]
- Sato, K.; Yomogida, K.; Wada, T.; Yorihuzi, T.; Nishimune, Y.; Hosokawa, N.; Nagata, K. Type XXVI collagen, a new member of the collagen family, is specifically expressed in the testis and ovary. J. Biol. Chem. 2002, 277, 37678–37684. [Google Scholar] [CrossRef]
- Balancin, M.L.; Teodoro, W.R.; Baldavira, C.M.; Prieto, T.G.; Farhat, C.; Velosa, A.P.; Souza, P.D.C.; Yaegashi, L.B.; AbSaber, A.M.; Takagaki, T.Y.; et al. Different histological patterns of type-V collagen levels confer a matrices-privileged tissue microenvironment for invasion in malignant tumors with prognostic value. Pathol. Res. Pract. 2020, 216, 153277. [Google Scholar] [CrossRef]
- Paladin, L.; Tosatto, S.C.E.; Minervini, G. Structure in silico dissection of the collagen V interactome to identify genotype-phenotype correlations in classic Ehlers-Danlos Syndrome (EDS). FEBS Lett. 2015, 589, 3871–3878. [Google Scholar] [CrossRef]
- Martins, V.; Silva, A.L.D.; Teodoro, W.R.; Velosa, A.P.P.; Balancin, M.L.; Cruz, F.F.; Silva, P.L.; Rocco, P.R.M.; Capelozzi, V.L. In situ evidence of collagen V and signaling pathway of found inflammatory zone 1 (FIZZ1) is associated with silicotic granuloma in lung mice. Pathol. Res. Pract. 2020, 216, 153094. [Google Scholar] [CrossRef]
- Sun, M.; Luo, E.Y.; Adams, S.M.; Adams, T.; Ye, Y.; Shetye, S.S.; Soslowsky, L.J.; Birk, D.E. Collagen XI regulates the acquisition of collagen fibril structure, organization and functional properties in tendon. Matirx Biol. 2020, 94, 77–94. [Google Scholar] [CrossRef]
- Kahai, S.; Vary, C.P.H.; Gao, Y.; Seth, A. Collagen, type V, alpha1 (COL5A1) is regulated by TGF-beta in osteoblasts. Matrix Biol. 2004, 23, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.N.; Williams, J.M.; Brandt, K.D. Effect of polyanions on fibrillogenesis by type XI collagen. Collagen Relat. Res. 1987, 7, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; McCourt, J.; Ma, F.; Ren, S.; Li, S.; Kim, T.-H.; Kurmangaliyev, Y.Z.; Nasiri, T.; Ahadian, S.; Nguyen, T.; et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell 2020, 182, 545–562. [Google Scholar] [CrossRef] [PubMed]
- Kostin, S.; Richter, M.; Ganceva, N.; Sasko, B.; Giannakopoulos, T.; Ritter, O.; Szalay, Z.; Pagonas, N. Atrial fibrillation in human patients is associated with increased collagen type V and TGFbeta1. IJC Heart Vasc. 2024, 50, 101327. [Google Scholar] [CrossRef]
- Moradi-Ameli, M.; Chassey, B.D.; Farjanel, J.; Rest, M.V.D. Different splice variants of cartilage α1(X1) collagen chain undergo uniform amino-terminal processing. Matrix Biol. 1998, 17, 393–396. [Google Scholar] [CrossRef]
- Berendsen, A.D.; Bronckers, A.L.J.J.; Smit, T.H.; Walboomers, X.F.; Everts, V. Collagen type V enhances matrix contraction by human periodontal ligament fibroblasts seeded in three-dimensional collagen gels. Matrix Biol. 2006, 25, 515–522. [Google Scholar] [CrossRef]
- Bi, H.; Ye, K.; Jin, S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 2020, 233, 119673. [Google Scholar] [CrossRef]
- Zaffiri, L.; Shah, R.J.; Stearman, R.S.; Rothhaar, K.; Emtiazjoo, A.M.; Yoshimoto, M.; Fisher, A.J.; Mickler, E.A.; Gartenhaus, M.D.; Cohort, L.T.O.G.; et al. Collagen type-V is a danger signal associated with primary graft dysfunction in lung transplantation. Transpl. Immunol. 2019, 56, 101224. [Google Scholar] [CrossRef]
- Breuls, R.G.M.; Klumpers, D.D.; Everts, V.; Smit, T.H. Collagen type V modulates fibroblast behavior dependent on substrate stiffness. Biochem. Biophys. Res. Commun. 2009, 380, 425–429. [Google Scholar] [CrossRef]
- Braun, R.K.; Martin, A.; Shah, S.; Iwashima, M.; Medina, M.; Byrne, K.; Sethupathi, P.; Wigfield, C.H.; Brand, D.D.; Love, R.B. Inhibition of bleomycin-induced pulmonary fibrosis through pre-treatment with collagen type V. J. Heart Lung Transplant. 2010, 29, 873–880. [Google Scholar] [CrossRef]
- McLeod, O.; Duner, P.; Samnegard, A.; Tornvall, P.; Nilsson, J.; Hamsten, A.; Bengtsson, E. Autoantibodies against basement membrane collagen type IV are associated with myocardial infarction. IJC Heart Vasc. 2015, 6, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Bordini, M.; Mazzoni, M.; Nunzio, M.D.; Zappaterra, M.; Sirri, F.; Meluzzi, A.; Petracci, M.; Soglia, F. Time course evaluation of collagen type IV in Pectoralis major muscles of broiler chickens selected for different growth-rates. Poultry Sci. 2024, 103, 103179. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.; Kalluri, R. Type XVIII collagen induced signaling via α1β1 integrin in hepatocytes is essential for surviving liver injury. Gastroenterology 2011, 140, S-905. [Google Scholar] [CrossRef]
- Anazo, C.; Lopez-Jimenez, A.J.; Rafi, M.; Vega-Montoto, L.; Zhang, M.-Z.; Hudson, B.; Vanacore, R.M. Lysyl oxidase-like-2 cross-links collagen IV of glomerular basement membrane. J. Biol. Chem. 2016, 291, 25999–26012. [Google Scholar] [CrossRef]
- Komarowska, M.; Szymanska, B.; Oldak, L.; Sankiewicz, A.; Matuszczak, E.; Gorodkiewicz, E.; Debek, W.; Milewski, R.; Hermanowicz, A. Plasma level of laminin 5 and collagen IV in cryptorchidism. Adv. Med. Sci. 2020, 56, 176–181. [Google Scholar] [CrossRef]
- Khan, T.; Muise, E.S.; Iyengar, P.; Wang, Z.V.; Chandalia, M.; Abate, N.; Zhang, B.B.; Bonaldo, P.; Chua, S.; Scherer, P.E. Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI. Mol. Cell. Biol. 2009, 29, 1575–1591. [Google Scholar] [CrossRef]
- Chen, C.-H.; Yeh, M.-L.; Geyer, M.; Wang, G.-J.; Huang, M.-H.; Heggeness, M.H.; Hook, M.; Luo, Z.-P. Interactions between collagen IX and biglycan measured by atomic force microscopy. Biochem. Biophys. Res. Commun. 2006, 339, 204–208. [Google Scholar] [CrossRef]
- Wegener, H.; Leineweber, S.; Seeger, K. The vWFA2 domain of type VII collagen is responsible for collagen binding. Biochem. Biophys. Res. Commun. 2013, 430, 449–453. [Google Scholar] [CrossRef]
- Lopes, J.; Adiguzel, E.; Gu, S.; Liu, S.-L.; Hou, G.; Heximer, S.; Assoian, R.K.; Bendeck, M.P. Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. Am. J. Pathol. 2013, 182, 2241–2253. [Google Scholar] [CrossRef]
- Lorenzo-Gomez, R.; Miranda-Castro, R.; Toyos, J.R.D.I.; Alvarez, N.D.I.S.; Castanon, M.J.L. Aptamers targeting a tumor-associated extracellular matrix component: The human mature collagen Xiα1. Anal. Chim. Acta. 2022, 1189, 339206. [Google Scholar] [CrossRef]
- Snellman, A.; Tu, H.; Vaisanen, T.; Kvist, A.-P.; Huhtala, P.; Pihlajaniemi, T. A short sequence in the N-terminal region is required for the trimerization of type XIII collagen and is conserved in other collagenous transmembrane proteins. EMBO J. 2000, 19, 5051–5059. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.; James, C.; Underhill, T.M.; Beier, F.; CIHR Group in Skeletal Development and Remodeling. Identification of the putative collagen X gene from the pufferfish Fugu rubripes. Gene 2004, 342, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Oxford, J.T.; Doege, K.J.; Morris, N.P. Alternative exon splicing withing the amino-terminal nontriple-helical domain the rat pro-a1(XI) collagen chain generates multiple forms of the mRNA transcript which exhibit tissue-dependent variation. J. Biol. Chem. 1995, 270, 9478–9485. [Google Scholar] [CrossRef] [PubMed]
- Zhidkova, N.I.; Justice, S.K.; Mayne, R. Alternative mRNA processing occurs in the variable region of the pro-α1(XI) and pro-α2(XI) collagen chains. J. Biol. Chem. 1995, 270, 9486–9493. [Google Scholar] [CrossRef]
- Fichard, A.; Kleman, J.-P.; Ruggiero, F. Another loot at collagen V and XI molecules. Matrix Biol. 1995, 14, 515–531. [Google Scholar] [CrossRef]
- Rodriguez, R.R.; Seegmiller, R.E.; Stark, M.R.; Bridgewater, L.C. A type XI collagen mutation leads to increased degradation of type II collagen in articular cartilage. Osteoarthr. Cartil. 2004, 12, 314–320. [Google Scholar] [CrossRef]
- Douglas, S.P.; Jenkins, J.M.; Kadler, K.E. Collagen IX: Evidence for a structural association between NC4 domains in cartilage and a novel cleavage site in the α1(IX) chain. Matrix Biol. 1998, 16, 497–505. [Google Scholar] [CrossRef]
- Moroi, M.; Induruwa, I.; Farndale, R.W.; Jung, S.M. Factor XIII is a new widely identified binding partner for platelet collagen receptor GPVI-dimer- An interaction that may modulate fibrin crosslinking. Res. Pract. Thromb. Haemost. 2022, 6, e12697. [Google Scholar] [CrossRef]
- Ichimura, S.; Wu, J.-J.; Eyre, D.R. Two-dimensional peptide mapping of cross-linked type IX collagen in human cartilage. Arch. Biochem. Biophys. 2000, 378, 33–39. [Google Scholar] [CrossRef]
- Ehnis, T.; Dieterich, W.; Bauer, M.; Kresse, H.; Schuppan, D. Localization of a binding site for the proteoglycan decorin on collagen XIV (Undulin). J. Biol. Chem. 1997, 272, 20414–20419. [Google Scholar] [CrossRef]
- Chai, C.-J.; Sun, Y.; Chi, R.-F.; Yang, H.-Y.; Yang, B.; Li, B. Astragaloside IV alleviates LPS-induced cardiomyocyte hypertrophy and collagen expression associated with CCL2-mediated activation of NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 2024, 693, 149367. [Google Scholar] [CrossRef] [PubMed]
- Soder, S.; Poschl, E. The NC1 domain of human collagen IV is necessary to initiate triple helix formation. Biochem. Biophys. Res. Commun. 2004, 325, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Boudko, S.P.; Engel, J.; Okuyama, K.; Mizuno, K.; Bachinger, H.P.; Schumacher, M.A. Crystal structure of human type III collagen Gly991-Gly1032 cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries. J. Biol. Chem. 2008, 283, 32580–32589. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Alnakhli, T.H.; Gauld, J.W. Computational insights into the formation and nature of the sulfilimine bond in collagen IV. RSC Adv. 2022, 12, 21092–21102. [Google Scholar] [CrossRef]
- Wilson, R.; Freddi, S.; Chan, D.; Cheah, K.S.E.; Bateman, J.F. Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J. Biol. Chem. 2005, 280, 15544–15552. [Google Scholar] [CrossRef]
- Wu, J.-J.; Weis, M.A.; Kim, L.S.; Carter, B.G.; Eyre, D.R. Differences in chain usage and cross-linking specificities of cartilage type V/XI collagen isoforms with age and tissue. J. Biol. Chem. 2009, 284, 5539–5545. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, J.; Wang, R.; Zhu, H.; Han, C.; Ji, X.; Pan, Y. The sex determination gene doublesex regulates expression and secretion of the basement membrane protein collagen IV. J. Genet. Genom. 2022, 49, 636–644. [Google Scholar] [CrossRef]
- Ito, K.; Shinomura, T. Development and application of a new silent reporter system to quantitate he activity of enhancer elements in the type II collagen gene. Gene 2016, 585, 13–21. [Google Scholar] [CrossRef]
- Ferreira, L.R.; Norris, K.; Smith, T.; Hebert, C.; Sauk, J.J. Hsp47 and other ER-resident molecular chaperones form heterocomplexes with each other and with collagen type IV chains. Connect. Tissue Res. 1996, 33, 265–273. [Google Scholar] [CrossRef]
- Su, C.; Su, B.; Tang, L.; Zhao, Y.; Zhou, C. Effects of collagen IV on cisplatin-induced apoptosis of non-small cell lung cancer cells. Cancer Investig. 2007, 25, 542–549. [Google Scholar] [CrossRef]
- Iida, M.; Yamamoto, M.; Ishiguro, Y.S.; Yamazaki, M.; Ueda, N.; Honjo, H.; Kamiya, K. Urinary type IV collagen is related to left ventricular diastolic function and brain natriuretic peptide in hypertensive patients with prediabetes. J. Diabetes Complicat. 2014, 28, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Osman, T.A.-H.; Sapkota, D.; Neppelberg, E.; Lybak, S.; Liavaag, P.G.; Johannessen, A.C.; Jacobsen, H.K.; Enger, P.O.; Costea, D.E.; et al. Rapid adherence to collagen IV enriches for tumor initiating cells in oral cancer. Eur. J. Cancer 2014, 50, 3262–3270. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.M.; Shelke, R.; Nystrom, A.; Laver, N.; Sampson, J.F.; Zhiyi, C.; Bhat, N.; Panjwani, N. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye. Exp. Eye Res. 2018, 175, 133–141. [Google Scholar] [CrossRef]
- Pastor-Pareja, J.C.; Xu, T. Shaping cells and organs in Drosophila by opposing roles of fat body-secreted collagen IV and perlecan. Dev. Cell 2011, 21, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Iwashita, J.; Murata, J. Type IV collagen reduces mucin 5AC secretion in three-dimensional cultures human primary airway epithelial cells. Biochem. Biophys. Rep. 2019, 20, 100707. [Google Scholar] [CrossRef]
- Stefano, J.T.; Guedes, L.V.; Souza, A.A.A.D.; Vanni, D.S.; Alves, V.A.F.; Carrilho, F.J.; Largura, A.; Arrese, M.; Oliveira, C.P. Usefulness of collagen type IV in the detection of significant liver fibrosis in nonalcoholic fatty liver disease. Ann. Hepatol. 2021, 20, 100253. [Google Scholar] [CrossRef]
- Bai, X.; Dilworth, D.J.; Weng, Y.-C.; Gould, D.B. Developmental distribution of collagen IV isoforms and relevance to ocular diseases. Matrix Biol. 2009, 28, 194–201. [Google Scholar] [CrossRef]
- Harumiya, S.; Gibson, M.A.; Koshihara, Y. Antisense suppression of collagen VI synthesis results in reduced expression of collagen I in normal human osteoblast-like cells. Biosci. Biotechnol. Biochem. 2002, 66, 2743–2747. [Google Scholar] [CrossRef]
- Akagi, A.; Tajima, S.; Nagai, Y.; Ishibashi, A.; Yamaguchi, N. Expression of type XVI collagen in human skin fibroblasts: Enhanced expression in fibrotic skin diseases. J. Investig. Dermatol. 1999, 113, 246–250. [Google Scholar] [CrossRef]
- Grumati, P.; Coletto, L.; Schiavinato, A.; Castagnaro, S.; Bertaggia, E.; Sandri, M.; Bonaldo, P. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 2011, 7, 1415–1423. [Google Scholar] [CrossRef]
- Bolduc, V.; Sizov, K.; Brull, A.; Esposito, E.; Chen, G.S.; Uapinyoying, P.; Sarathy, A.; Johnson, K.R.; Bonnemann, C.G. Allele-specific CRISPR-Cas9 editing inactivates a single nucleotide variant associated with collagen VI muscular dystrophy. Mol. Ther. Nuc. Acids. 2024, 35, 102269. [Google Scholar] [CrossRef] [PubMed]
- Freire, J.; Dominguez-Hormaetxe, S.; Pereda, S.; Juan, A.D.; Vega, A.; Simon, L.; Gomez-Roman, J. Collagen, type XI, alpha 1: An accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol. Res. Pract. 2014, 210, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Moreno, T.; Cifra, A.; Litsa, N.L.; Melin, E.; Ahl, M.; Christiansen, S.H.; Gotzsche, C.R.; Cescon, M.; Bonaldo, P.; Loo, K.V.; et al. Collagen VI: Role in synaptic transmission and seizure-related excitability. Exp. Neurol. 2024, 380, 114911. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, H.C.; Guan, Y.; Liu, H.; Carey, A.E.; Brennen, W.N.; Lu, J.; Joshu, C.; Weeraratna, A.; Lotan, T.L.; Eisinger-Mathason, T.S.K.; et al. Collagen VI deposition mediates stromal T cell trapping through inhibition of T cell motility in the prostate tumor microenvironment. Matrix Biol. 2023, 121, 90–104. [Google Scholar] [CrossRef]
- Liu, Y.; Shimizu, H.; Hashimoto, T. Immunofluorscence studies using skin sections of recessive dystrophic epidermolysis bullosa patients indicated that the antigen of anti-p200 pemphigoid is not a fragment of type VII collagen. J. Dermatol. Sci. 2003, 32, 125–129. [Google Scholar] [CrossRef]
- Bornert, O.; Kocher, T.; Gretzmeier, C.; Liemberger, B.; Hainzl, S.; Koller, U.; Nystrom, A. Generation of rabbit polyclonal human and murine collagen VII monospecific antibodies: A useful tool for dystrophic epidermolysis bullosa therapy studies. Matrix Biol. Plus. 2019, 4, 100017. [Google Scholar] [CrossRef]
- Kruppa, D.; Peters, F.; Bornert, O.; Maler, M.D.; Martin, S.F.; Becker-Pauly, C.; Nystrom, A. Distinct contributions of meprins to skin regeneration after injury- Meprin α a physiological processor of pro-collagen VII. Matrix Biol. Plus 2021, 11, 100065. [Google Scholar] [CrossRef]
- Udupa, P.; Shrikondawar, A.N.; Nayak, S.S.; Shah, H.; Ranjan, A.; Girisha, K.M.; Bhavani, G.S.; Ghosh, D.K. Deep intronic mutation in CRTAP results in unstable isoforms of the protein to induce type I collagen aggregation in a lethal type of osteogenesis imperfecta type VII. Biochim. Biophys. Acta. Mol. Basis. Dis. 2023, 1869, 166741. [Google Scholar] [CrossRef]
- Uzawa, K.; Yeowell, H.N.; Yamamoto, K.; Mochida, Y.; Tanzawa, H.; Yamauchi, M. Lysine hydroxylation of collagen in a fibroblast cell culture system. Biochem. Biophys. Res. 2003, 305, 484–487. [Google Scholar] [CrossRef]
- Chen, M.; Keene, D.R.; Costa, F.K.; Tahk, S.H.; Woodley, D.T. The carboxyl terminus of type VII collagen mediates antiparallel dimer formation and constitutes a new antigenic epitope for epidermolysis bullosa acquisita autoantibodies. J. Biol. Chem. 2001, 276, 21649–21655. [Google Scholar] [CrossRef]
- Gretzmeier, C.; Pin, D.; Kern, J.S.; Chen, M.; Woodley, D.T.; Bruckner-Tuderman, L.; Souza, M.P.D.; Nystrom, A. Systemic collagen VII replacement therapy for advanced recessive dystrophic epidermolysis bullosa. J. Investig. Dermatol. 2022, 142, 1094–1102. [Google Scholar] [CrossRef]
- Mcguire, J.D.; Walker, M.P.; Mousa, A.; Wang, Y.; Gorski, J.P. Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth. Bone 2014, 63, 29–35. [Google Scholar] [CrossRef]
- Woodley, D.; Hou, Y.; Tang, X.; Tan, C.; Zhang, K.; Bainvoll, L.; Li, W.; Chen, M. Topical type VII collagen increased elastic fiber formation, accelerated wound closure and reduced scarring of diabetic pigskin wounds. J. Investig. Dermatol. 2023, 143, S260. [Google Scholar] [CrossRef]
- Mann, K.; Jander, R.; Korsching, E.; Kuhn, K.; Rauterberg, J. The primary structure of a triple-helical domain of collagen type VIII from bovine Descemet’s membrane. FEBS Lett. 1990, 273, 168–172. [Google Scholar] [CrossRef]
- Darvish, D.M. Collagen fibril formation in vitro: From origin to opportunities. Mater. Today Bio. 2022, 15, 100322. [Google Scholar] [CrossRef]
- Greenhill, N.S.; Ruger, B.M.; Hasan, Q.; Davis, P.F. The a1(VIII) and a2(VIII) collagen chains form two distinct homotrimeric proteins in vivo. Matrix Biol. 2000, 19, 19–28. [Google Scholar] [CrossRef]
- Hu, X.; Dai, Z.; Pan, R.; Zhang, Y.; Liu, L.; Wang, Y.; Chen, X.; Yao, D.; Hong, M.; Liu, C. Long-term transplantation human menstrual blood mesenchymal stem cell loaded collagen scaffolds repair endometrium histological injury. Reprod. Toxicol. 2022, 109, 53–60. [Google Scholar] [CrossRef]
- Kivirikko, S.; Heinamaki, P.; Rehn, M.; Honkanen, N.; Myers, J.C.; Pihlajaniemi, T. Primary structure of the alpha 1 chain of human type XV collagen and exon-intron organization in the 3/ region of the corresponding gene. J. Biol. Chem. 1994, 269, 4773–4779. [Google Scholar] [CrossRef]
- Momota, R.; Naito, I.; Ninomiya, Y.; Ohtsuka, A. Drosophila type XV/XVIII collagen, Mp, is involved in Wingless distribution. Matrix Biol. 2011, 30, 258–266. [Google Scholar] [CrossRef]
- Hansen, N.U.B.; Willumsen, N.; Sand, J.M.B.; Larsen, L.; Karsdal, M.A.; Leeming, D.J. Type VIII collagen is elevated in diseases associated with angiogenesis and vascular remodeling. Clin. Biochem. 2016, 49, 903–908. [Google Scholar] [CrossRef]
- Grassel, S.; Bauer, R.J. Collagen XVI in health and disease. Matrix Biol. 2013, 32, 64–73. [Google Scholar] [CrossRef]
- Hagg, P.M.; Horelli-Kuitunen, N.; Eklund, L.; Palotie, A.; Pihlajaniemi, T. Cloning of mouse type XV collagen sequences and mapping of the corresponding gene to 4B1-3. Genomics 1997, 45, 31–41. [Google Scholar] [CrossRef]
- Hagg, P.M.; Muona, A.; Lietard, J.; Kivirikko, S.; Pihlajaniemi, T. Complete Exon-intron organization of the human gene for the α1 chain of type XV collagen (COL15A1) and comparison with the homologous Col18α1 gene. J. Biol. Chem. 1998, 273, 17824–17831. [Google Scholar] [CrossRef]
- Alexdottir, M.S.; Bourgonje, A.R.; Karsdal, M.A.; Bay-Jensen, A.-C.; Pehrsson, M.; Loveikyte, R.; Van Dullemen, H.M.; Visschedijk, M.C.; Festen, E.A.; Weersma, R.K.; et al. Mo1524: Serological biomarkers of type VI and XXII collagen formation predict and monitor infliximab treatment response in patients with Crohn’s disease. Gastroenterology 2022, 162, S803. [Google Scholar] [CrossRef]
- Amenta, P.S.; Briggs, K.; Xu, K.; Gamboa, E.; Jukkola, A.F.; Li, D.; Myers, J.C. Type XV collagen in human colonic adenocarcinomas has a different distribution than other basement membrane zone proteins. Hum. Pathol. 2000, 31, 359–366. [Google Scholar] [CrossRef]
- Bachinger, H.P.; Mizuno, K.; Vranka, J.A.; Boudko, S.P. Collagen formation and structure. Compr. Nat. Prod. II 2010, 5, 469–539. [Google Scholar]
- Heljasvaara, R.; Nyberg, P.; Luostarinen, J.; Parikka, M.; Heikkila, P.; Rehn, M.; Sorsa, T.; Salo, T.; Pihlajaniemi, T. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp. Cell Res. 2005, 307, 292–304. [Google Scholar] [CrossRef]
- Fang, Z.; Lu, X.; Du, W.; Wang, X.; Yang, H.; Shi, M.; Liu, T.; Xie, Y.; Wang, S.; Xu, X.; et al. Injectable self-assembled dual-crosslinked alginate/recombinant collagen-based hydrogel for endometrium regeneration. Int. J. Biol. Macromol. 2023, 236, 123943. [Google Scholar] [CrossRef]
- Mor, N.; Sumiyoshi, H.; Lee, S.Y.; Henderson, S.; Tanaka, S.; Yoshioka, H.; Ramirez, F.; Rattan, S.; Mor, N. Role of collagen XIX in the nitrergic inhibitory neurotransmission in the lower esophageal sphincter (LES). Gastroenterology 2003, 124, A345. [Google Scholar] [CrossRef]
- Jendricke, P.; Centner, C.; Zdzieblik, D.; Gollhofer, A.; Konig, D. Specific collagen peptides in combination with resistance training improve body composition and regional muscle strength in premenopausal women: A randomized controlled trial. Nutrients 2019, 11, 892. [Google Scholar] [CrossRef]
- Li, H.-C.; Huang, C.-C.; Chen, S.-F.; Chou, M.-Y. Assembly of homotrimeric type XXI minicollagen by co-expression of prolyl 4-hydroxylase in stably transfected Drosophila melanogaster S2 cells. Biochem. Biophys. Res. Commun. 2005, 336, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Delbaere, S.; Dhooge, T.; Syx, D.; Petit, F.; Goemans, N.; Destree, A.; Vanakker, O.; Rycke, R.D.; Symoens, S.; Malfait, F. Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix. Genet. Med. 2020, 22, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kronenberg, H. Minireview: Transcriptional regulation in development of bone. Endocrinology 2005, 146, 1012–1017. [Google Scholar] [CrossRef]
- An, B.; Kaplan, D.L.; Brodsky, B. Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Front. Chem. 2014, 2, 40. [Google Scholar] [CrossRef]
- Tvaroska, I. Glycosylation modulates the structure and functions of collagen: A review. Molecules 2024, 29, 1417. [Google Scholar] [CrossRef]
- Arita, M.; Fertala, J.; Hou, C.; Kostas, J.; Steplewski, A.; Fertala, A. Prospects and limitations of improving skeletal growth in a mouse model of spondyloepiphyseal dysplasia caused by R992C (p.R1192C) substitution in collagen II. PLoS ONE 2017, 12, e0172068. [Google Scholar] [CrossRef]
- Asamura, K.; Abe, S.; Imamura, Y.; Aszodi, A.; Suzuki, N.; Hashimoto, S.; Takumi, Y.; Hayashi, T.; Fassler, R.; Nakamura, Y.; et al. Type IX collagen is crucial for normal hearing. Neuroscience 2005, 132, 493–500. [Google Scholar] [CrossRef]
- Bader, H.L.; Lambert, E.; Guiraud, A.; Malbouyres, M.; Driever, W.; Koch, M.; Ruggiero, F. Zebrafish collagen XIV is transiently expressed in epithelia and is required for proper function of certain basement membranes. J. Biol. Chem. 2013, 288, 6777–6787. [Google Scholar] [CrossRef]
- Carre, A.L.; James, A.; Macleod, L.; Kawai, K.; Longaker, M.T.; Lorenz, H.P. High expression of collagen XV and nonfibrillar elastic fibers in embryonic as compared with postnatal skin. J. Am. Coll. Surgen. 2009, 209, 71. [Google Scholar] [CrossRef]
- Li, D.; Clark, C.C.; Myers, J.C. Basement membrane zone type XV collagen is a disulfide-bonded chondroitin sulfate proteoglycan in human tissues and cultures cells. J. Biol. Chem. 2000, 275, 22339–22347. [Google Scholar] [CrossRef]
- Franzke, C.-W.; Bruckner-Tuderman, L.; Blobel, C.P. Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. J. Biol. Chem. 2009, 284, 23386–23396. [Google Scholar] [CrossRef] [PubMed]
- Freise, C.; Bobb, V.; Querfeld, U. Collagen XIV and a related recombinant fragment protect human vascular smooth muscle cells from calcium-/phosphate-induced osteochondrocytic transdifferentiation. Exp. Cell Res. 2017, 358, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Duran, I.; Csukasi, F.; Taylor, S.P.; Krakow, D.; Becerra, J.; Bombarely, A.; Mari-Beffa, M. Collagen duplicate genes of bone and cartilage participate during regeneration of zebradish fin skeleton. Gene Expr. Patt. 2015, 19, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Elamaa, H.; Snellman, A.; Rehn, M.; Autio-Harmainen, H.; Pihlajaniemi, T. Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Matrix Biol. 2003, 22, 427–442. [Google Scholar] [CrossRef]
- Arai, K.; Kasashima, Y.; Kobayashi, A.; Kuwano, A.; Yoshihara, T. TGF-β alters collagen XII and XIV mRNA levels in cultures equine tenocytes. Matrix Biol. 2002, 21, 243–250. [Google Scholar] [CrossRef]
- Cabral, W.A.; Fratzl-Zelman, N.; Weis, M.A.; Perosky, J.E.; Alimasa, V.; Harris, R.; Kang, H.; Makareeva, E.; Barnes, A.M.; Roschger, P.; et al. Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol. 2020, 90, 20–39. [Google Scholar] [CrossRef]
- Campbell, M.R.; Gress, C.J.; Appleman, E.H.; Jacenko, O. Chicken collagen X regulatory sequences restrict transgene expression to hypertrophic cartilage in mice. Am. J. Pathol. 2004, 164, 487–499. [Google Scholar] [CrossRef]
- Duncan, S.; Delage, S.; Chioran, A.; Sirbu, O.; Brown, T.J.; Ringuette, M.J. The predicted collagen-binding domains of Drosophila SPARC are essential for survival and for collagen IV distribution and assembly into basement membranes. Dev. Biol. 2020, 461, 197–209. [Google Scholar] [CrossRef]
- Leikina, E.; Mertts, M.V.; Kuznetsova, N.; Leikin, S. Type I collagen is thermally unstable at body temperature. Proc. Natl. Acad. Sci. USA 2002, 99, 1314–1318. [Google Scholar] [CrossRef]
- Lin, J.; Zou, B.; Li, H.; Wang, J.; Li, S.; Cao, J.; Xie, D.; Wang, F. Collagen XVII promotes dormancy of colorectal cancer cells by activating mTORC2 signaling. Cell. Signal. 2024, 120, 111234. [Google Scholar] [CrossRef]
- Ansorge, H.L.; Meng, X.; Zhang, G.; Veit, G.; Sun, M.; Klement, J.F.; Beason, D.P.; Soslowsky, L.J.; Koch, M.; Birk, D.E. Type XIV collagen regulates fibrillogenesis. J. Biol. Chem. 2009, 284, 8427–8438. [Google Scholar] [CrossRef] [PubMed]
- Berthod, F.; Germain, L.; Guignard, R.; Lethias, C.; Garrone, R.; Damour, O.; Rest, M.V.D.; Auger, F.A. Differential expression of collagens XII and XIV in human skin and in reconstructed skin. J. Investig. Dermatol 1997, 108, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, U.K.; Eikenberry, E.F.; Hulmes, D.J.S.; Galla, H.-J.; Bruckner, P. Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J. Biol. Chem. 2000, 275, 10370–10378. [Google Scholar] [CrossRef]
- Cancel, M.; Grimard, G.; Thuillard-Crisinel, D.; Moldovan, F.; Villemure, I. Effects of in vivo statis compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix. Bone 2009, 44, 306–315. [Google Scholar] [CrossRef]
- Dreier, R.; Opolka, A.; Grifka, J.; Bruckner, P.; Grassel, S. Collagen IX-deficiency seriously compromises growth cartilage development in mice. Matrix Biol. 2008, 27, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Grassel, S.; Tan, E.M.L.; Timpl, R.; Chu, M.-L. Collagen type XVI expression is modulated by basic fibroblast growth factor and transforming growth factor-β. FEBS Lett. 1998, 436, 197–201. [Google Scholar] [CrossRef]
- Ruzzi, L.; Posteraro, P.; Zambruno, G.; Castiglia, D.; DAlessio, M.; Pas, H.; Mazzanti, C.; Didona, B.; Owaribe, K.; Meneguzzi, G. A homozygous nonsence mutation in type XVII collagen gene (COL17A1) uncovers an alternatively spliced mRNA accounting for an unusually mild form of non-herlitz junctional epidermolysis bullosa. J. Investig. Dermatol. 2001, 116, 182–187. [Google Scholar] [CrossRef]
- Kapyla, J.; Jaalinoja, J.; Tulla, M.; Ylostalo, J.; Nissinen, L.; Viitasalo, T.; Vehvilainen, P.; Marjomaki, B.; Nykvist, P.; Saamanen, A.-M.; et al. The fibril-associated collagen IX provides a novel mechanism for cell adhesion to cartilaginous matrix. J. Biol. Chem. 2004, 279, 51677–51687. [Google Scholar] [CrossRef]
- Liu, X.; Su, J.; Zhou, H.; Zeng, Z.; Li, Z.; Xiao, Z.; Zhao, M. Collagen VI antibody reduces atherosclerosis by activating monocyte/macrophage polarization in ApoE mice. Int. Immunopharmacol. 2022, 111, 109100. [Google Scholar] [CrossRef]
- Soderhall, C.; Marenholz, I.; Kerscher, T.; Ruschendorf, F.; Esparza-Gordillo, J.; Worm, M.; Gruber, C.; Mayr, G.; Albrecht, M.; Rohde, K.; et al. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol. 2007, 5, e242. [Google Scholar] [CrossRef]
- Kalchishkova, N.; Heinegard, D.; Blom, A. The cartilage-specific collagen IX and its role in modulation of the complement activity. Mol. Immunol. 2009, 46, 2854. [Google Scholar] [CrossRef]
- Veit, G.; Zimina, E.P.; Franzke, C.-W.; Kutsch, S.; Siebolds, U.; Gordon, M.K.; Bruckner-Tuderman, L.; Koch, M. Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment. J. Biol. Chem. 2007, 282, 27424–27435. [Google Scholar] [CrossRef] [PubMed]
- Vijayasarathy, M.; Balaram, P. Cone snail prolyl-4-hydroxylase a-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom. J. Proteom. 2019, 194, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.; Logan, M.; Weber, S.; Lewis, S.; Fang, C.; Correr-Sobrinho, L.; Pfeifer, C. Multi-acrylamides improve bond stability through collagen reinforcement under physiological conditions. Dent. Mater. 2024, 40, 993–1001. [Google Scholar] [CrossRef]
- Bos, K.J.; Rucklidge, G.J.; Dunbar, B.; Robins, S.P. Primary structure of the helical domain of porcine collagen X. Matrix Biol. 1999, 18, 149–153. [Google Scholar] [CrossRef]
- Kvist, A.-P.; Latvanlehto, A.; Sund, M.; Eklund, L.; Vaisanen, T.; Hagg, P.; Sormunen, R.; Komulainen, J.; Fassler, R.; Pihlajaniemi, T. Lack of cytosolic and transmembrane domains of type XIII collagen results in progressive myopathy. Am. J. Pathol. 2001, 159, 1581–1592. [Google Scholar] [CrossRef]
- Lai, C.-H.; Chu, M.-L. Tissue distribution and developmental expression of type XVI collagen in the mouse. Tissue Cell 1996, 28, 155–164. [Google Scholar] [CrossRef]
- Mutolo, M.J.; Morris, K.J.; Leir, S.-H.; Caffrey, T.C.; Lewandowska, M.A.; Hollingsworth, M.A.; Harris, A. Tumor suppression by collagen XV is independent of the restin domain. Matrix Biol. 2012, 31, 285–289. [Google Scholar] [CrossRef]
- Myers, J.C.; Li, D.; Amenta, P.S.; Clark, C.C.; Nagaswami, C.; Weisel, J.W. Type XIX collagen purified from human Umbilical cord if characterized by multiple sharp kinks delineating collagenous subdomains and by intermolecular aggregates via globular, disulfide-linked, and heparin-biding amino termini. J. Biol. Chem. 2003, 278, 32047–32057. [Google Scholar] [CrossRef]
- Seppanen, A.; Suuronen, T.; Hofmann, S.C.; Majamaa, K.; Alafuzoff, I. Distribution of collagen XVII in the human brain. Brain Res. 2007, 1158, 50–56. [Google Scholar] [CrossRef]
- Tuckwell, D. Identification and analysis of collagen α1(XXI), a novel member of the FACIT collagen family. Matrix Biol. 2002, 21, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Zeltz, C.; Kusche-Gullberg, M.; Heljasvaara, R.; Gullberg, D. Novel roles for cooperating collagen receptor families in fibrotic niches. Curr. Opin. Cell Biol. 2023, 85, 102273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhu, H.; Harpaz, N. Overexpression of a1 chain of type XI collagen (COL11A1) aids in the diagnosis of invasive carcinoma in endoscopically removed malignant colorectal polyps. Pathol. Res. Pract. 2016, 212, 545–548. [Google Scholar] [CrossRef]
- Toumpoulis, I.K.; Oxford, J.T.; Cowan, D.B.; Anagnostopoulos, C.E.; Rokkas, C.K.; Chamogeorgakis, T.P.; Angouras, D.C.; Shemin, R.J.; Novab, M.; Ericsson, M.; et al. Differential expression of collagen type V and XI a01 in human ascending thoracic aortic aneurysms. Ann. Thorac. Surg. 2009, 88, 506–513. [Google Scholar] [CrossRef]
- Zwolanek, D.; Veit, G.; Eble, J.A.; Gullberg, D.; Ruggiero, F.; Heino, J.; Meier, M.; Stetefeld, J.; Koch, M. Collagen XXII binds to collagen-binding integrins via the novel motifs GLQGER and GFKGER. Biochem. J. 2014, 459, 217–227. [Google Scholar] [CrossRef]
- Yan, W.; Huang, C.; Yan, Y.; Wang, P.; Yuwen, W.; Zhu, C.; Fu, R.; Duan, Z.; Fan, D. Expression, characterization and antivascular activity of amino acid sequence repeating collagen hexadecapeptide. Int. J. Biol. Macromol. 2024, 270, 131886. [Google Scholar] [CrossRef]
- Sanapalli, B.K.R.; Yele, V.; Singh, M.K.; Thumbooru, S.N.; Parvathaneni, M.; Karri, V.V.S.R. Human beta defensin-2 loaded PLGA nanoparticles impregnated in collagen-chitosan composite scaffold for the management of diabetic wounds. Biomed. Pharmacother. 2023, 161, 114540. [Google Scholar] [CrossRef]
- Seppanen, A.; Autio-Harmainen, H.; Alafuzoff, I.; Sarkioja, T.; Veijola, J.; Hurskainen, T.; Brucker-Tuderman, L.; Tasanen, K.; Majamaa, K. Collagen XVII is expressed in human CNS neurons. Matrix Biol. 2006, 25, 185–188. [Google Scholar] [CrossRef]
- Jackow, J.; Schlosser, A.; Sormunen, R.; Nystrom, A.; Sitaru, C.; Tasanen, K.; Bruckner-Tuderman, L.; Franzke, C.-W. Generation of a functional non-shedding collagen XVII mouse model: Relevance of collagen XVII shedding in wound healing. J. Investig. Dermatol. 2016, 136, 516–525. [Google Scholar] [CrossRef]
- Ratzinger, S.; Eble, J.A.; Pasoldt, A.; Opolka, A.; Rogler, G.; Grifka, J.; Grassel, S. Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract. Matrix Biol. 2010, 29, 177–193. [Google Scholar] [CrossRef]
- Bonnet, I.; Cadau, S.; Berthelemy, N.; Bardey, V.; Andre-Frei, V.; Chavan, M.; Zahouani, H.; Rousselle, P. 447 collagen XVIII, a key interfacial component of the skin architecture. J. Investig. Dermatol. 2017, 137, S77. [Google Scholar] [CrossRef]
- Bracher, S.; Voumard, B.; Simon, M.; Kochetkova, T.; Pretterklieber, M.; Zysset, P. Bone collagen tensile properties of the aging human proximal femur. Bone Rep. 2024, 21, 101773. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Golbik, R.; Mann, K.; Timpl, R. Structure and stability of the triple-helical domains of human collagen XIV. Matrix Biol. 1994, 14, 287–295. [Google Scholar] [CrossRef]
- Akagi, A.; Tajima, S.; Ishibashi, A.; Matsubara, Y.; Takehana, M.; Kobayashi, S.; Yamaguchi, N. Type XVI collagen is expressed in factor XIIIa+ monocyte-derived dermal dendrocytes and constitutes a potential substrate for factor XIIIa. J. Investig. Dermatol. 2002, 118, 267–274. [Google Scholar] [CrossRef]
- Wirz, J.A.; Boudko, S.P.; Lerch, T.F.; Chapman, M.S.; Bachinger, H.P. Crystal structure of the human collagen XV trimerization domain: A potent trimerizing unit common to multiplexin collagens. Matrix Biol. 2011, 30, 9–15. [Google Scholar] [CrossRef]
- Kvist, A.-P.; Latvanlehto, A.; Sund, M.; Horelli-Kuitunen, N.; Rehn, M.; Palotie, A.; Beier, D.; Pihlajaniemi, T. Complete exon-intron organization and chromosomal location of the gene for mouse type XIII collagen (col13a1) and comparison with its human homologue. Matrix Biol. 1999, 18, 261–274. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, N.-N.; Dang, E.-L.; Jin, L.; Liu, Z.-F.; Zhang, W.; Yang, L.-T.; Wang, G. Anti-collagen XVII single-chain Fv antibody blocks the autoimmune reaction mediated by pathogenic autoantibodies in bullous pemphigoid. J. Dermatol. Sci. 2013, 72, 25–31. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancent 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Y.; Zhang, Y.; Chen, Q.; Zhang, L.; Han, X.; Yang, Y.; Zhang, C.; Liu, Y.; Yu, R. Preparation and characterization of a novel humanized collagen III with repeated fragments of Gly300-Asp329. Protein Expr. Purif. 2024, 219, 106473. [Google Scholar] [CrossRef]
- Tian, P.; Koudis, N.-M.; Morais, M.R.P.T.; Pickard, A.; Fresquet, M.; Adamson, A.; Derby, B.; Lennon, R. Collagen IV assembly is influenced by fluid flow in kidney cell-derived matrices. Cells Dev. 2024, 179, 203923. [Google Scholar] [CrossRef]
- Hudsom, D.M.; Weis, M.A.; Jeong, K.S.; Dimori, M.; Lee, B.H.; Morello, R.; Eyre, D.R. P3h3-null and Sc65-null mice phenocopy the collagen lysine under-hydroxylation and cross-linking abnormality of Ehlers-Danlos syndrome type VIA. J. Biol. Chem. 2017, 292, 3877–3887. [Google Scholar] [CrossRef] [PubMed]
- Dilley, K.K.; Prasad, K.R.; Nguyen, T.V.; Stokolosa, A.; Borden, P.A.; Heur, J.M.; Kim, S.; Hill, M.G.; Wong, B.J.F. Second harmonic generation microscopy of electromechanical reshaping on corneal collagen. Exp. Eye Res. 2024, 244, 109941. [Google Scholar] [CrossRef] [PubMed]
- Exposito, J.-Y.; Larroux, C.; Cluzel, C.; Valcourt, U.; Lethias, C.; Degnan, B.M. Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J. Biol. Chem. 2008, 283, 28226–28235. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Natsuga, K.; Nishie, W.; Donati, G.; Fujimura, Y.; Tsukiyama, T.; Ujiie, h.; Ozaki, M.; Watt, F.M.; Shimizu, H. 085 type XVII collagen suppresses interfollicular epidermal proliferation in neonatal and aged skin, and helps rejuvenate epidermis. J. Investig. Dermatol. 2017, 137, S207. [Google Scholar] [CrossRef]
- Wilhelm, D.; Wurtz, A.; Abouelfarah, H.; Sanchez, G.; Bui, C.; Vincourt, J.-B. Tissue-specific collagen hydroxylation at GEP/GDP triplets mediated by P4HA2. Matrix Biol. 2023, 119, 141–153. [Google Scholar] [CrossRef]
- Schonborn, K.; Willenborg, S.; Schulz, J.-N.; Imhof, T.; Eming, S.A.; Quondamatteo, F.; Brinckmann, J.; Niehoff, A.; Paulsson, M.; Koch, M.; et al. Role of collagen XII in skin homeostasis and repair. Matrix Biol. 2020, 94, 57–76. [Google Scholar] [CrossRef]
- Rempfer, C.; Hoernstein, S.N.W.; Gessel, N.V.; Graf, A.W.; Spiegelhalder, R.P.; Bertolini, A.; Bohlender, L.L.; Parsons, J.; Decker, E.L.; Reski, R. Differential prolyl hydroxylation by six physcomitrella prolyl-4 hydroxylases. Comput. Struct. Biotechnol. J. 2024, 23, 2580–2594. [Google Scholar] [CrossRef]
- Yeh, S.-I.; Han, K.-Y.; Sabri, A.; Rosenblatt, M.I.; Azar, D.T.; Jain, S.; Chang, J.-H. MMP-7 knock-in corneal fibroblast cell lines secrete MMP-7 with proteolytic activity towards collagen XVIII. Curr. Eye Res. 2010, 35, 799–805. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Song, H.; Li, B. Effect of collagen hydrolysates from silver carp skin (Hypophthalmichthys molitrix) on osteoporosis in chronologically aged mice: Increasing bone remodeling. Nutrient 2018, 10, 1434. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Hou, D. The research of collagen for tissue repair in China from 2019 to 2023 based on bibliometrics and visualization analysis. Med. Novel. Technol. Devices 2024, 23, 100307. [Google Scholar] [CrossRef]
- Tompson, S.W.; Bacino, C.A.; Safina, N.P.; Bober, M.B.; Proud, V.K.; Funari, T.; Wangler, M.F.; Nevarez, L.; Ala-kokko, L.; Wilcox, W.R.; et al. Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene. AJHG 2010, 86, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yan, H.; Yao, L.; Xie, Y.; Liu, P.; Xiao, J. A highly bioactive THPC-crosslinked recombinant collagen hydrogel implant for aging skin rejuvenation. Int. J. Biol. Macromol. 2024, 266, 131276. [Google Scholar] [CrossRef] [PubMed]
- Rinta-Jaskari, M.M.; Naillat, F.; Ruotsalainen, H.J.; Koivunen, J.T.; Sasaki, T.; Pietila, I.; Elamaa, H.P.; Kaur, I.; Manninen, A.; Vainio, S.J.; et al. Temporally and spatially regulated collagen XVIII isoforms are involved in ureteric tree development via the TSP1-like domain. Matrix Biol. 2023, 115, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Fertala, J.; Arita, M.; Steplewski, A.; Arnold, W.V.; Fertala, A. Epiphyseal growth plate architecture is unaffected by early postnatal activation of the expression of R992C collagen II mutant. Bone 2018, 112, 42–50. [Google Scholar] [CrossRef]
- Fitzgerald, J.; Holden, P.; Hansen, U. The expanded collagen VI family: New chains and new questions. Connect. Tissue Res. 2013, 54, 345–350. [Google Scholar] [CrossRef]
- Deymier, A.C.; Deymier, P.A. Open-system force-elongation relationship of collagen in chemo-mechanical equilibrium with water. J. Mechanical. Behav. Biomed. Mater. 2024, 152, 106464. [Google Scholar] [CrossRef]
- Foley, J.E.; Koch, M.; Gerecke, D.R.; Fitch, J.M.; Gordon, M.K. An NC1 domain splicing variant of type XII collagen isolated from a corneal cDNA library. Matrix Biol. 1997, 16, 126. [Google Scholar] [CrossRef]
- Steplewski, A.; Brittingham, R.; Jimenez, S.A.; Fertala, A. Single amino acid substitutions in the C-terminus of collagen II alter its affinity for collagen IX. Biochem. Biophys. Res. Commun. 2005, 335, 749–755. [Google Scholar] [CrossRef]
- Sumiyoshi, H.; Inoguchi, K.; Khaleduzzaman, M.; Ninomiya, Y.; Yoshiokda, H. Ubiquitous expression of the α1(XIX) collagen gene (Col19α1) during mouse embryogenesis becomes restricted to a few tissues in the adult organism. J. Biol. Chem. 1997, 272, 17104–17111. [Google Scholar] [CrossRef]
- Bretaud, S.; Guillon, E.; Karppinen, S.-M.; Pihlajaniemi, T.; Ruggiero, F. Collagen XV, a multifaceted multiplexin present across tissues and species. Matirx Biol. Plus 2020, 6–7, 100023. [Google Scholar] [CrossRef]
- Selvaraj, V.; Sekaran, S.; Dhanasekaran, A.; Warrier, S. Type 1 collagen: Synthesis, structure and key functions in bone mineralization. Differentiation 2024, 136, 100757. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, A.I.; Sormunen, R.; Elamaa, H.; Seppinen, L.; Miller, R.T.; Ninomiya, Y.; Janmey, P.A.; Pihlajaniemi, T. Lack of collagen XVIII long isoforms affects kidney podocytes, whereas the short form is needed in the proximal tubular basement membrane. J. Biol. Chem. 2011, 286, 7755–7764. [Google Scholar] [CrossRef] [PubMed]
- Krasue, M.B.; Vang, N.; Ahlmeyer, L.; Tung, T.A. Effects of lipid extraction on human bone collagen: Comparing stable carbon and nitrogen isotope values with the without lipid extraction. J. Archaeol. Sci. Rep. 2023, 51, 104196. [Google Scholar] [CrossRef]
- Palamae, S.; Patil, U.; Suyapoh, W.; Sornying, P.; Buatong, J.; Zhang, B.; Benjakul, S. Elucidation of high-pressure processing toward microbial inhibition, physicochemical properties, collagen fiber and muscle structure of blood calm edible portion. Food Chem. 2024, 455, 139840. [Google Scholar] [CrossRef]
- Skov, K.; Oxfeldt, M.; Thogersen, R.; Hansen, M.; Bertram, H.C. Enzymatic hydrolysis of a collagen hydrolysate enhances postprandial absorption rate- A randomized controlled trial. Nutrients 2019, 11, 1064. [Google Scholar] [CrossRef]
- Smith, S.M.; Zhang, G.; Birk, D.E. Collagen V localizes to pericellular sites during tendon collagen fibrillogenesis. Matirx Biol. 2014, 33, 47–53. [Google Scholar] [CrossRef]
- Warner, L.R.; Brown, R.J.; Yingst, S.M.C.; Oxford, J.T. Isoform-specific heparan sulfate binding withing the amino-terminal noncollagenous domain collagen α1(XI). J. Biol. Chem. 2006, 281, 39507–39516. [Google Scholar] [CrossRef]
- Rinta-Jaskari, M.M.; Naillat, F.; Ruotsalainen, H.J.; Ronkainen, V.-P.; Heljaasvaara, R.; Akram, S.U.; Izzi, V.; Miinalainen, I.; Vainio, S.J.; Pihlajaniemi, T.A. Collagen XVIII regulates extracellular matrix integrity in the developing nephrons and impacts nephron progenitor cell behavior. Matrix Biol. 2024, 131, 30–45. [Google Scholar] [CrossRef]
- Parikka, M.; Nissinen, L.; Kainulainen, T.; Bruckner-Tuderman, L.; Salo, T.; Heino, J.; Tasanen, K. Collagen XVII promotes integrin-mediated squamous cell carcinoma transmigration-A novel role for aIIb integrin and tirofiban. Exp. Cell Res. 2006, 312, 1431–1438. [Google Scholar] [CrossRef]
- Parsons, P.; Gilbert, S.J.; Vaughan-Thomas, A.; Sorrell, D.A.; Notman, R.; Bishop, M.; Hayes, A.J.; Mason, D.J.; Duance, V.C. Type IX collagen interacts with fibronectin providing an important molecular bridge in articular cartilage. J. Biol. Chem. 2011, 286, 34986–34997. [Google Scholar] [CrossRef]
- Paul, C.; Leser, S.; Oesser, S. Significant amounts of functional collagen peptides can be incorporated in the diet while maintaining indispensable amino acid balance. Nutrients 2019, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liang, X.; Yu, S.; Zhou, J. Expression, characterization, and application potentiality evaluation of recombinant human-like collagen in Pichia pastoris. Bioresour. Bioprocess 2022, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Manferdini, C.; Zini, N.; Gabusi, E.; Paolella, F.; Lambertini, E.; Penolazzi, L.; Piva, R.; Lisignoli, G. Immunoelectron microscopis localization of collagen type XV during human mesenchymal stem cells mineralization. Connect. Tissue Res. 2018, 59, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Kassner, A.; Tiedemann, K.; Botbohm, H.; Ludwig, T.; Morgelin, M.; Reinhardt, D.P.; Chu, M.-L.; Bruckner, P.; Grassel, S. Molecular structure and interaction of recombinant human type XVI collagen. J. Mol. Biol. 2004, 339, 835–853. [Google Scholar] [CrossRef]
- Katayama, K.; Kuriki, M.; Kamiya, T.; Tochigi, Y.; Suzuki, H. Giantin is required for coordinated production of aggrecan, link protein and type XI collagen during chondrogenesis. Biochem. Biophys. Res. Commun. 2018, 499, 459–465. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, M.; Kaur, N.; Pati, P.K.; Rani, M.; Kang, T.S. Sustainable dissolution of collagen and the formation of polypeptides in deep eutectic solvents for application as antibacterial agents. RSC Sustain. 2024, 2, 2312–2323. [Google Scholar] [CrossRef]
- Chen, Y.; Sumiyoshi, H.; Oxford, J.T.; Yoshioka, H.; Ramirez, F.; Morris, N.P. Cis-acting elements regulate alternative splicing of exons 6A, 6B, and 8 of the a1(XI) collagen gene and contribute to the regional diversification of collagen XI matrices. Matrix. Biol. 2001, 20, 589–599. [Google Scholar] [CrossRef]
- Chen, Y.; Forster, L.; Wang, K.; Gupta, H.S.; Li, X.; Huang, J.; Rui, Y. Investigation of collagen reconstruction mechanism in skin wound through dual-beam laser welding: Insights from multi-spectroscopy, molecular dynamics simulation, and finite element Multiphysics simulation. J. Photochem. Photobiol. Biol. 2024, 255, 112927. [Google Scholar] [CrossRef]
- Chiquet, M.; Birk, D.E.; Bonnemann, C.G.; Koch, M. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils. Int. J. Biochem. Cell Biol. 2014, 53, 51–54. [Google Scholar] [CrossRef]
- Lui, V.C.H.; Ng, L.J.; Sat, E.W.Y.; Cheah, K.S.E. The human a2(XI) collagen gene (COL11A2): Completion of coding information, identification of the promoter sequence, and precise localization within the major histocompatibility complex reveal overlap with the KE5 gene. Genomics 1996, 32, 401–412. [Google Scholar] [CrossRef]
- Kroeger, J.; Hofmann, S.; Leppert, J.; Has, C.; Franzke, C. 098 novel amino acid duplication in collagen XVII causes mild junctional epidermolysis bullosa by altering the coiled-coil structure and impairing collagen XVII trimerization and maturation. J. Investig. Dermatol. 2017, 137, S209. [Google Scholar] [CrossRef]
- Stephan, S.; Sherratt, M.J.; Hodson, N.; Shuttleworth, C.A.; Kielty, C.M. Expression and supramolecular assembly of recombinant a1(VIII) and a2(VIII) collagen homotrimers. J. Biol. Chem. 2004, 279, 21469–21477. [Google Scholar] [CrossRef] [PubMed]
- Kroeger, J.; Hoppe, E.; Galiger, C.; Has, C.; Franzke, C.-W. Amino acid substitution in the C-terminal domain of collagen XVII reduces laminin-332 interaction causing mild skin fragility with atrophic scarring. Matrix. Biol. 2019, 80, 72–84. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, H.; Yao, L.; Li, W.; Xiao, J. A highly durable and biocompatible bionic collagen implant with exceptional anti-calcification and collagen regeneration capabilities for improved skin rejuvenation. Mater. Des. 2024, 244, 113177. [Google Scholar] [CrossRef]
- Sadri, G.; Fischer, A.G.; Brittian, K.R.; Elliott, E.; Nystoriak, M.A.; Uchida, S.; Wysoczynski, M.; Leask, A.; Jones, S.P.; Moore, J.B. Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biol. 2022, 109, 49–69. [Google Scholar] [CrossRef]
- Moreno-Ricardo, M.A.; Gomez-Contreras, P.; Gonzalez-Delgado, A.D.; Hernandez-Fernandez, J.; Ortega-Toro, R. Development of films based on chitosan, gelatin and collagen extracted from bocachico scales (Prochilodus magdalenae). Heliyon 2024, 10, e25194. [Google Scholar] [CrossRef]
- Mortensen, J.H.; Olesen, M.L.; Jensen, C.; Willumsen, N.; Giuffrida, P.; Pinzani, M.; Mazza, G.; Sabatino, A.D.; Karsdal, M.; Manon-Jensen, T. Sa 1826- Serological assessment of type XVI collagen reflects intestinal structures in Crohns disease patients. Gastroenterology 2018, 154, S-410. [Google Scholar] [CrossRef]
- Munezane, H.; Oizumi, H.; Wakabayashi, T.; Nishio, S.; Hirasawa, T.; Sato, T.; Harada, A.; Yoshida, T.; Eguchi, T.; Yamanashi, Y.; et al. Roles of collagen XXV and its putative receptors PTPϭ/δ in intramuscular motor innervation and congenital cranial dysinnervation disorder. Cell Rep. 2019, 29, 4362–4376. [Google Scholar] [CrossRef]
- Ockleford, C.D.; McCracken, S.A.; Rimmington, L.A.; Hubbard, A.R.D.; Bright, N.A.; Cockcroft, N.; Jefferson, T.B.; Waldron, E.; DLacey, C. Type VII collagen associated with the basement membrane of amniotic epithelium forms giant anchoring rivets which penetrate a massive lamina reticularis. Placenta 2013, 34, 727–737. [Google Scholar] [CrossRef]
- Lunstrum, G.P.; McDonough, A.M.; Marinkovich, M.P.; Keene, D.R.; Morris, N.P.; Burgeson, R.E. Identification and partial purification of a large, variant form of type XII collagen. J. Biol. Chem. 1992, 267, 20087–20092. [Google Scholar] [CrossRef]
- Stape, T.H.S.; Mutluay, M.M.; Tjäderhane, L.; Uurasjärvi, E.; Koistinen, A.; Tezvergil-Mutluay, A. The pursuit of resin-dentin bond durability: Simultaneous enhancement of collagen structure and polymer network formation in hybrid layers. Dent. Mater. 2021, 37, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Hamill, K.J.; Hopkinson, S.B.; Jonkman, M.F.; Jones, J.C.R. Type XVII collagen regulates lamellipod stability, cell motility, and signaling to Rac1 by targeting bullous pemphigoid antigen 1e to α6β4 integrin. J. Biol. Chem. 2011, 286, 26768–26780. [Google Scholar] [CrossRef] [PubMed]
- Hecht, J.T.; Makitie, O.; Hayes, E.; Haynes, R.; Susic, M.; Montufar-Solis, D.; Duke, P.J.; Cole, W.G. Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate. J. Orthop. Res. 2004, 22, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Hennet, T. Collagen glycosylation. Curr. Opin. Struct. Biol. 2019, 56, 131–138. [Google Scholar] [CrossRef]
- Hirano, S.; Yonezawa, T.; Hasegawa, H.; Hattori, S.; Greenhill, N.S.; Davis, P.F.; Sage, E.H.; Ninomiya, Y. Astrocytes express type VIII collagen during the repair process of brain cold injury. Biochem. Biophys. Res. Commun. 2004, 317, 437–443. [Google Scholar] [CrossRef]
- Hjorten, R.; Hansen, U.; Underwood, R.A.; Telfer, H.E.; Fernandes, R.J.; Krakow, D.; Sebald, E.; Wachsmann-Hogiu, S.; Bruckner, P.; Jacquet, R.; et al. Type XXVII collagen at the transition of cartilage to bone during skeletogensis. Bone 2007, 41, 535–542. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, H.; Zhang, J.; Sun, H.; Li, W.; Li, C.; Zhang, Y.; Sun, D. A photoelectrochemical immunosensor based on ReS2 nanosheets for determination of collagen III related to abdominal aortic aneurysm. Microchem. J. 2021, 168, 106363. [Google Scholar] [CrossRef]
- Danfelter, M.; Onnerfjord, P.; Heinegard, D. Fragmentation of proteins in cartilage treated with interleukin-1: Specific cleavage of type IX collagen by matrix metalloproteinase 13 releases the NC4 domain. J. Biol. Chem. 2007, 282, 36933–36941. [Google Scholar] [CrossRef]
- Brull, A.; Sarathy, A.; Bolduc, V.; Chen, G.S.; McCarty, R.M.; Bonnemann, C.G. Optimized allele-specific silencing of the dominant-negative COL6A1 G293R substitution causing collagen VI-related dystrophy. Mol. Ther. Nucleic Acids 2024, 35, 102178. [Google Scholar] [CrossRef]
- Fukuta, S.; Oyama, M.; Kavalkovich, K.; Fu, F.H.; Niyibizi, C. Identification of types II, IX, and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol. 1998, 17, 65–73. [Google Scholar] [CrossRef]
- Tajima, S.; Akagi, A.; Tanaka, N.; Ishibashi, A.; Kawada, A.; Yamaguchi, N. Expression of type XVI collagen in cultured skin fibroblasts is related to cell growth arrest. FEBS Lett. 2000, 469, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.; Levay, A.K.; Peacock, J.D.; Huk, D.J.; Both, S.N.; Purcell, N.H.; Pinto, J.R.; Galantowicz, M.L.; Koch, M.; Lucchesi, P.A.; et al. Collagen XIV is important for growth and structural integrity of the myocardium. J. Mol. Cell. Cardiol. 2012, 53, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Sumiyoshi, H.; Matsuo, N.; Yun-Feng, W.; Nakashima, M.; Yanagisawa, S.; Yoshioka, H. The pro-a2(XI) collagen gene is expressed in odontoblasts. Biochem. Biophys. Res. Commun. 2010, 392, 166–170. [Google Scholar] [CrossRef]
- Suzuki, N.; Asamura, K.; Kikuchi, Y.; Takumi, Y.; Abe, S.; Imamura, Y.; Hayashi, T.; Aszodi, A.; Fassler, R.; Usami, S.-I. Type IX collagen knock-out mouse shows progressive hearing loss. Neurosci. Res. 2005, 51, 293–298. [Google Scholar] [CrossRef]
- Gebauer, J.M.; Kobbe, B.; Paulsson, M.; Wagener, R. Structure, evolution and expression of collagen XXVIII: Lessons from the zebrafish. Matrix Biol. 2016, 49, 106–119. [Google Scholar] [CrossRef]
- Giacomazza, D.; Viappiani, C.; Cera, E.D.; Musio, C. SIBPA under the Tuscan sun: Introduction to the SIBPA XXIII special issue. Biophys. Chem. 2017, 229, 1–4. [Google Scholar] [CrossRef]
- Gibney, R.; Patterson, J.; Ferraris, E. High-resolution bioprinting of recombinant human collagen type III. Polymers 2021, 13, 2973. [Google Scholar] [CrossRef]
- Seppinen, L.; Sormunen, R.; Soini, Y.; Elamaa, H.; Heljasvaara, R.; Pihlajaniemi, T. Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing. Matrix Bio. 2008, 27, 535–546. [Google Scholar] [CrossRef]
- Inoue, O.; Suzuki-Inoue, K.; Ozaki, Y. Redundant mechanism of platelet adhesion to laminin and collagen under flow: Involvement of von Willebrand factor and glycoprotein IB-IX-V. J. Biol. Chem. 2008, 283, 16279–16282. [Google Scholar] [CrossRef]
- Ito, K.; Maeda, K.; Kariya, M.; Yasui, K.; Araki, A.; Takahashi, Y.; Takakura, Y. Formation of DNA nanotubes increases uptake into fibroblasts via enhanced affinity for collagen. Int. J. Pharm. 2023, 644, 123297. [Google Scholar] [CrossRef]
- Llacua, L.A.; Hoek, A.; Haan, B.J.D.; Vos, P.D. Collagen type VI interaction improves human islet survival in immunoisolating microcapsules for treatment of diabetes. Islets 2018, 10, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, Z.; Yuan, D.; Yu, M.; Min, J. Tissue engineering applications of recombinant human collagen: A review of recent progress. Front. Bioeng. Biotechnol. 2024, 12, 1358246. [Google Scholar] [CrossRef] [PubMed]
- South, A.P.; Laimer, M.; Gueye, M.; Sui, J.Y.; Eichenfield, L.F.; Mellerio, J.E.; Nystrom, A. Type VII collagen deficiency in the oncogenesis of cutaneous squamous cell carcinoma in dystrophic epidermolysis bullosa. J. Investig. Dermatol. 2023, 143, 2108–2119. [Google Scholar] [CrossRef]
- Davis, P.F.; Ryan, P.A.; Kittelberger, R.; Greenhill, N.S. The collagenous protein with elastin crosslinks from Descemet’s membrane is not related to type VIII collagen. Biochem. Biophys. Res. Commun. 1990, 171, 260–265. [Google Scholar] [CrossRef]
- Izu, Y.; Adams, S.M.; Connizzo, B.K.; Beason, D.P.; Soslowsky, L.J.; Koch, M.; Birk, D.E. Collagen XII mediates cellular and extracellular mechanisms regulate establishment of tendon structure and function. Matrix Biol. 2021, 95, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Song, X.; Zhang, J.; Fan, Y.; Kong, M.; Zhang, L.; Hou, H. Novel collagen gradient membranes with multiphasic structures: Preparation, characterization, and biocompatibility. Colloids Surf. Biointerfaces 2024, 243, 114146. [Google Scholar] [CrossRef]
- Garcia-Berbel, P.; Cadenas, N.; Azueta, A.; Freire, J.; Gonzalez-Sanchez, R.; Pereda, S.; Portillo, J.; Gomez-Roman, J. Collagen, type xi, alpha 1 is expressed in neoplastic cells with sarcomatoid transformation in renal cell carcinoma. Pathology 2014, 46, S134–S135. [Google Scholar] [CrossRef]
- Oertzen-Hagemann, V.; Kirmse, M.; Eggers, B.; Pfeiffer, K.; Marcus, K.; Marees, M.D.; Platen, P. Muscle proteome in recreationally active men. Nutrients 2019, 11, 1072. [Google Scholar] [CrossRef]
- Pihlajaniemi, T.; Rehn, M. Two new collagen subgroups: Membrane-associated collagens and types XV and XVIII. Progress Nucleic Acid Res. Mol. Biol. 1995, 50, 225–262. [Google Scholar] [CrossRef]
- Savage, B.; Ginsberg, M.H.; Ruggeri, Z.M. Influence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow. Blood 1999, 94, 2704–2715. [Google Scholar] [CrossRef]
- Sanderg-Lall, M.; Hagg, P.O.; Wahlstrom, I.; Pihlajaniemi, T. Type XIII collagen is widely expressed in the adult and developing human eye and accentuated in the ciliary muscle, the optic nerve and the neural retina. Exp. Eye. Res. 2000, 70, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Larsson, H.; Tisi, D.; Claesson-Welsh, L.; Hohenester, E.; Timpl, R. Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J. Mol. Biol. 2000, 301, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Wang, N. A study of the different strains of the genus Azospirillum spp. on increasing productivity and stress resilience in plants. Plants 2025, 14, 267. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Biostimulant and beyong: Bacillus spp., the important plant growth-promoting rhizobacteria (PGPR)-based biostimulant for sustainable agriculture. Earth Syst. Environ. 2025, 1, 1–30. [Google Scholar] [CrossRef]
Animal by-Products Collagen | Collagen Types | Location of Collagen | Collagen Extraction Methods |
---|---|---|---|
Fish bones and skin | Type I | Skin, bone, scales, and body | Acid extraction procedure; pepsin-aided acetic acid extraction procedure |
Types I and V | Mantle | Acid extraction procedure; pepsin-aided acetic acid extraction procedure | |
Type IV | Tissues | Acid extraction procedure; pepsin-aided acetic acid extraction procedure | |
Types I, II, and III | Bell and oral arms | Acid extraction procedure; Pepsin-aided acetic acid extraction procedure | |
Bovine tendons, body, organs, and skin | Type I and type V | Body | Treatment with a defatting agent at soft temperature; treatment with soft acid and pepsin at low temperature; treatment with acid/alkali or high temperature; treatment with enzymes to break down polypeptide chains collagen; treatment with enzymes followed by isolation of certain bioactive peptides |
Type II | Elastic cartilage | treatment with a defatting agent at soft temperature; treatment with soft acid and pepsin at low temperature; treatment with acid/alkali or high temperature; treatment with enzymes to break down polypeptide chains collagen; treatment with enzymes followed by isolation of certain bioactive peptides | |
Type III | Muscles, organs, and arteries | Treatment with a defatting agent at soft temperature; treatment with soft acid and pepsin at low temperature; treatment with acid/alkali or high temperature | |
Type IV | The Layer of skin | Treatment with acid/alkali or high temperature; treatment with enzymes to break down polypeptide chains collagen; treatment with enzymes followed by isolation of certain bioactive peptides | |
Porcine skins | Types I, II, and III | Skin | Treatment with a defatting agent at soft temperature; treatment with soft acid and pepsin at low temperature; treatment with acid/alkali or high temperature |
Poultry cartilages, skin, and bone | Types I and III | Skin | Enzyme hydrolysis extraction for skin; acid-soluble extraction for bone; alkali-soluble extraction for bone |
Type II | Cartilage | Enzyme hydrolysis extraction for skin; acid-soluble extraction for bone; alkali-soluble extraction for bone | |
Types I and II | Bone | Enzyme hydrolysis extraction for skin; acid-soluble extraction for bone; alkali-soluble extraction for bone |
Collagens | Type | Location |
---|---|---|
Fibrillar collagens | Collagens I | Bone, skin, cornea, tendon, vascular ligature, and organs |
Collagens II | Vitreous body, cartilage, and gristle | |
Collagens III | Reticulate, commonly found together with collagen type I skin, vessels, intestine, and uterus | |
Collagens V | Skin, cell surfaces, cornea, placenta, skin, and hair | |
Collagens XI | Intervertebral disc, and gristle | |
Collagens XIV | Gristle, skin, tendons, bones, eye, nerves, and vessels | |
Collagens XXVII | Gristle | |
Nonfibrillar collagens | Collagens IV | Forms basal lamina, the epithelium-secreted layer of the basement membrane, and capillaries |
Collagens VII | Umbilical cord, amniotic fluid, skin, bladder, and mucous membranes | |
Collagens VI, XXVIII, and XXIX | Collagen VI can be found in cornea, gristle, vessels, bones, and skin Collagen XXVIII can be found in nervous system cells. Collagen XXIX can be found in skin. | |
Collagens VIII, X | Collagen VIII can be found in gristle, vessels, bones, brain, kidneys, skin, and heart. Collagen V can be found in gristle. | |
Collagens XIII, XVII, XXIII, and XXV | Collagen XIII can be found in skin, endothelial cells, heart, eye, and skeletal muscles. Collagen XVII can be found in skin. Collagen XXIII can be found in metastatic carcinogenic cells. Collagen XXV can be found in testicles, brain, heart, and eye. | |
Collagens IX, XII, XIV, XVI, XIX, XX, XXI, XXII, XXVI, and XXIV | Collagen IX can be found in the gristle, vitreous body, and cornea. Collagen XII can be found in the tendons, skin, and gristle. Collagen XVI can be found in the kidneys, smooth muscle, heart, and skin. Collagen XIV can be found in gristle, skin, tendons, bones, eye, nerves, and vessels. Collagen XIX can be found in the prostate gland, placenta, spleen, kidneys, liver, and skin. Collagen XX can be found in corneal epithelium. Collagen XXI can be found in vessels, skeletal muscles, placenta, kidneys, heart, and stomach. Collagen XXII can be found in tissue connections. Collagen XXVI can be found in ovaries and testicles. Collagen XXIV can be found in cornea and bones. | |
Collagens XV and XVIII | Collagen XV can be found in placenta, kidneys, testicles, skin, ovaries, heart, and capillary vessels. Collagen XVIII can be found in lungs, liver, and kidneys. |
Physiochemical Items | Identified Methods | Requirements |
---|---|---|
Visible foreign substance | Light inspection | No obvious foreign substance |
Appearance | Visual identification | White/like-white powder or sponges in the solid state; white/yellow or transparent liquids or gels |
Moisture content | Thermogravimetry analysis | Meeting the technical requirement |
Solubility | Visual identification | The solubility should be elaborated and characterized. |
pH | pH meter | Meeting the technical requirements |
Residue on ignition | High-temperature burning | Meeting the technical requirements |
Quantity | - | Meeting the technical requirements |
Thermal stability | Differential scanning calorimetry | No gelation of visible floc |
Dynamic viscosity | Rotational viscometer method | Meeting the technical requirements |
Types | Recombinant Human-like Collagen | Natural Collagen |
---|---|---|
Allergenicity | Low allergy risk | High allergy risk |
Affinity | High | Weak |
Production technology | Bio-fabrication | Chemical extraction |
Biological activity | High | Low |
Security | Virus-free | Vulnerable to animal viruses |
Purity | Single collagen, fixed composition, and ≤ 95% purity | Mixed collagen and complex composition |
Application | Challenges | Advantages |
---|---|---|
Stroma regeneration | Control over mechanical characteristics can be challenging. | It promotes skin regeneration |
Possible immunogenicity | It can be used to construct different tissue scaffolds. | |
It can support cell differentiation and proliferation. | ||
Wound treatment | Cost of purification and production can be high. | It can be fabricated into different forms. |
Potential for immune response | It can provide unique biocompatibility and cell adhesion. | |
It can enhance wound healing. | ||
3D printing | It needs a specialized 3D printing process. | It has potential to create personalized implants. |
It can control over mechanical characteristics. | It can be combined with various materials to enhance its properties. | |
It can create complex and patient-specific structures. | ||
Orthopedics | It is appropriate for immune response. | It can stimulate bone growth. |
Mechanical strength can be less than some synthetic materials. | It can offer high bioresorbability and biocompatibility. | |
It can be applied for bone tissue techniques. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Shahrajabian, M.H.; Ma, K.; Wang, S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals 2025, 18, 430. https://doi.org/10.3390/ph18030430
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals. 2025; 18(3):430. https://doi.org/10.3390/ph18030430
Chicago/Turabian StyleSun, Wenli, Mohamad Hesam Shahrajabian, Kun Ma, and Shubin Wang. 2025. "Advances in Molecular Function and Recombinant Expression of Human Collagen" Pharmaceuticals 18, no. 3: 430. https://doi.org/10.3390/ph18030430
APA StyleSun, W., Shahrajabian, M. H., Ma, K., & Wang, S. (2025). Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals, 18(3), 430. https://doi.org/10.3390/ph18030430