Skin Wound Healing and Regeneration in Vertebrates

A special issue of Journal of Developmental Biology (ISSN 2221-3759).

Deadline for manuscript submissions: closed (25 April 2025) | Viewed by 1457

Special Issue Editor


E-Mail Website
Guest Editor
Comparative Histolab and Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
Interests: skin development in all vertebrates, especially reptiles AND nervous; organ regeneration in vertebrates, especially reptiles and amphibians
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The process of wound healing of the skin varies broadly among different species of vertebrates and also depends on the age of the injured animal. Scarring is a common result of wound healing in adult amniotes (reptiles, birds and mammals), while in anamniotes (fish and amphibians), the skin repairs well and with little or no scars. Some reptiles can also repair skin wound without scarring but this only occurs for relatively small wounds. The reason for this difference in aquatic versus terrestrial species is only partially known, but it largely derives from the inflammation and immune reaction that follows the wound, which is more intense in amniotes than in anamniotes, and from the type of immune cells that are activated during inflammation.

This Special Issue aims to delineate the variable healing capability among vertebrates. Original or review manuscripts are welcome, dealing with wound healing processes present in aquatic vertebrates, fish, and tetrapods that spend part of their life in water and part in humid or drier land conditions, including amphibians. Finally, manuscripts on the limited healing ability of the skin in reptiles, birds, and mammals are also welcomed for the Special Issue. Common and different processes of skin healing and regeneration in anamniotes and amniotes will be considered. The Special Issue is meant to summarize the present information on the different healing abilities of the wounded skin in aquatic versus terrestrial vertebrates.

Dr. Lorenzo Alibardi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Developmental Biology is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vertebrates
  • skin and wound
  • scarring and healing
  • skin repair
  • regeneration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3888 KiB  
Article
Wound-Induced Regeneration in Feather Follicles: A Stepwise Strategy to Regenerate Stem Cells
by Ting-Xin Jiang, Ping Wu, Ang Li, Randall B. Widelitz and Cheng-Ming Chuong
J. Dev. Biol. 2025, 13(2), 10; https://doi.org/10.3390/jdb13020010 - 27 Mar 2025
Viewed by 853
Abstract
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic [...] Read more.
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic stem cell niche. During normal feather cycling, growth-phase proximal follicle collar bulge stem cells adopt a ring configuration. At the resting and initiation phases, these stem cells descend to the dermal papilla to form papillary ectoderm and ascend to the proximal follicle in a new growth phase. Plucking resting-phase feathers accelerates papillary ectoderm cell activation. Plucking growth-phase feathers depletes collar bulge stem cells; however, a blastema reforms the collar bulge stem cells, expressing KRT15, LGR6, Sox9, integrin-α6, and tenascin C. Removing the follicle base and dermal papilla prevents feather regeneration. Yet, transplanting an exogenous dermal papilla to the follicle base can induce re-epithelialization from the lower follicle sheath, followed by feather regeneration. Thus, there is a stepwise regenerative strategy using stem cells located in the collar bulge, papillary ectoderm, and de-differentiated lower follicle sheath to generate new feathers after different levels of injuries. This adaptable regenerative mechanism is based on the hierarchy of stem cell regenerative capacity and underscores the remarkable resilience of feather follicle regenerative abilities. Full article
(This article belongs to the Special Issue Skin Wound Healing and Regeneration in Vertebrates)
Show Figures

Figure 1

Back to TopTop