Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (131)

Search Parameters:
Keywords = habitat restoration targets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 177
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

28 pages, 3098 KiB  
Article
Geobotanical Study, DNA Barcoding, and Simple Sequence Repeat (SSR) Marker Analysis to Determine the Population Structure and Genetic Diversity of Rare and Endangered Prunus armeniaca L.
by Natalya V. Romadanova, Nazira A. Altayeva, Alina S. Zemtsova, Natalya A. Artimovich, Alexandr B. Shevtsov, Almagul Kakimzhanova, Aidana Nurtaza, Arman B. Tolegen, Svetlana V. Kushnarenko and Jean Carlos Bettoni
Plants 2025, 14(15), 2333; https://doi.org/10.3390/plants14152333 - 28 Jul 2025
Viewed by 437
Abstract
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors [...] Read more.
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors (46 parameters), molecular markers, geobotanical, and remote sensing analyses. Geobotanical and remote sensing analyses enhanced understanding of accession distribution, geological features, and ecosystem health across sites, while also revealing their vulnerability to various biotic and abiotic threats. Of 111 morphologically classified accessions, 54 were analyzed with 13 simple sequence repeat (SSR) markers and four DNA barcoding regions. Our findings demonstrate the necessity of integrated morphological and molecular analyses to differentiate closely related accessions. Genetic analysis identified 11 distinct populations with high heterozygosity and substantial genetic variability. Eight populations exhibited 100% polymorphism, indicating their potential as sources of adaptive genetic diversity. Cluster analysis grouped populations into three geographic clusters, suggesting limited gene flow across Gorges (features of a mountainous landscape) and greater connectivity within them. These findings underscore the need for site-specific conservation strategies, especially for genetically distinct, isolated populations with unique allelic profiles. This study provides a valuable foundation for prioritizing conservation targets, confirming genetic redundancies, and preserving genetic uniqueness to enhance the efficiency and effectiveness of the future conservation and use of P. armeniaca genetic resources in the region. Full article
Show Figures

Figure 1

23 pages, 2732 KiB  
Article
Impacts of Low-Order Stream Connectivity Restoration Projects on Aquatic Habitat and Fish Diversity
by Xinfeng Li, Xuan Che, Xiaolong Chen, Changfeng Tian and Jiahua Zhang
Fishes 2025, 10(7), 321; https://doi.org/10.3390/fishes10070321 - 2 Jul 2025
Viewed by 283
Abstract
River barriers constitute a key factor that is degrading river connectivity and represent a critical research focus in riverine ecosystem conservation. Management authorities and river restoration agencies globally have increasingly employed barrier removal or modification for connectivity restoration projects in recent years, practices [...] Read more.
River barriers constitute a key factor that is degrading river connectivity and represent a critical research focus in riverine ecosystem conservation. Management authorities and river restoration agencies globally have increasingly employed barrier removal or modification for connectivity restoration projects in recent years, practices that are widely discussed and empirically supported in academia. However, existing research predominantly focuses on large dams in primary rivers, overlooking the more severe fragmentation caused by low-head barriers within low-order streams. This study targets the Yanjing River (total length: 70 km), a third-order tributary of the Yangtze River basin, implementing culvert modification and complete removal measures, respectively, for two river barriers distributed within its terminal 9 km reach. Using differential analysis, principal component analysis (PCA), cluster analysis, Mantel tests, and structural equation modeling (SEM), we systematically examined the mechanisms by which connectivity restoration projects influences aquatic habitat and fish diversity, the evolution of reach heterogeneity, and intrinsic relationships between aquatic environmental factors and diversity metrics. Results indicate that (1) the post-restoration aquatic habitat significantly improved with marked increases in fish diversity metrics, where hydrochemical factors and species diversity exhibited the highest sensitivity to connectivity changes; (2) following restoration, the initially barrier-fragmented river segments (upstream, middle, downstream) exhibited significantly decreased differences in aquatic habitat and fish diversity, demonstrating progressive homogenization across reaches; (3) hydrological factors exerted stronger positive effects on fish diversity than hydrochemical factors did, particularly enhancing species diversity, with a significant positive synergistic effect observed between species diversity and functional diversity. These studies demonstrate that “culvert modification and barrier removal” represent effective project measures for promoting connectivity restoration in low-order streams and eliciting positive ecological effects, though they may reduce the spatial heterogeneity of short-reach rivers in the short term. It is noteworthy that connectivity restoration projects should prioritize the appropriate improvement of hydrological factors such as flow velocity, water depth, and water surface width. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes, Second Edition)
Show Figures

Graphical abstract

50 pages, 11097 KiB  
Article
Integrating 3D-Printed and Natural Staghorn Coral (Acropora cervicornis) Restoration Enhances Fish Assemblages and Their Ecological Functions
by Edwin A. Hernández-Delgado, Jaime S. Fonseca-Miranda, Alex E. Mercado-Molina and Samuel E. Suleimán-Ramos
Diversity 2025, 17(7), 445; https://doi.org/10.3390/d17070445 - 23 Jun 2025
Viewed by 1452
Abstract
Coral restoration is essential for recovering depleted populations and reef ecological functions. However, its effect on enhancing fish assemblages remains understudied. This study investigated the integration of 3D-printed and natural Staghorn coral (Acropora cervicornis) out-planting to assess their role in enhancing [...] Read more.
Coral restoration is essential for recovering depleted populations and reef ecological functions. However, its effect on enhancing fish assemblages remains understudied. This study investigated the integration of 3D-printed and natural Staghorn coral (Acropora cervicornis) out-planting to assess their role in enhancing benthic spatial complexity and attracting fish communities. Conducted between 2021 and 2023 at Culebra Island, Puerto Rico, we employed a before-after-control-impact (BACI) design to test four treatments: natural A. cervicornis, 3D-printed corals, mixed stands of 3D-printed and natural corals, and non-restored controls. Fish assemblages were monitored through stationary counts. Results showed that integrating 3D-printed and natural corals enhanced fish assemblages and their ecological functions. Significant temporal changes in fish community structure and biodiversity metrics were observed, influenced by treatment and location. Herbivore abundance and biomass increased over time, especially in live coral and 3D-printed plots. Reefs with higher rugosity exhibited greater Scarid abundance and biomass post-restoration. Piscivore abundance also rose significantly over time, notably at Tampico site. Fishery-targeted species density and biomass increased, particularly in areas with live and 3D-printed coral out-plants. Fish assemblages became more complex and diverse post-restoration, especially at Tampico, which supported greater habitat complexity. Before restoration, fish assemblages showed a disturbed status, with biomass k-dominance curves above abundance curves. Post-out-planting, this trend reversed. Control sites showed no significant changes. The study demonstrates that restoring fast-growing branching corals, alongside 3D-printed structures, leads to rapid increases in abundance and biomass of key fishery species, suggesting its potential role promoting faster ecosystem recovery and enhanced coral demographic performance. Full article
Show Figures

Figure 1

17 pages, 1218 KiB  
Review
Threatened Aquatic Plants of the Southern Tigris-Euphrates Basin: Status, Threats, and Conservation Priorities
by Murtada Naser, Amaal Yasser, Jonas Schoelynck and Franz Essl
Plants 2025, 14(13), 1914; https://doi.org/10.3390/plants14131914 - 22 Jun 2025
Viewed by 624
Abstract
The Tigris-Euphrates basin hosts a diverse assemblage of native aquatic plants vital to the region’s ecological and cultural heritage. However, decades of hydrological alterations, pollution, salinity intrusion, habitat destruction, and climate change have caused significant declines in aquatic plant species diversity. This review [...] Read more.
The Tigris-Euphrates basin hosts a diverse assemblage of native aquatic plants vital to the region’s ecological and cultural heritage. However, decades of hydrological alterations, pollution, salinity intrusion, habitat destruction, and climate change have caused significant declines in aquatic plant species diversity. This review compiles historical and contemporary information on key native aquatic plant species, assesses their current conservation status, identifies major threats, and provides recommendations for their protection. Sensitive submerged and floating species, including Vallisneria spiralis, Najas marina, and Potamogeton spp., have been particularly affected, with many now being rare or locally extinct. Although restoration efforts in the Mesopotamian Marshes have partially restored some wetlands, aquatic plant conservation remains largely overlooked. We propose targeted recovery plans, integration of aquatic plants into wetland management, enhancement of water quality measures, and increased cross-border hydrological cooperation. Protecting native aquatic flora is essential for maintaining the ecological integrity and resilience of the Tigris-Euphrates basin. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 10286 KiB  
Article
Plant Community Restoration Efforts in Degraded Blufftop Parkland in Southeastern Minnesota, USA
by Neal D. Mundahl, Austin M. Yantes and John Howard
Land 2025, 14(7), 1326; https://doi.org/10.3390/land14071326 - 22 Jun 2025
Viewed by 556
Abstract
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn [...] Read more.
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn (Rhamnus cathartica) and honeysuckles (Lonicera spp.). Habitat restoration was initiated in the early 1990s, but management gaps and a seedbank of invasives compromised initial efforts. More consistent and sustainable restoration activities since 2016 have included cutting and chemical treatment of invasives, managed goat browsing, targeted reseeding and plug planting with native species, and more regular prescribed fires. Throughout the restoration process, we assessed changes in buckthorn densities in response to various management practices, assessed the restored savanna tree community, and documented the presence of blooming plants across all park habitats. Manual clearing of woody invasives and repeated goat browsing significantly reduced buckthorn and honeysuckle abundance in prairies and savannas. Park plant communities responded to the combination of management strategies with reduced densities of woody invasives and expanding diversity (currently >220 species present) of forbs and grasses, including a large and growing population of state-threatened Great Indian Plantain (Arnoglossum reniforme). Prescribed fires have benefitted prairies but have done little to improve savanna plant communities, due largely to excessive tree canopy coverage causing a lack of burnable fuels (i.e., dry forbs and grasses). Improved partnerships between landowners and dedicated volunteers are working to expand restoration efforts to include other portions of the park and adjacent woodlands. Full article
Show Figures

Figure 1

13 pages, 1577 KiB  
Article
Spatio-Temporal Habitat Dynamics of Migratory Small Yellow Croaker (Larimichthys polyactis) in Hangzhou Bay, China
by Xiangyu Long, Dong Wang, Pengbo Song, Mengwen Han, Rijin Jiang and Yongdong Zhou
Fishes 2025, 10(6), 298; https://doi.org/10.3390/fishes10060298 - 19 Jun 2025
Viewed by 395
Abstract
The small yellow croaker (Larimichthys polyactis), a migratory estuarine-demersal fish critical to East Asian fisheries, has faced severe population declines because of anthropogenic pressures (e.g., overfishing and anthropogenic habitat modification) and shifting environmental conditions. This study investigates its spatio-temporal habitat dynamics [...] Read more.
The small yellow croaker (Larimichthys polyactis), a migratory estuarine-demersal fish critical to East Asian fisheries, has faced severe population declines because of anthropogenic pressures (e.g., overfishing and anthropogenic habitat modification) and shifting environmental conditions. This study investigates its spatio-temporal habitat dynamics in Hangzhou Bay (2017–2023) using fisheries surveys and species distribution models (SDMs), with insights applicable to Pacific Coast migratory fish conservation. We evaluated the performance of eleven modeling algorithms to identify the most accurate model for predicting small yellow croaker distributions. Our results showed that the random forest algorithm outperformed other models, with a high sensitivity (95.238) and specificity (99.49), demonstrating its ability to capture complex non-linear relationships between environmental factors and species distribution. Depth emerged as the most influential factor, accounting for 30% of the importance in the model, with small yellow croakers preferring deeper waters around 60 m. Salinity was the second most important factor, with higher occurrence probabilities in areas where salinity exceeded 25 PSU. Other environmental factors, such as temperature and dissolved oxygen, had relatively smaller impacts on distribution. Spatially, small yellow croakers were predominantly distributed in offshore regions east of 122.5° E, where deeper waters and higher salinity levels provided suitable habitat conditions. This study underscores the need for targeted management measures, such as habitat restoration, to ensure the sustainable management of small-bodied yellow croaker populations. Full article
Show Figures

Figure 1

18 pages, 4261 KiB  
Article
Assessment of Suitable Habitats and Identification of Key Protection Areas for Polyplectron katsumatae in Jianfengling, Hainan Province, China
by Wutao Yao, Yong Ma, An Long, Lixi Liu, Erping Shang, Shuyan Zhang, Jin Yang and Tianxiong Gao
Life 2025, 15(5), 826; https://doi.org/10.3390/life15050826 - 21 May 2025
Viewed by 474
Abstract
Polyplectron katsumatae is a rare and endangered species endemic to Hainan, China. It has long been regarded as a subspecies of the widely distributed Grey Peacock-Pheasant (Polyplectron bicalcaratum), a classification that has resulted in a paucity of targeted conservation studies and [...] Read more.
Polyplectron katsumatae is a rare and endangered species endemic to Hainan, China. It has long been regarded as a subspecies of the widely distributed Grey Peacock-Pheasant (Polyplectron bicalcaratum), a classification that has resulted in a paucity of targeted conservation studies and rendered efforts to protect and restore its populations and habitats exceedingly challenging. In this study, the Jianfengling section of Hainan Tropical Rainforest National Park was designated as the research area. We comprehensively utilized infrared camera monitoring data for P. katsumatae and other species, alongside habitat environmental factor data obtained through multiple monitoring approaches. An ensemble species distribution model (ESDM) was employed to evaluate the habitat suitability for four ground-dwelling bird species, including P. katsumatae, and to investigate their environmental preferences and competitive interactions during habitat selection. Subsequently, the Marxan model was applied to identify key protection areas for P. katsumatae. The results indicate that the suitable habitat for P. katsumatae is primarily distributed in the central, eastern, and certain southern areas of the study region, with low spatial overlap and minimal competition from the suitable habitats of the other three ground-dwelling bird species. However, due to anthropogenic disturbances and the inherently stringent habitat requirements of P. katsumatae, its overall suitable habitat area is limited, exhibiting a concentrated distribution overall with fragmented, small patches within it. Our study recommends designating the eastern and southern regions of the study area as key protection areas for P. katsumatae, thereby providing a robust baseline environment and policy support for the targeted protection of its habitat and the recovery of its populations. Full article
(This article belongs to the Special Issue Advances in Wildlife Behavior and Biodiversity)
Show Figures

Figure 1

13 pages, 3042 KiB  
Article
Spatiotemporal Dynamics of Macrobenthic Communities and Environmental Factors in the Aquatic Vegetation Restoration Zone of Baimao Bay
by Weiwei Wei, Ning Hu, Chunhua Li, Chun Ye, Kexin Miao, Yang Wang, Xian Xiao, Yuan Zhao, Youde Yang and Liangkui Lai
Diversity 2025, 17(5), 349; https://doi.org/10.3390/d17050349 - 15 May 2025
Viewed by 332
Abstract
Lake Taihu, China’s third-largest freshwater lake, faces severe eutrophication challenges and therefore requires innovative ecological restoration strategies. This study systematically evaluates the ecological effects of aquatic vegetation restoration in Baimao Bay through comprehensive analysis of macrobenthic communities and environmental parameters, demonstrating significant water [...] Read more.
Lake Taihu, China’s third-largest freshwater lake, faces severe eutrophication challenges and therefore requires innovative ecological restoration strategies. This study systematically evaluates the ecological effects of aquatic vegetation restoration in Baimao Bay through comprehensive analysis of macrobenthic communities and environmental parameters, demonstrating significant water quality improvements including a 42.9% decrease in total phosphorus, a 69.4% decline in chl-a concentration, a 34.8% reduction in ammonium nitrogen, and a 81.2% increase in water transparency. Multivariate analysis revealed a fundamental ecological driver shift where post-restoration pH and transparency replaced nutrients as dominant factors, reducing total nitrogen/total phosphorus influence by 40–60%, while filter-feeding species (predominantly bivalves and gastropods) became the dominant macrobenthic biomass group (72.4%) with pollution-tolerant oligochaetes decreasing by 69.1% in abundance, alongside distinct spatial heterogeneity showing pH-regulated lakeshore communities (8.37 to 8.45), transparency-governed shallow-water communities (H′ = 1.35), and a residual nutrient-influenced deep-water area, with a shallow-water area (<2.5 m) unexpectedly exhibiting 3.2 times higher biomass (222.51 g/m2) than deep waters, highlighting vegetation-mediated habitat optimization. These findings advance restoration ecology theory by elucidating ecosystem transition mechanisms from nutrient-driven to light-regulated systems while providing a replicable technical framework for global shallow eutrophic lake restoration, establishing quantitative benchmarks including target transparency (>64 cm) and chlorophyll-a levels (<10 μg/L) for effective eutrophication reversal. Full article
Show Figures

Figure 1

19 pages, 4344 KiB  
Article
Impacts of Climate Change on the Spatial Distribution and Habitat Suitability of Nitraria tangutorum
by Lianxing Li, Zhiqing Jia, Lingxianzi He, Dong Han, Qiankun Yang, Jialuo Li and Pingyi Zhou
Plants 2025, 14(10), 1446; https://doi.org/10.3390/plants14101446 - 12 May 2025
Viewed by 551
Abstract
Nitraria tangutorum (Zygophyllaceae) is an ecologically and economically valuable shrub, locally dominant in the arid and semi-arid deserts of northwest China owing to its exceptional drought resistance and salt tolerance. In this study, environmental variable importance was evaluated within the MaxEnt model using [...] Read more.
Nitraria tangutorum (Zygophyllaceae) is an ecologically and economically valuable shrub, locally dominant in the arid and semi-arid deserts of northwest China owing to its exceptional drought resistance and salt tolerance. In this study, environmental variable importance was evaluated within the MaxEnt model using percent-contribution metrics, based on 154 distribution records of N. tangutorum and 14 bioclimatic and soil-related environmental variables. We identified the five key variables of N. tangutorum distribution as follows: Precipitation of the Wettest Quarter (Bio16), Topsoil Sodicity (T_esp), Topsoil Electroconductibility (T_ece), Topsoil Car-bonate or lime content (T_CACO3), and Precipitation of the Driest Month (Bio14). The constructed MaxEnt model was then used to project the potential distribution areas of N. tangutorum under the four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) for both current climate conditions and future climate conditions (2050s and 2090s). The results indicate that, under present-day conditions, high-suitability areas occur primarily in Xinjiang, Gansu, Qinghai, Inner Mongolia, and Ningxia; in future climate scenarios, the suitable habitat for N. tangutorum is anticipated to shrink by the 2050s but is expected to gradually recover by the 2090s. As time progresses, the suitable habitat areas will generally expand towards higher latitude regions. These findings demonstrate N. tangutorum’s strong adaptive potential to climate change and provide a scientific basis for its targeted introduction, cultivation, and long-term management in desert restoration and ecological rehabilitation projects. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 9014 KiB  
Article
Spatially Explicit Evaluation of the Suitability and Quality Improvement Potential of Forest and Grassland Habitat in the Yanhe River Basin
by Zhihong Yao, Xiaoyang Sun, Peiqing Xiao, Zhuangzhuang Liu, Menghao Yang and Peng Jiao
Land 2025, 14(5), 1049; https://doi.org/10.3390/land14051049 - 12 May 2025
Viewed by 455
Abstract
Habitat suitability assessment for forest and grassland ecosystems is a critical component of ecological restoration and land use planning in the Loess Plateau, aiming to advance soil and water conservation and foster sustainable ecological environment development. Despite progress in vegetation restoration, systematic evaluations [...] Read more.
Habitat suitability assessment for forest and grassland ecosystems is a critical component of ecological restoration and land use planning in the Loess Plateau, aiming to advance soil and water conservation and foster sustainable ecological environment development. Despite progress in vegetation restoration, systematic evaluations of habitat suitability in complex geomorphic regions like the Loess Plateau remain scarce, particularly in balancing hydrological and ecological trade-offs. The Yanhe River Basin (7725 km2), a sediment-prone tributary of the Yellow River, exemplifies the challenges of soil erosion and semi-arid climatic constraints, making it a critical case for evaluating restoration strategies. This study employed a comprehensive approach utilizing Analytic Hierarchy Process (AHP), Geographic Detector, mathematical statistics, and other methods. An evaluation indicator system and methodology were established to assess the suitability of forest and grassland habitats in the Yanhe River Basin, evaluating the suitability and quality improvement potential under the current land use conditions. The results indicate: (1) The dominant factors influencing the suitable distribution of forests include photosynthetically active radiation (PAR), soil total phosphorus content, annual precipitation, and elevation. For grasslands, the dominant factors include photosynthetically active radiation, annual average temperature, elevation, and annual precipitation. (2) In the watershed, forestland and grassland areas classified as moderately suitable or higher cover 1064.9 km2 and 4196.9 km2, accounting for 91.9% and 94.7% of their total respective areas, indicating a generally rational spatial allocation of forest and grassland ecosystems. (3) The improvable area for forests measures 366 km2 (34.4% of moderately or higher suitability zones), with most already meeting coverage thresholds. In contrast, grasslands have an improvable area of 2491.6 km2 (59.4% of moderately or higher suitability zones), where over half of the area remains below coverage thresholds corresponding to their habitat conditions. (4) Forests can adopt natural restoration-focused low-intensity interventions through strengthened closure management, while grasslands require spatially tailored measures—such as precipitation interception and enhanced stewardship—targeting suitability-based potential grades, collectively achieving overall improvement in grassland vegetation coverage. This study represents the first systematic evaluation of forest–grassland habitat suitability in the Yanhe River Basin, elucidating its spatial distribution patterns and providing critical insights for watershed-scale ecological restoration. Full article
Show Figures

Figure 1

20 pages, 603 KiB  
Article
The EU Nature Restoration Law (NRL) and the Common Agricultural Policy (CAP): State of the Art and Future Challenges for Italian Water Resources
by Antonio Manzoni, Manal Hamam, Giulia Pastorelli, Luigi Servadei, Silvia Chiappini, Alessandra Pesce, Serena Tarangioli and Raffaella Pergamo
Land 2025, 14(5), 987; https://doi.org/10.3390/land14050987 - 2 May 2025
Viewed by 865
Abstract
Among its various targets on restoring natural habitats and ecosystems in the EU, the recently adopted Nature Restoration Law (NRL) introduces ambitious targets for restoring surface water bodies (SWBs) as well. Simultaneously, the Italian CAP Strategic Plan for the implementation of the Common [...] Read more.
Among its various targets on restoring natural habitats and ecosystems in the EU, the recently adopted Nature Restoration Law (NRL) introduces ambitious targets for restoring surface water bodies (SWBs) as well. Simultaneously, the Italian CAP Strategic Plan for the implementation of the Common Agricultural Policy 2023–2027 has been designed to enhance sustainable agricultural practices, including water resource management. This paper provides a comparative analysis of the synergies, gaps, and challenges between these two regulatory frameworks, focusing on sustainable water use in Italian agriculture. A two-level comparative matrix methodology is employed to evaluate the alignment between the NRL’s objectives for freshwater ecosystems and the measures taken by the Italian CAP Strategic Plan on water resources. The results highlight key areas of convergence, existing shortcomings, and necessary steps for aligning Italian agricultural policies with the EU’s water restoration goals. The findings offer insights for policymakers, researchers, and stakeholders engaged in water governance, biodiversity conservation, and agricultural sustainability. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

6 pages, 2436 KiB  
Proceeding Paper
Regeneration Status and Diversity of Woody Plant Species in the Priority Habitat 91E0* in Nestos, Greece
by Alexandra D. Solomou, Evangelia Korakaki, Evangelia Avramidou, Panagiotis Koulelis, Georgios Mantakas and Georgios Karetsos
Proceedings 2025, 117(1), 22; https://doi.org/10.3390/proceedings2025117022 - 30 Apr 2025
Viewed by 286
Abstract
The priority habitat 91E0*, consisting of alluvial forests with Alnus glutinosa (L.) Gaertn. and Fraxinus excelsior L., represents a vital ecosystem along Europe’s riverbanks and floodplains. In Greece, the alluvial forests of the Nestos Delta are particularly notable for their unique composition and [...] Read more.
The priority habitat 91E0*, consisting of alluvial forests with Alnus glutinosa (L.) Gaertn. and Fraxinus excelsior L., represents a vital ecosystem along Europe’s riverbanks and floodplains. In Greece, the alluvial forests of the Nestos Delta are particularly notable for their unique composition and ecological importance. The present study aimed to assess woody species’ regeneration status and diversity in the priority habitat 91E0* in Nestos, Greece. In the studied area, 13 plant species belonging to 12 genera from 10 families were recorded. The most numerous families were Salicaceae (23.07%) and Moraceae (15.38%). The regeneration index (IR) for Amorpha fruticosa L. and Acer negundo L. exhibited a substantial decline, decreasing from 31.75 and 21.12 cm m−2 to 2.07 and 2.6 cm m−2, respectively. This intervention created space for expanding native tree species such as Cornus sanguinea L., Morus alba L., and Populus alba L. The results demonstrate that the regeneration of P. alba L. is currently the most extensive (31.1%) in the alluvial forest, with C. sanguinea L., M. alba L., and A. glutinosa (L.) Gaertn. also showing significant regeneration. In contrast, the regeneration of F. angustifolia Vahl remains very limited (0.21 cm m−2), indicating the necessity for targeted restoration efforts. Full article
Show Figures

Figure 1

11 pages, 2807 KiB  
Article
Study on the Flow Velocity Preference of the Four Major Chinese Carps Using Convolutional Neural Networks
by Ning Qiu, Wenjing Li, Yi Yu, Jianna Jia, Guoqiang Ma and Shitao Peng
Fishes 2025, 10(4), 172; https://doi.org/10.3390/fishes10040172 - 11 Apr 2025
Viewed by 416
Abstract
Flow velocity is a critical factor in determining the suitability of fish habitats. Understanding the preference patterns of the four major Chinese carps (FMCCs) for different flow velocities is crucial for their habitat conservation and restoration. In this study, the preference of individual [...] Read more.
Flow velocity is a critical factor in determining the suitability of fish habitats. Understanding the preference patterns of the four major Chinese carps (FMCCs) for different flow velocities is crucial for their habitat conservation and restoration. In this study, the preference of individual fish species, approximately 15 cm in length, for flow velocity was investigated at flow velocity gradients of 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 times their body length. Additionally, a deep learning algorithm based on convolutional neural networks (CNNs) was employed for fish target detection. The results showed that, at this length, black carp (Mylopharyngodon piceus) preferred fast currents when the inlet flow velocity was between 0.4 and 1.6 times their body length, while grass carp (Ctenopharyngodon idella), silver carp (Hypophthalmichthys molitrix), and bighead carp (Hypophthalmichthys nobilis) preferred fast currents when the inlet flow velocity of the test flume was between 0.4 and 2.0 times their body length. However, this preference for fast currents decreased as the overall flow velocity increased to a specific threshold, eventually leading to their avoidance. The highest preference for fast currents among the four species was observed at inlet flow velocities of 1.2, 0.4, 0.8, and 0.8 times their body length, respectively. The findings of this study provide important insights into habitat conservation and restoration for the FMCCs in projects focused on the construction of navigation channels and water conservancy. Full article
Show Figures

Figure 1

15 pages, 2959 KiB  
Article
How Land Use and Hydrological Characteristics Impact Stream Conditions in Impaired Ecosystems
by Se-Rin Park, Yujin Park, Jong-Won Lee, Hyunji Kim, Kyung-A You and Sang-Woo Lee
Land 2025, 14(4), 829; https://doi.org/10.3390/land14040829 - 10 Apr 2025
Viewed by 492
Abstract
Anthropogenic influence has altered watershed environments and hydrological processes, leading to increased occurrences of impaired streams and negative impacts on benthic invertebrates. While individual environmental factors affecting benthic macroinvertebrates have been studied, the cascading effects of land use change and hydrological alterations remain [...] Read more.
Anthropogenic influence has altered watershed environments and hydrological processes, leading to increased occurrences of impaired streams and negative impacts on benthic invertebrates. While individual environmental factors affecting benthic macroinvertebrates have been studied, the cascading effects of land use change and hydrological alterations remain unclear. This study employed structural equation modeling (SEM) to analyze the interactions among land use proportion, hydrological characteristics, substrate composition, and water quality and their influence on benthic macroinvertebrate communities in impaired streams upstream of the Paldang Dam in the Han River Basin, South Korea. Analysis of data from 24 streams surveyed between 2018 and 2022—3 or 6 streams per year—under the Impaired Stream Diagnosis Program indicated that urban and agricultural land cover, low substrate diversity, high pollutant concentrations, and altered flow conditions (low velocity and discharge) were associated with decreased pollution-sensitive Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa and increased pollution-tolerant and collector–gatherer taxa. These findings highlight the role of land use-driven hydrological changes in stream ecosystem degradation and underscore the need for targeted restoration strategies, such as riparian buffer zones, substrate enhancement, and hydrological flow restoration, to mitigate these impacts and improve benthic macroinvertebrate habitats. Full article
Show Figures

Figure 1

Back to TopTop