Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = habitat filtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4925 KiB  
Article
Environmental Heterogeneity Drives Diversity Across Forest Strata in Hopea hainanensis Communities
by Shaocui He, Donghai Li, Xiaobo Yang, Dongling Qi, Naiyan Shang, Caiqun Liang, Rentong Liu and Chunyan Du
Diversity 2025, 17(8), 556; https://doi.org/10.3390/d17080556 - 7 Aug 2025
Viewed by 207
Abstract
Species and phylogenetic diversity play vital roles in sustaining the structure, function, and resilience of plant communities, particularly in tropical rainforests. However, the mechanisms according to which environmental filtering and competitive exclusion influence diversity across forest layers remain insufficiently understood. In this study, [...] Read more.
Species and phylogenetic diversity play vital roles in sustaining the structure, function, and resilience of plant communities, particularly in tropical rainforests. However, the mechanisms according to which environmental filtering and competitive exclusion influence diversity across forest layers remain insufficiently understood. In this study, we investigated the species and phylogenetic diversity patterns in two representative tropical rainforest sites—Bawangling and Jianfengling—within Hainan Tropical Rainforest National Park, China, focusing on communities associated with the endangered species Hopea hainanensis. We employed a one-way ANOVA and Pearson’s correlation analyses to examine the distribution characteristics and interrelationships among diversity indices and used Mantel tests to assess the correlations with environmental variables. Our results revealed that the plant community in Jianfengling exhibited a significantly higher species richness at the family, genus, and species levels (a total of 288 plant species have been recorded, belonging to 82 families and 183 genera) compared to that in Bawangling (a total of 212 plant species, belonging to 75 families and 162 genera). H. hainanensis held the highest importance value in the middle tree layer across both sites (IV(BWL) = 12.44; IV(JFL) = 5.73), while dominant species varied notably among other forest layers, indicating strong habitat specificity. Diversity indices, including the Simpson index, the Shannon–Wiener index, and Pielou’s evenness, were significantly higher in the large shrub layer of Jianfengling, whereas Bawangling showed a relatively higher Shannon–Wiener index in the middle shrub layer. Phylogenetic diversity (PD) and the phylogenetic structure indices (NRI and NTI) displayed distinct vertical stratification patterns between sites. Furthermore, the PD in Bawangling’s large shrub layer was positively correlated with total phosphorus in the soil, while community evenness was influenced by soil organic carbon and total nitrogen. In Jianfengling, species richness was significantly associated with soil bulk density, altitude, and pH. These findings enhance our understanding of the ecological and evolutionary processes shaping biodiversity in tropical rainforests and highlight the importance of incorporating both species and phylogenetic metrics into the conservation strategies for endangered species such as Hopea hainanensis. Full article
(This article belongs to the Special Issue Biodiversity Conservation Planning and Assessment—2nd Edition)
Show Figures

Figure 1

25 pages, 2682 KiB  
Article
A Semi-Automated, Hybrid GIS-AI Approach to Seabed Boulder Detection Using High Resolution Multibeam Echosounder
by Eoin Downing, Luke O’Reilly, Jan Majcher, Evan O’Mahony and Jared Peters
Remote Sens. 2025, 17(15), 2711; https://doi.org/10.3390/rs17152711 - 5 Aug 2025
Viewed by 795
Abstract
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, [...] Read more.
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, but the growing availability of high-resolution multibeam echosounder (MBES) data offers a cost-effective alternative. This study presents a semi-automated, hybrid GIS-AI approach that combines bathymetric position index filtering and a Random Forest classifier to detect boulders and delineate boulder fields from MBES data. The method was tested on a 0.24 km2 site in Long Island Sound using 0.5 m resolution data, achieving 83% recall, 73% precision, and an F1-score of 77—slightly outperforming the average of expert manual picks while offering a substantial improvement in time-efficiency. The workflow was validated against a consensus-based master dataset and applied across a 79 km2 study area, identifying over 75,000 contacts and delineating 89 contact clusters. The method enables objective, reproducible, and scalable boulder detection using only MBES data. Its ability to reduce reliance on SSS surveys while maintaining high accuracy and offering workflow customization makes it valuable for geohazard assessment, benthic habitat mapping, and offshore infrastructure planning. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Viewed by 334
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 267
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

16 pages, 3297 KiB  
Article
Predicting the Potential Geographical Distribution of Scolytus scolytus in China Using a Biomod2-Based Ensemble Model
by Wei Yu, Dongrui Sun, Jiayi Ma, Xinyuan Gao, Yu Fang, Huidong Pan, Huiru Wang and Juan Shi
Insects 2025, 16(7), 742; https://doi.org/10.3390/insects16070742 - 21 Jul 2025
Viewed by 478
Abstract
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, [...] Read more.
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, an ensemble model was developed using the Biomod2 platform to predict its potential geographical distribution in China. The selection of climate variables was critical for accurate prediction. Eight bioclimatic factors with high importance were selected from 19 candidate variables. Among these, the three most important factors are the minimum temperature of the coldest month (bio6), precipitation seasonality (bio15), and precipitation in the driest quarter (bio17). Under current climate conditions, suitable habitats for S. scolytus are mainly located in the temperate regions between 30° and 60° N latitude. These include parts of Europe, East Asia, eastern and northwestern North America, and southern and northeastern South America. In China, the low-suitability area was estimated at 37,883.39 km2, and the medium-suitability area at 251.14 km2. No high-suitability regions were identified. However, low-suitability zones were widespread across multiple provinces. Under future climate scenarios, low-suitability areas are still projected across China. Medium-suitability areas are expected to increase under SSP370 and SSP585, particularly along the eastern coastal regions, peaking between 2041 and 2060. High-suitability zones may also emerge under these two scenarios, again concentrated in coastal areas. These findings provide a theoretical basis for entry quarantine measures and early warning systems aimed at controlling the spread of S. scolytus in China. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 3184 KiB  
Article
Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia
by Cristian Granados-Martínez, Meyer Guevara-Mora, Eugenia López-López and José Rincón Ramírez
Water 2025, 17(14), 2142; https://doi.org/10.3390/w17142142 - 18 Jul 2025
Viewed by 1126
Abstract
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining [...] Read more.
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining influence zones (MZs). Ten sampling stations were established, and macroinvertebrate communities were assessed alongside physical, chemical, and hydromorphological variables during the dry season (January–March 2021). A total of 9288 individuals from 84 genera across 16 orders were collected. Generalized Linear Models revealed significant differences among zones for 67 genera (79.8%), indicating strong community responses to land use gradients. Conserved zones exhibited the highest diversity according to the Hill numbers and were dominated by sensitive taxa, including Simulium, Smicridea, and Leptohyphes. Urban/agricultural zones showed the lowest richness (35 genera) and were characterized by disturbance-tolerant species, particularly Melanoides. Mining zones displayed intermediate diversity but exhibited severe habitat alterations. A redundancy analysis with variance partitioning revealed that land use types constituted the primary driver of community structure (a 24.1% pure effect), exceeding the physical and chemical variables (19.5%) and land cover characteristics (19.2%). The integrated model explained 63.5% of the total compositional variation, demonstrating that landscape-scale anthropogenic disturbances exert a greater influence on aquatic communities than local environmental conditions alone. Different anthropogenic activities create distinct environmental filters affecting macroinvertebrate assemblages, emphasizing the importance of land use planning for maintaining aquatic ecosystem integrity in semi-arid watersheds. Full article
Show Figures

Graphical abstract

22 pages, 2531 KiB  
Article
Canopy Cover Drives Odonata Diversity and Conservation Prioritization in the Protected Wetland Complex of Thermaikos Gulf (Greece)
by Dimitris Kaltsas, Lydia Alvanou, Ioannis Ekklisiarchos, Dimitrios I. Raptis and Dimitrios N. Avtzis
Forests 2025, 16(7), 1181; https://doi.org/10.3390/f16071181 - 17 Jul 2025
Viewed by 267
Abstract
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and [...] Read more.
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and separately for the two suborders (Zygoptera, Anisoptera) in relation to geographic and ecological parameters at the riparian zone of four rivers and one canal within the Axios Delta National Park and the Natura 2000 SAC GR1220002 in northern Greece, using the line transect technique. In total, 6252 individuals belonging to 28 species were identified. The compositional and diversity patterns were significantly different between agricultural and natural sites. Odonata assemblages at croplands were comparatively poorer, dominated by a few, widely distributed, taxonomically proximal species, tolerant to environmental changes, as a result of modifications and consequent alterations of abiotic conditions at croplands, which also led to higher local contribution to β-diversity and species turnover. The absence of several percher, endophytic, and threatened species from agricultural sites led to significantly lower diversity, as a result of environmental filtering due to ecophysiological restrictions. Taxonomic and functional diversity, uniqueness, and Dragonfly Biotic Index (DBI) were significantly higher in riparian forests, due to the sensitivity of damselflies to dehydration, and the avoidance of habitat loss and extreme temperatures by dragonflies, which prefer natural shelters near the ecotone. The newly introduced Conservation Value Index (CVI) revealed 21 conservation hotspots of Odonata (14 at canopy cover sites), widely distributed within the borders of NATURA 2000 SAC GR1220002. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

15 pages, 2601 KiB  
Article
Antibiotic Resistance in Filters from Car Air Conditioning Systems
by Agnieszka Jurkowska, Agnieszka Tabernacka and Ewa Karwowska
Appl. Sci. 2025, 15(14), 7787; https://doi.org/10.3390/app15147787 - 11 Jul 2025
Viewed by 372
Abstract
In the present study, a quantitative analysis of culturable microflora of car cabin filters was accomplished, with a special focus on bacteria resistant to some antibiotics. The occurrence of antibiotic-resistant bacteria was considered in the filters with activated carbon and filters with antibacterial [...] Read more.
In the present study, a quantitative analysis of culturable microflora of car cabin filters was accomplished, with a special focus on bacteria resistant to some antibiotics. The occurrence of antibiotic-resistant bacteria was considered in the filters with activated carbon and filters with antibacterial properties. The minimum inhibitory concentration was evaluated for selected bacterial strains isolated from the filters. It was found that cabin filters after long-time operation are not only heavily contaminated with bacteria and fungi but also constitute a habitat for numerous antibiotic-resistant bacteria. The numbers of culturable bacteria resistant to penicillin, nitrofurantoin, rifampicin, doxycycline, or gentamicin reached 102–103 CFU/g of filter material. No relationship was observed between car brand or filter type and the abundance of antibiotics-resistant bacteria. The lower bacterial content of antibacterial filters was not accompanied by a proportionally lower content of resistant microorganisms which may indicate that the present techniques are not sufficient to limit their growth effectively. Pseudomonas sp. isolates from the filter material were not sensitive even in relation to high concentrations of some antibiotics, which confirms their significant resistance potential and may be important in the context of the spread of drug resistance in the vehicles indoors. Full article
Show Figures

Figure 1

18 pages, 1565 KiB  
Article
Spatial and Seasonal Analysis of Phyllosphere Bacterial Communities of the Epiphytic Gymnosperm Zamia pseudoparasitica
by Lilisbeth Rodríguez-Castro, Adriel M. Sierra, Juan Carlos Villarreal Aguilar and Kristin Saltonstall
Appl. Biosci. 2025, 4(3), 35; https://doi.org/10.3390/applbiosci4030035 - 11 Jul 2025
Viewed by 303
Abstract
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during [...] Read more.
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during the rainy and dry seasons in the Republic of Panama. We used DNA metabarcoding to describe the total bacteria community with the 16S rRNA gene and the diazotrophic community with nifH gene. Common taxa included members of the Rhizobiales, Frankiales, Pseudonocardiales, Acetobacteriales, and the diazotrophic community was dominated by Cyanobacateria. We observed similar patterns of alpha diversity across sites and seasons, and no community differences were seen within sites between the rainy and dry seasons for either the 16S rRNA or nifH genes. However, pairwise comparisons showed some statistically significant differences in community composition between sites and seasons, but these explained only a small portion of the variation. Beta diversity partitioning indicated that communities were more phylogenetically closely related than expected by chance, indicative of strong environmental or host filtering shaping these phyllosphere communities. These results highlight the influence of host-driven selection and habitat stability in shaping phyllosphere microbiota, offering new insights into microbial assembly in tropical canopy ecosystems. Full article
Show Figures

Figure 1

18 pages, 2452 KiB  
Article
Exploring the Habitat Distribution of Decapterus macarellus in the South China Sea Under Varying Spatial Resolutions: A Combined Approach Using Multiple Machine Learning and the MaxEnt Model
by Qikun Shen, Peng Zhang, Xue Feng, Zuozhi Chen and Jiangtao Fan
Biology 2025, 14(7), 753; https://doi.org/10.3390/biology14070753 - 24 Jun 2025
Viewed by 440
Abstract
The selection of environmental variables with different spatial resolutions is a critical factor affecting the accuracy of machine learning-based fishery forecasting. In this study, spring-season survey data of Decapterus macarellus in the South China Sea from 2016 to 2024 were used to construct [...] Read more.
The selection of environmental variables with different spatial resolutions is a critical factor affecting the accuracy of machine learning-based fishery forecasting. In this study, spring-season survey data of Decapterus macarellus in the South China Sea from 2016 to 2024 were used to construct six machine learning models—decision tree (DT), extra trees (ETs), K-Nearest Neighbors (KNN), light gradient boosting machine (LGBM), random forest (RF), and extreme gradient boosting (XGB)—based on seven environmental variables (e.g., sea surface temperature (SST), chlorophyll-a concentration (CHL)) at four spatial resolutions (0.083°, 0.25°, 0.5°, and 1°), filtered using Pearson correlation analysis. Optimal models were selected under each resolution through performance comparison. SHapley Additive exPlanations (SHAP) values were employed to interpret the contribution of environmental predictors, and the maximum entropy (MaxEnt) model was used to perform habitat suitability mapping. Results showed that the XGB model at 0.083° resolution achieved the best performance, with the area under the receiver operating characteristic curve (ROC_AUC) = 0.836, accuracy = 0.793, and negative predictive value = 0.862, outperforming models at coarser resolutions. CHL was identified as the most influential variable, showing high importance in both the SHAP distribution and the cumulative area under the curve contribution. Predicted suitable habitats were mainly located in the northern and central-southern South China Sea, with the latter covering a broader area. This study is the first to systematically evaluate the impact of spatial resolution on environmental variable selection in machine learning models, integrating SHAP-based interpretability with MaxEnt modeling to achieve reliable habitat suitability prediction, offering valuable insights for fishery forecasting in the South China Sea. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

19 pages, 6897 KiB  
Article
The Evolution of Sediment Microorganisms During the Transition from Freshwater to Seawater and Their Dependence on Water Quality
by Qingyu Zhu, Lingli Min, Wenzhou Zhang, Shouping Ji and Yulang Chi
Water 2025, 17(12), 1831; https://doi.org/10.3390/w17121831 - 19 Jun 2025
Viewed by 525
Abstract
Estuarine ecosystems, characterized by dynamic salinity gradients and complex physicochemical interactions, serve as critical transition zones between freshwater and marine environments. This study investigates the spatial evolution of sediment microbial communities across a freshwater–seawater continuum and their correlations with water quality parameters. Five [...] Read more.
Estuarine ecosystems, characterized by dynamic salinity gradients and complex physicochemical interactions, serve as critical transition zones between freshwater and marine environments. This study investigates the spatial evolution of sediment microbial communities across a freshwater–seawater continuum and their correlations with water quality parameters. Five sampling zones (upstream, midstream, downstream, transition zone, and ocean) were established in a typical estuary (Kuiyu Park, China). High-throughput 16S rRNA sequencing revealed significant shifts in microbial composition, with dominant phyla including Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Alpha diversity decreased from freshwater to the transition zone but rebounded in seawater, suggesting habitat filtering and niche differentiation. Redundancy analysis identified salinity, dissolved oxygen, nutrients, and heavy metals as key drivers of microbial community structure. Functional predictions highlighted metabolic adaptations such as methanogenesis, sulfur oxidation, and aerobic chemoheterotrophy across zones. This study explores how sediment microorganisms adapt to water quality variations during the freshwater–seawater transition, offering insights into estuarine resilience under global change. These findings elucidate microbial assembly rules in estuarine ecosystems and provide insights for ecological management under global environmental change. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 3023 KiB  
Article
Distribution Pattern and Change Prediction of Luprops orientalis (Coleoptera: Tenebrionidae) Suitable Area in East Asia Under Climate Change
by Jieqiong Wang, Shuangyi Wang, Yunchun Li, Shuangmei Ding, Zhonghua Wei, Aimin Shi and Ding Yang
Insects 2025, 16(6), 626; https://doi.org/10.3390/insects16060626 - 13 Jun 2025
Viewed by 561
Abstract
Luprops orientalis (Motschulsky, 1868) is an economically important pest in traditional Chinese medicines, widely distributed in East Asia. However, the primary limiting factors affecting its distribution, potential suitable areas, as well as its response to global warming, remain largely unknown. Utilizing 295 filtered [...] Read more.
Luprops orientalis (Motschulsky, 1868) is an economically important pest in traditional Chinese medicines, widely distributed in East Asia. However, the primary limiting factors affecting its distribution, potential suitable areas, as well as its response to global warming, remain largely unknown. Utilizing 295 filtered distribution points and 10 environmental variables (9 climate variables and 1 land cover type), this study uses the MaxEnt model to predict the potential distribution of L. orientalis under near-current and future environmental change scenarios. The results indicated that precipitation of the warmest quarter (bio18), temperature seasonality (bio04), and precipitation of the wettest month (bio13) were the most significant environmental variables affecting the distribution of suitable habitats for L. orientalis, while the contribution of average variation in daytime temperature (bio2) was the smallest. Under the near-current climate, the areas of low, moderate, and high suitability for L. orientalis are approximately 1.02 × 106 km2, 1.65 × 106 km2, and 8.22 × 105 km2, respectively. The suitable areas are primarily located in North China, Central China, the Korean Peninsula, and Central and Southern Japan. Under future climate conditions, the potential suitable areas are expected to expand significantly, especially in Central China. However, the high-suitability areas in North China are predicted to experience a slight reduction. With the increase in carbon emission concentrations, the suitable area shows an increasing trend in the 2050s, followed by a declining trend in the 2090s. The centroids of suitable areas will shift to the northeast in the future. These findings enhance our understanding of how climate change affects the distribution of L. orientalis and will assist governments in formulating effective pest control strategies, including widespread monitoring and stringent quarantine measures. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 6229 KiB  
Article
Vegetation Structure and Environmental Correlates of Climbing Behavior for Desert Shrub Ochradenus baccatus
by Dhafer A. Al-Bakre
Plants 2025, 14(11), 1696; https://doi.org/10.3390/plants14111696 - 1 Jun 2025
Cited by 1 | Viewed by 633
Abstract
Ochradenus baccatus Delile (Resedaceae) is a widely distributed desert shrub known for its remarkable growth form plasticity, growing either independently or as a facultative climber on other vegetation. Despite its ecological adaptability, the drivers underlying its dual growth strategy remain poorly understood in [...] Read more.
Ochradenus baccatus Delile (Resedaceae) is a widely distributed desert shrub known for its remarkable growth form plasticity, growing either independently or as a facultative climber on other vegetation. Despite its ecological adaptability, the drivers underlying its dual growth strategy remain poorly understood in arid ecosystems. This study aimed to investigate the growth form plasticity of O. baccatus across diverse ecological gradients in Saudi Arabia and identify key environmental and floristic factors influencing its climbing and independent forms. Field surveys were conducted from 2020 to 2024 across 103 sites, using stratified random sampling. At each site, vegetation data were collected using 50 × 50 m quadrats, and species composition, life form percentage, and O. baccatus behavior were recorded. Results revealed clear ecological separation between behaviors. Climbing individuals were associated with higher elevations, greater tree and shrub cover, and moderate soil fertility, while independent individuals were broadly distributed in herbaceous and open habitats. Diversity indices (Shannon, Simpson, evenness) increased with altitude, particularly in climbing habitats. PERMANOVA confirmed significant differences in species composition between behaviors (p = 0.0001), and SIMPER analysis identified species like Haloxylon salicornicum and Zygophyllum album as key contributors in climbing habitats. Indicator species analysis revealed behavior-specific taxa, while CCA demonstrated that rainfall, soil moisture, and temperature were the strongest environmental predictors of growth behavior. This study highlights the ecological flexibility of O. baccatus and the role of environmental filtering and plant community structure in shaping its growth strategy. These results have implications for the growth form plasticity of desert plants and can be applied to vegetation management and restoration in arid ecosystems. Full article
(This article belongs to the Special Issue Plant Behavioral Ecology)
Show Figures

Figure 1

27 pages, 2814 KiB  
Systematic Review
Freshwater Mussels as Multifaceted Ecosystem Engineers: Insights into Their Ecological Importance, Bioindication, and Economic Contributions
by Akalesh Kumar Verma, Aminur Rahman, Saddam Hussain and Namram Sushindrajit Singh
Water 2025, 17(11), 1629; https://doi.org/10.3390/w17111629 - 27 May 2025
Viewed by 1968
Abstract
Freshwater mussels play a vital ecological role in aquatic ecosystems, serving as effective natural filters that enhance water quality by removing suspended particles and excess nutrients, thereby preventing eutrophication. Their filtration activity supports overall ecosystem stability and promotes biodiversity by providing habitat structure [...] Read more.
Freshwater mussels play a vital ecological role in aquatic ecosystems, serving as effective natural filters that enhance water quality by removing suspended particles and excess nutrients, thereby preventing eutrophication. Their filtration activity supports overall ecosystem stability and promotes biodiversity by providing habitat structure for various aquatic species. Additionally, mussels are valuable bioindicators of environmental health, reflecting water quality changes and accumulating pollutants, including pharmaceuticals and heavy metals, which can offer insights into pollution trends. Freshwater mussels offer considerable economic potential through sustainable aquaculture, particularly in pearl production and jewelry applications, while also contributing nutritionally in controlled and culturally appropriate contexts. Despite these benefits, freshwater mussels face significant threats, including habitat destruction, pollution, invasive species, and overexploitation. These pressures have resulted in drastic population declines and extinctions across various species. Effective conservation and management strategies are essential to protect freshwater mussels, focusing on habitat protection and restoration, ongoing research, and stakeholder engagement to ensure the sustainability of these crucial organisms. This review highlights the multifaceted ecological and economic values of freshwater mussels, the challenges they face, and the importance of comprehensive conservation efforts to maintain their populations and the health of aquatic ecosystems. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

17 pages, 3604 KiB  
Article
The Overlooked Suspension Feeders: The Filtering Activity of the Bryozoans Schizoporella errata and Bugula neritina in the Northern Adriatic
by Ana Fortič, Borut Mavrič, Petra Slavinec and Lovrenc Lipej
J. Mar. Sci. Eng. 2025, 13(6), 1052; https://doi.org/10.3390/jmse13061052 - 27 May 2025
Viewed by 544
Abstract
Marine fouling communities, characterized by a high abundance of suspension feeders, play a crucial role in regulating ecosystem services, particularly in improving seawater quality. While not typically prioritized in conservation due to their prevalence in degraded or artificial habitats, fouling communities are important [...] Read more.
Marine fouling communities, characterized by a high abundance of suspension feeders, play a crucial role in regulating ecosystem services, particularly in improving seawater quality. While not typically prioritized in conservation due to their prevalence in degraded or artificial habitats, fouling communities are important for their ecological functions under increasing urbanization and climate change. Bryozoans are an important component of these communities, although their filtering activity is less understood compared to some other groups, such as bivalves and ascidians. In this paper, we aimed to investigate the filtration activity of two widespread fouling bryozoan species, namely Schizoporella errata and Bugula neritina in the northern Adriatic (Slovenia). We measured the clearance rates (CR) of both the species when fed with microalgae to assess their filtration capacity and determine the most suitable units for quantifying the biofiltration. B. neritina exhibited a higher average CR than S. errata. The maximum CR was 32 mL/(h·cm2) for the S. errata and 52 mL/(h·cm2) for the B. neritina. Due to the morphological and growth differences between the species, the surface area was determined to be the most appropriate unit for expressing the CR. We also examined the CR of the S. errata exposed to fluorescent microplastic beads and identified active feeding areas within the colonies. Feeding zooids in S. errata were concentrated at the terminal growth margins and elevated areas of the frontal budding, as indicated by a higher fluorescence and microsphere density. These results contribute to the existing knowledge on fouling bryozoans in coastal habitats and provide further insights into their potential role as biofilters and contributors to ecosystem functioning. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

Back to TopTop