Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = gut–brain axis (GBA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 253 KB  
Article
Interoception in Female Adolescents with Inflammatory Bowel Diseases Versus Restrictive Eating Disorders
by Anna Riva, Gabriele Arienti, Carlo Panarella, Eleonora Brasola, Simona Di Guardo, Giovanna Zuin, Laura Spini, Naire Sansotta, Andrea Eugenio Cavanna and Renata Nacinovich
Nutrients 2026, 18(2), 251; https://doi.org/10.3390/nu18020251 - 13 Jan 2026
Abstract
Background: Female individuals with inflammatory bowel diseases (IBDs) are more likely to develop restrictive eating disorders (REDs), with both conditions appearing to share common pathophysiological pathways. We conducted a case–control study exploring eating symptomatology and interoceptive profiles in female adolescents with IBDs compared [...] Read more.
Background: Female individuals with inflammatory bowel diseases (IBDs) are more likely to develop restrictive eating disorders (REDs), with both conditions appearing to share common pathophysiological pathways. We conducted a case–control study exploring eating symptomatology and interoceptive profiles in female adolescents with IBDs compared with adolescents diagnosed with REDs, in order to test the hypothesis that the two clinical populations exhibit similar interoceptive characteristics. Methods: We recruited 33 female adolescents with IBDs and 54 controls with REDs matched for age and gender. All participants completed a validated psychometric battery assessing eating disorder features (EDI-3) and interoceptive awareness (MAIA-2). Results: Twenty-seven percent of patients with IBD scored above the cut-off (>70th percentile) on the EDI-3 Eating Disorder Risk Composite (EDRC), showing an eating and interoceptive profile comparable to that of patients with REDs. The two sub-cohorts within the IBD sample differed in the ‘Not-Worrying’ and ‘Trusting’ MAIA-2 subscales, with the IBD cohort at risk of developing an ED reporting lower scores. Conclusions: Our findings indicate comparable interoceptive profiles between adolescents with IBDs who are at risk of developing EDs and patients with a confirmed diagnosis of REDs. This similarity underscores the need to further investigate the shared pathogenic mechanisms underlying these conditions, particularly the role of the gut–brain axis (GBA). Full article
(This article belongs to the Special Issue Focus on Eating Disorders of Adolescents and Children)
23 pages, 1061 KB  
Review
More than Dysbiosis: Imbalance in Humoral and Neuronal Bidirectional Crosstalk Between Gut and Brain in Alzheimer’s Disease
by Gauhar Tassibekova, Manzura Zholdassova, Nataliia Novosolova, Tarja Malm, Rashid Giniatullin and Almira Kustubayeva
Int. J. Mol. Sci. 2026, 27(1), 369; https://doi.org/10.3390/ijms27010369 - 29 Dec 2025
Viewed by 242
Abstract
The intestinal microbiota, a diverse community of microorganisms residing in the human gut, recently attracted considerable attention as a contributing factor to various neurological disorders, including Alzheimer’s Disease (AD). Within the established framework of the gut–brain axis (GBA) concept, it is commonly suggested [...] Read more.
The intestinal microbiota, a diverse community of microorganisms residing in the human gut, recently attracted considerable attention as a contributing factor to various neurological disorders, including Alzheimer’s Disease (AD). Within the established framework of the gut–brain axis (GBA) concept, it is commonly suggested that dysbiosis, through microbial metabolites entering the brain, affect the cognitive functions in patients with AD. However, evidence for such a role of dysbiosis remains largely associative, and the complexity of the communication channels between the gut and the brain is not fully understood. Moreover, the new players of the GBA are emerging and the AD concept is constantly evolving. The objective of this narrative review is to synthesize the current evidence on the humoral, endocrine, immune, and neural communication mechanisms linking the gut and brain in AD and highlight newly discovered GBA messengers such as microRNAs, extracellular vesicles, T-cells, and the intestinal hormones, including emerging neuroprotective role for glucagon-like peptide-1 (GLP-1). Based on this knowledge, we aimed to develop a conceptual understanding of the GBA function in health and AD. We specify that, in AD, the GBA goes beyond a disrupted microbiome, but operates in conjunction with impaired intestinal secretion, motility, barrier permeability, and neuroinflammatory signaling. These factors are associated with the dysfunction of the hypothalamic–pituitary axis, altered somatic and autonomic neuronal gut regulation, and abnormal, due to memory problems, behavioral aspects of food intake. Identifying the individual profile of key molecular and cellular players contributing to an unbalanced GBA should optimize existing approaches or propose new approaches for the complex therapy of AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 3043 KB  
Article
Human Gut–Brain Interaction Chip for Dissecting the Gut-Derived LPS and Butyrate Regulation of the Blood–Brain Barrier
by Ranran Yan, Ge Gao, Yulin Deng, Jinhua Li and Yujuan Li
Biosensors 2026, 16(1), 23; https://doi.org/10.3390/bios16010023 - 29 Dec 2025
Viewed by 402
Abstract
The gut–brain axis (GBA) interaction is important for human health and disease prevention. Organ chips are considered a solution for GBA research. Three-dimensional (3D) cultures and microfluidics engineered in an organ chip could improve the scientific knowledge in the GBA interactions field. In [...] Read more.
The gut–brain axis (GBA) interaction is important for human health and disease prevention. Organ chips are considered a solution for GBA research. Three-dimensional (3D) cultures and microfluidics engineered in an organ chip could improve the scientific knowledge in the GBA interactions field. In this study, a novel organ chip is developed, which achieves multicellular three-dimensional cultivation by utilizing a decellularized matrix. In addition, this paper reports the rapid prototyping process of the GBA microfluidic chip in polydimethylsiloxane (PDMS) using 3D printing interconnecting poly(ethylene/vinyl acetate) (PEVA) microchannel templates. In comparison to the static culture system of the transwell model, the intestinal epithelial barrier (IEB) and blood–brain barrier (BBB) models on our chip demonstrated superior barrier function and the efflux functionality of transporters under appropriate fluidic conditions. Additionally, it is observed that butyrate protected against BBB dysfunction induced by gut-derived lipopolysaccharide (LPS) via enhancing intestinal barrier function. These results demonstrate that this multicellular, three-dimensional cultivation integrated with a fluidic shear stress simulation chip offers a promising tool for gut–brain interaction study to predict therapy of intestinal and neurological disorders. Full article
Show Figures

Figure 1

21 pages, 2163 KB  
Review
Psychobiotics at the Frontiers of Neurodegenerative and Neuropsychiatric Research
by Guillermo Roberto Jiménez-Pareyón, José Melesio Cristóbal-Luna, Yuliana García-Martínez, Cynthia Garfias-Noguez, Morayma Ramírez-Damián, Edgar Torres-Maravilla and María Elena Sánchez-Pardo
Microorganisms 2025, 13(12), 2718; https://doi.org/10.3390/microorganisms13122718 - 28 Nov 2025
Viewed by 758
Abstract
Neurodegenerative and neuropsychiatric disorders remain a major public health concern due to their progressive nature, high prevalence, and considerable socioeconomic burden. Conventional treatments often fall short, facing limitations such as pharmacoresistance, adverse effects, and limited efficacy, underscoring the need for complementary approaches. Recent [...] Read more.
Neurodegenerative and neuropsychiatric disorders remain a major public health concern due to their progressive nature, high prevalence, and considerable socioeconomic burden. Conventional treatments often fall short, facing limitations such as pharmacoresistance, adverse effects, and limited efficacy, underscoring the need for complementary approaches. Recent advances highlight the central role of the gut–brain axis (GBA) in neurological health, positioning psychobiotics and probiotic strains with potential mental health benefits, as candidates in adjunctive therapy. This review integrates current evidence on the GBA’s involvement in conditions such as Alzheimer’s disease, Parkinson’s disease, depression, and anxiety. We examine how psychobiotics may modulate neuroinflammation, oxidative stress, and neurotransmitter signaling, thereby contributing to cognitive and emotional regulation. Both preclinical and clinical studies are discussed, with emphasis on biomarker changes, quality-of-life outcomes, and neuropsychiatric comorbidities. We also explore recent innovations, including precision psychobiotics, microbiota–drug synergies, and their relevance to overlapping metabolic and neurodegenerative pathologies. Finally, we address the major translational challenges in the field, strain selection, methodological standardization, biomarker integration, and ethical design, highlighting key perspectives for advancing psychobiotics research toward clinical application. Full article
(This article belongs to the Special Issue Probiotics: Identification and Applications)
Show Figures

Figure 1

21 pages, 983 KB  
Review
Valeric Acid: A Gut-Derived Metabolite as a Potential Epigenetic Modulator of Neuroinflammation in the Gut–Brain Axis
by Chiara Paciolla, Michele Manganelli, Mariagiovanna Di Chiano, Francesca Montenegro, Anna Gallone, Fabio Sallustio and Gabriella Guida
Cells 2025, 14(22), 1823; https://doi.org/10.3390/cells14221823 - 20 Nov 2025
Cited by 3 | Viewed by 1113
Abstract
The gut–brain axis (GBA) is a critical area of research for understanding the pathogenesis of neuroinflammatory and neurodegenerative diseases. Metabolites produced by the gut microbiota, particularly short-chain fatty acids (SCFAs), act as key mediators in this bidirectional communication. While the roles of acetate, [...] Read more.
The gut–brain axis (GBA) is a critical area of research for understanding the pathogenesis of neuroinflammatory and neurodegenerative diseases. Metabolites produced by the gut microbiota, particularly short-chain fatty acids (SCFAs), act as key mediators in this bidirectional communication. While the roles of acetate, propionate, and butyrate are well-established, valeric acid (VA), a five-carbon SCFA, is poorly understood. This comprehensive review explores VA as a gut-derived physiological epigenetic modulator, examining its microbial biosynthesis and systemic effects. This review discusses how VA acts as a selective histone deacetylase inhibitor (HDACi), particularly targeting Class I HDACs, to modulate gene expression and exert neuroprotective and anti-inflammatory effects. The analysis compares VA with its pharmacological analog, valproic acid (VPA), a well-known but non-selective HDACi. This comparison highlights how VA’s physiological nature may offer a more targeted and safer intervention. In conclusion, elucidating VA’s role as a microbiome-derived epigenetic regulator would open promising avenues for therapeutic strategies that directly connect gut and CNS health within the GBA. Full article
(This article belongs to the Special Issue Molecular and Cellular Advances in Gut-Brain Axis)
Show Figures

Figure 1

28 pages, 1659 KB  
Review
Disrupting the Gut–Brain Axis: How Artificial Sweeteners Rewire Microbiota and Reward Pathways
by Roberto Coccurello
Int. J. Mol. Sci. 2025, 26(20), 10220; https://doi.org/10.3390/ijms262010220 - 21 Oct 2025
Cited by 1 | Viewed by 5258
Abstract
Artificial sweeteners, or non-caloric sweeteners (NCSs), are widely consumed as sugar substitutes to reduce energy intake and manage obesity. Once considered inert, accumulating evidence now shows that NCSs interact with host physiology, altering gut microbiota composition and neural circuits that regulate feeding. This [...] Read more.
Artificial sweeteners, or non-caloric sweeteners (NCSs), are widely consumed as sugar substitutes to reduce energy intake and manage obesity. Once considered inert, accumulating evidence now shows that NCSs interact with host physiology, altering gut microbiota composition and neural circuits that regulate feeding. This review synthesizes current knowledge on how NCSs disrupt the gut–brain axis (GBA), with particular focus on microbiota-mediated effects and neural reward processing. In homeostatic regulation, NCS-induced dysbiosis reduces beneficial taxa such as Akkermansia muciniphila and Faecalibacterium prausnitzii, diminishes short-chain fatty acid production, impairs gut barrier integrity, and promotes systemic inflammation. These changes blunt satiety signaling and favor appetite-promoting pathways. Beyond homeostasis, NCSs also rewire hedonic circuits: unlike caloric sugars, which couple sweet taste with caloric reinforcement to robustly activate dopaminergic and hypothalamic pathways, NCSs provide sensory sweetness without energy, weakening reward prediction error signaling and altering neuropeptidergic modulation by orexin, neurotensin, and oxytocin. Microbial disruption further exacerbates dopaminergic instability by reducing precursors and metabolites critical for reward regulation. Together, these top-down (neural) and bottom-up (microbial) mechanisms converge to foster maladaptive food seeking, metabolic dysregulation, and increased vulnerability to overeating. Identifying whether microbiome-targeted interventions can counteract these effects is a key research priority for mitigating the impact of NCSs on human health. Full article
(This article belongs to the Special Issue Molecular Research of Gut Microbiota in Human Health and Diseases)
Show Figures

Figure 1

24 pages, 935 KB  
Review
Keystone Species Restoration: Therapeutic Effects of Bifidobacterium infantis and Lactobacillus reuteri on Metabolic Regulation and Gut–Brain Axis Signaling—A Qualitative Systematic Review (QualSR)
by Michael Enwere, Edward Irobi, Adamu Onu, Emmanuel Davies, Gbadebo Ogungbade, Omowunmi Omoniwa, Charles Omale, Mercy Neufeld, Victoria Chime, Ada Ezeogu, Dung-Gwom Pam Stephen, Terkaa Atim and Laurens Holmes
Gastrointest. Disord. 2025, 7(4), 62; https://doi.org/10.3390/gidisord7040062 - 28 Sep 2025
Viewed by 3127
Abstract
Background: The human gut microbiome—a diverse ecosystem of trillions of microorganisms—plays an essential role in metabolic, immune, and neurological regulation. However, modern lifestyle factors such as antibiotic overuse, cesarean delivery, reduced breastfeeding, processed and high-sodium diets, alcohol intake, smoking, and exposure to [...] Read more.
Background: The human gut microbiome—a diverse ecosystem of trillions of microorganisms—plays an essential role in metabolic, immune, and neurological regulation. However, modern lifestyle factors such as antibiotic overuse, cesarean delivery, reduced breastfeeding, processed and high-sodium diets, alcohol intake, smoking, and exposure to environmental toxins (e.g., glyphosate) significantly reduce microbial diversity. Loss of keystone species like Bifidobacterium infantis (B. infantis) and Lactobacillus reuteri (L. reuteri) contributes to gut dysbiosis, which has been implicated in chronic metabolic, autoimmune, cardiovascular, and neurodegenerative conditions. Materials and Methods: This Qualitative Systematic Review (QualSR) synthesized data from over 547 studies involving human participants and standardized microbiome analysis techniques, including 16S rRNA sequencing and metagenomics. Studies were reviewed for microbial composition, immune and metabolic biomarkers, and clinical outcomes related to microbiome restoration strategies. Results: Multiple cohort studies have consistently reported a 40–60% reduction in microbial diversity among Western populations compared to traditional societies, particularly affecting short-chain fatty acid (SCFA)-producing bacteria. Supplementation with B. infantis is associated with a significant reduction in systemic inflammation—including a 50% decrease in C-reactive protein (CRP) and reduced tumor necrosis factor-alpha (TNF-α) levels—alongside increases in regulatory T cells and anti-inflammatory cytokines interleukin-10 (IL-10) and transforming growth factor-beta 1 (TGF-β1). L. reuteri demonstrates immunomodulatory and neurobehavioral benefits in preclinical models, while both probiotics enhance epithelial barrier integrity in a strain- and context-specific manner. In murine colitis, B. infantis increases ZO-1 expression by ~35%, and L. reuteri improves occludin and claudin-1 localization, suggesting that keystone restoration strengthens barrier function through tight-junction modulation. Conclusions: Together, these findings support keystone species restoration with B. infantis and L. reuteri as a promising adjunctive strategy to reduce systemic inflammation, reinforce gut barrier integrity, and modulate gut–brain axis (GBA) signaling, indicating translational potential in metabolic and neuroimmune disorders. Future research should emphasize personalized microbiome profiling, long-term outcomes, and transgenerational effects of early-life microbial disruption. Full article
(This article belongs to the Special Issue Feature Papers in Gastrointestinal Disorders in 2025–2026)
Show Figures

Figure 1

19 pages, 3695 KB  
Review
The Emerging Role of the Brain–Gut Axis in Amyotrophic Lateral Sclerosis: Pathogenesis, Mechanisms, and Therapeutic Perspectives
by Eun Jin Yang
Int. J. Mol. Sci. 2025, 26(17), 8419; https://doi.org/10.3390/ijms26178419 - 29 Aug 2025
Cited by 2 | Viewed by 2433
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Although genetic and environmental factors are established contributors, recent research has highlighted the critical role of the gut–brain axis (GBA) in ALS pathogenesis. The GBA is a [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Although genetic and environmental factors are established contributors, recent research has highlighted the critical role of the gut–brain axis (GBA) in ALS pathogenesis. The GBA is a bidirectional communication network involving neural, immune, and endocrine pathways that connect the gut microbiota with the central nervous system. Dysbiosis in ALS disrupts this axis, leading to increased intestinal permeability, neuroinflammation, and excitotoxicity. Notably, reductions in butyrate-producing bacteria, alterations in microbial metabolites, and enhanced NLRP3 inflammasome activation have been observed in patients with ALS. These changes may precede motor symptoms, suggesting a potential causative role. Interventions targeting the microbiome, such as dietary modulation, have shown promise in delaying disease onset and reducing inflammation. However, the clinical evidence remains limited. Given that gut dysbiosis may precede neurological symptoms, microbiota-targeted therapies offer a novel and potentially modifiable approach to ALS treatment. Understanding the role of GBA in ALS will open new avenues for early diagnosis and intervention. Further clinical trials are required to clarify the causal links and evaluate the efficacy of microbiome-based interventions. Understanding the brain–gut–microbiota axis in ALS could lead to new diagnostic biomarkers and therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatments in Neurodegenerative Diseases)
Show Figures

Figure 1

26 pages, 1216 KB  
Review
Neurosteroids, Microbiota, and Neuroinflammation: Mechanistic Insights and Therapeutic Perspectives
by Amal Tahri, Elena Niccolai and Amedeo Amedei
Int. J. Mol. Sci. 2025, 26(14), 7023; https://doi.org/10.3390/ijms26147023 - 21 Jul 2025
Cited by 1 | Viewed by 5233
Abstract
The gut–brain axis (GBA) represents a complex bidirectional communication network that links the gut microbiota (GM) and the central nervous system (CNS). Recent research has revealed that neurosteroids (NSs) play crucial roles in modulating neuroinflammatory responses and promoting neuroprotection. Meanwhile, GM alterations have [...] Read more.
The gut–brain axis (GBA) represents a complex bidirectional communication network that links the gut microbiota (GM) and the central nervous system (CNS). Recent research has revealed that neurosteroids (NSs) play crucial roles in modulating neuroinflammatory responses and promoting neuroprotection. Meanwhile, GM alterations have been associated with various neuroinflammatory and neurodegenerative conditions, such as multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis. This review aims to provide a comprehensive overview of the intricate interactions between NS, GM, and neuroinflammation. We discuss how NS and metabolites can influence neuroinflammatory pathways through immune, metabolic, and neuronal mechanisms. Additionally, we explore how GM modulation can impact neurosteroidogenesis, highlighting potential therapeutic strategies that include probiotics, neuroactive metabolites, and targeted interventions. Understanding these interactions may pave the way for innovative treatment approaches for neuroinflammatory and neurodegenerative diseases, promoting a more integrated view of brain health and disease management. Full article
Show Figures

Graphical abstract

25 pages, 1614 KB  
Review
Intermittent Fasting as a Neuroprotective Strategy: Gut–Brain Axis Modulation and Metabolic Reprogramming in Neurodegenerative Disorders
by Zaw Myo Hein, Muhammad Faqhrul Fahmy Arbain, Suresh Kumar, Muhammad Zulfadli Mehat, Hafizah Abdul Hamid, Muhammad Danial Che Ramli and Che Mohd Nasril Che Mohd Nassir
Nutrients 2025, 17(14), 2266; https://doi.org/10.3390/nu17142266 - 9 Jul 2025
Cited by 9 | Viewed by 12033
Abstract
Intermittent fasting (IF) is emerging as a heterogeneous neurometabolic intervention with the possibility of changing the course of neurodegenerative diseases. Through the modulation of the gut–brain axis (GBA), cellular bioenergetics (or metabolic) reprogramming, and involvement in preserved stress adaptation pathways, IF influences a [...] Read more.
Intermittent fasting (IF) is emerging as a heterogeneous neurometabolic intervention with the possibility of changing the course of neurodegenerative diseases. Through the modulation of the gut–brain axis (GBA), cellular bioenergetics (or metabolic) reprogramming, and involvement in preserved stress adaptation pathways, IF influences a range of physiological mechanisms, including mitobiogenesis, autophagy, circadian rhythm alignment, and neuroinflammation. This review critically synthesises current preclinical and early clinical evidence illustrating IF’s capability to supplement synaptic plasticity and integrity, reduce toxic proteins (proteotoxic) burden, and rehabilitate glial and immune homeostasis across models of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. The key players behind these effects are bioactive metabolites such as short-chain fatty acids (SCFA) and β-hydroxybutyrate (BHB), and molecular mediators such as brain-derived neurotrophic factor (BDNF). We feature the therapeutic pertinence of IF-induced changes in gut microbiota composition, immune response, and mitochondrial dynamics, and we discuss emerging approaches for merging IF into precision medicine frameworks. Crucial challenges include individual variability, protocol optimisation, safety in cognitively vulnerable populations, and the need for biomarker-guided, ethically grounded clinical trials. Finally, we propose IF as a scalable and flexible intervention that, when personalised and integrated with other modalities, may reframe neurodegeneration from a model of irreversible decline to one of modifiable resilience. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
Show Figures

Figure 1

27 pages, 1448 KB  
Systematic Review
Leaky Gut Biomarkers as Predictors of Depression and Suicidal Risk: A Systematic Review and Meta-Analysis
by Donato Morena, Matteo Lippi, Matteo Scopetti, Emanuela Turillazzi and Vittorio Fineschi
Diagnostics 2025, 15(13), 1683; https://doi.org/10.3390/diagnostics15131683 - 1 Jul 2025
Cited by 6 | Viewed by 4162
Abstract
Background: The gut–brain axis (GBA) has been demonstrated to be involved in normal neurodevelopment, with its dysfunction potentially contributing to the onset of mental disorders. In this systematic review and meta-analysis, we aimed to examine the relationship between levels of specific biomarkers [...] Read more.
Background: The gut–brain axis (GBA) has been demonstrated to be involved in normal neurodevelopment, with its dysfunction potentially contributing to the onset of mental disorders. In this systematic review and meta-analysis, we aimed to examine the relationship between levels of specific biomarkers of intestinal permeability or inflammation and scores of depressive symptoms or suicidality. Methods: All studies investigating the link between depressive symptoms and/or suicidality and biomarkers associated with intestinal permeability or inflammation were included. Studies providing data for comparisons between two groups—depressive or suicidal patients vs. healthy controls, or suicidal vs. non-suicidal patients—were included in the meta-analysis. Studies examining the correlation between depressive symptoms and biomarker levels were also included into the review. Data were independently extracted and reviewed by multiple observers. A random-effects model was employed for the analysis, and Hedge’s g was pooled for the effect size. Heterogeneity was assessed using the I2 index. Results: Twenty-two studies provided data for inclusion in the meta-analysis, while nineteen studies investigated the correlation between depressive symptoms and biomarker levels. For depressive symptoms, when compared to the controls, patients showed significantly increased levels of intestinal fatty acid-binding protein (I-FABP) (ES = 0.36; 95% CI = 0.11 to 0.61; p = 0.004; I2 = 71.61%), zonulin (ES = 0.69; 95% CI = 0.02 to 1.36; p = 0.044; I2 = 92.12%), antibodies against bacterial endotoxins (ES = 0.75; 95% CI = 0.54 to 0.98; p < 0.001; I2 = 0.00%), and sCD14 (ES = 0.11; 95% CI = 0.01 to 0.21; p = 0.038; I2 = 10.28%). No significant differences were found between the patients and controls in levels of LPS-binding protein (LBP) and alpha-1 antitrypsin (A-1-AT). For suicidality, four studies were identified for quantitative analysis, three of which focused on I-FABP. No significant differences in I-FABP levels were observed between suicidal patients and the controls (ES = 0.24; 95% CI = −0.30 to 0.79; p = 0.378; I2 = 86.44%). Studies investigating the correlation between depressive symptoms and levels of intestinal permeability and inflammation biomarkers did not provide conclusive results. Conclusions: A significant difference was observed between patients with depressive symptoms and controls for biomarkers of intestinal permeability (zonulin, which regulates tight junctions), inflammatory response to bacterial endotoxins (antibodies to endotoxins and sCD14—a soluble form of the CD14 protein that modulates inflammation triggered by lipopolysaccharides), and acute intestinal epithelial damage (I-FABP, released upon enterocyte injury). Studies investigating suicidality and related biomarkers were limited in number and scope, preventing definitive conclusions. Overall, these findings suggest that biomarkers of gut permeability represent a promising area for further investigation in both psychiatric and forensic pathology. They may have practical applications, such as supporting diagnostic and therapeutic decision-making in clinical settings and providing pathologists with additional information to help determine the manner of death in forensic investigations. Full article
Show Figures

Figure 1

36 pages, 1957 KB  
Review
Rewiring the Brain Through the Gut: Insights into Microbiota–Nervous System Interactions
by Ilinca Savulescu-Fiedler, Serban-Nicolae Benea, Constantin Căruntu, Andreea-Simona Nancoff, Corina Homentcovschi and Sandica Bucurica
Curr. Issues Mol. Biol. 2025, 47(7), 489; https://doi.org/10.3390/cimb47070489 - 26 Jun 2025
Cited by 7 | Viewed by 9124
Abstract
The gut-brain axis (GBA) represents an operant acting in a two-direction communication system between the gastrointestinal tract and the central nervous system, mediated by the enteric nervous system (ENS), vagus nerve, immune pathways, and endocrine signaling. In recent years, evidence has highlighted the [...] Read more.
The gut-brain axis (GBA) represents an operant acting in a two-direction communication system between the gastrointestinal tract and the central nervous system, mediated by the enteric nervous system (ENS), vagus nerve, immune pathways, and endocrine signaling. In recent years, evidence has highlighted the pivotal role of the gut microbiota in modulating this axis, forming the microbiota-gut-brain axis (MGBA). Our review synthesizes current knowledge on the anatomical and functional substrates of gut-brain communication, focusing on interoceptive signaling, the roles of intrinsic primary afferent neurons (IPANs) and enteroendocrine cells (EECs) and the influence of microbial metabolites, including short-chain fatty acids (SCFAs), bile acids, and indoles. These agents modulate neurotransmission, epithelial barrier function, and neuroimmune interactions. The vagus nerve serves as a primary pathway for afferent sensory signaling from the gut influenced indirectly by the ENS and microbiota. Dysbiosis has been associated with altered gut-brain signaling and implicated in the pathophysiology of disorders ranging from irritable bowel syndrome to mood disorders and neurodegeneration. Microbial modulation of host gene expression via epigenetic mechanisms, including microRNAs, adds another layer of complexity. The gut has a crucial role as an active sensory and signaling organ capable of influencing higher-order brain functions. Understanding the MGBA has significant implications for new therapeutic interventions targeting the microbiome to manage neurogastroenterological and even neuropsychiatric conditions. Full article
Show Figures

Figure 1

38 pages, 1158 KB  
Review
An Updated and Comprehensive Review Exploring the Gut–Brain Axis in Neurodegenerative Disorders and Neurotraumas: Implications for Therapeutic Strategies
by Ahmed Hasan, Sarah Adriana Scuderi, Anna Paola Capra, Domenico Giosa, Andrea Bonomo, Alessio Ardizzone and Emanuela Esposito
Brain Sci. 2025, 15(6), 654; https://doi.org/10.3390/brainsci15060654 - 18 Jun 2025
Cited by 7 | Viewed by 6952
Abstract
The gut–brain axis (GBA) refers to the biochemical bidirectional communication between the central nervous system (CNS) and the gastrointestinal tract, linking brain and gut functions. It comprises a complex network of interactions involving the endocrine, immune, autonomic, and enteric nervous systems. The balance [...] Read more.
The gut–brain axis (GBA) refers to the biochemical bidirectional communication between the central nervous system (CNS) and the gastrointestinal tract, linking brain and gut functions. It comprises a complex network of interactions involving the endocrine, immune, autonomic, and enteric nervous systems. The balance of this bidirectional pathway depends on the composition of the gut microbiome and its metabolites. While the causes of neurodegenerative diseases (NDDs) vary, the gut microbiome plays a crucial role in their development and prognosis. NDDs are often associated with an inflammation-related gut microbiome. However, restoring balance to the gut microbiome and reducing inflammation may have therapeutic benefits. In particular, introducing short-chain fatty acid-producing bacteria, key metabolites that support gut homeostasis, can help counteract the inflammatory microbiome. This strong pathological link between the gut and NDDs underscores the gut–brain axis (GBA) as a promising target for therapeutic intervention. This review, by scrutinizing the more recent original research articles published in PubMed (MEDLINE) database, emphasizes the emerging notion that GBA is an equally important pathological marker for neurological movement disorders, particularly in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease and neurotraumatic disorders such as traumatic brain injury and spinal cord injury. Additionally, the GBA presents a promising therapeutic target for managing these diseases. Full article
Show Figures

Figure 1

17 pages, 303 KB  
Review
The Gut–Brain Axis and Neurodegenerative Diseases: The Role of Nutritional Interventions Targeting the Gut Microbiome—A Systematic Review
by Despoina Koumpouli, Varvara Koumpouli and Antonios E. Koutelidakis
Appl. Sci. 2025, 15(10), 5558; https://doi.org/10.3390/app15105558 - 15 May 2025
Cited by 2 | Viewed by 4962
Abstract
The gut–brain axis (GBA) comprises bidirectional communication connecting the gut and brain. Many neurodegenerative disorders (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS), are characterized by a dysfunction of the GBA, indicating its possible role in disease pathogenesis. [...] Read more.
The gut–brain axis (GBA) comprises bidirectional communication connecting the gut and brain. Many neurodegenerative disorders (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS), are characterized by a dysfunction of the GBA, indicating its possible role in disease pathogenesis. This systematic review was performed according to PRISMA guidelines, mainly using the following keywords: gut–brain axis, gut microbiota, gut dysbiosis, neurodegenerative disorders, prebiotics, and probiotics. The most recent scientific articles were searched from the PubMed, Google Scholar, and Scopus databases. The main components and communication pathways of the GBA are discussed in this study, and the aim was to investigate if therapeutic approaches, through dietary intervention targeting the gut microbiota, could ameliorate NDDs. The gut microbiota is a crucial constituent of the GBA, and an unbalanced microbiota, known as dysbiosis, has been related to GBA impairment and neurodegeneration. In most of the studies discussed, the modulation of the microbial constitution through nutritional intervention and probiotic and prebiotic supplementation showed promising outcomes. Although promising, further research is essential to fully elucidate the mechanisms involved and confirm the therapeutic potential of gut microbiota modulation in NDDs. Full article
33 pages, 4269 KB  
Article
Peroxisome Proliferator-Activated Receptors (PPARs) May Mediate the Neuroactive Effects of Probiotic Metabolites: An In Silico Approach
by Irving Parra, Alan Carrasco-Carballo, Victoria Palafox-Sanchez, Isabel Martínez-García, José Aguilera, José L. Góngora-Alfaro, Irma Isela Aranda-González, Yousef Tizabi and Liliana Mendieta
Int. J. Mol. Sci. 2025, 26(10), 4507; https://doi.org/10.3390/ijms26104507 - 9 May 2025
Cited by 1 | Viewed by 1838
Abstract
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the [...] Read more.
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the gut microbiota (GM). Therefore, dysbiosis or disruption in the GM may have serious consequences including neuroinflammation due to overactivation of the immune system. Strategies to reestablish GM integrity via use of probiotics are being pursued as novel therapeutic intervention in a variety of central and peripheral diseases. The mechanisms leading to dysbiosis or efficacy of probiotics, however, are not fully evident. Here, we performed computational analysis on two major probiotics, namely Lactobacillus Lacticaseibacillus rhamnosus GG (formerly named Lactobacillus rhamnosus, L. rhamnosus GG) and Bifidobacterium animalis spp. lactis (B. lactis or B. animalis) to not only shed some light on their mechanism(s) of action but also to identify potential molecular targets for novel probiotics. Using the PubMed web page and BioCyc Database Collection platform we specifically analyzed proteins affected by metabolites of these bacteria. Our results indicate that peroxisome proliferator-activated receptors (PPARs), nuclear receptor proteins that are involved in regulation of inflammation are key mediators of the neuroactive effect of probiotics. Full article
Show Figures

Figure 1

Back to TopTop