Psychobiotics at the Frontiers of Neurodegenerative and Neuropsychiatric Research
Abstract
1. Introduction
2. Pathophysiology of Neurodegenerative and Neuropsychiatric Disorders
2.1. Neurodegenerative Diseases and Their Classification
2.2. Physiopathology Associated with Neurodegenerative Disorders
- -
- Protein aggregation: In many NDs, the abnormal accumulation of misfolded proteins disrupts cellular function and contributes to neuronal toxicity. These aggregates interfere with physiological processes and exacerbate neuronal dysfunction [30].
- -
- Cellular dysfunction: NDs often involve the selective loss or aberrant proliferation of specific neural cell types. Both neurons and glial cells can experience alterations that compromise their function, including the loss of synaptic communication, dysregulation of intracellular transport mechanisms, and the inability to maintain ionic and energetic homeostasis, all of which accelerate degeneration [31].
- -
- Biochemical imbalances: Dysregulated biochemical processes can induce cellular dysfunction and, eventually, neuronal death and the accumulation of neurotoxic metabolites that contribute to neural injury [32].
- -
2.3. Psychiatric and Mood Disorders
2.4. Need for Complementary Approaches in Neuroprotection
3. The Gut–Brain Axis (GBA): Mechanisms and Communication Pathways
Mechanisms of Gut–Brain Communication
4. Psychobiotics: Definition and Key Microbial Strains
4.1. Preclinical Evidence
4.2. Clinical Trials
4.3. Alzheimer’s Disease
4.4. Parkinson’s Disease
4.5. Depression
4.6. Anxiety and the GBA
5. Future Perspectives in Psychobiotics Therapies
5.1. Challenges in Clinical Translation
5.2. Strain Selection, Standardization, and Biomarkers
5.3. Lifestyle and Dietary Modulators
5.4. Ethical and Methodological Considerations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toader, C.; Dobrin, N.; Brehar, F.M.; Popa, C.; Covache-Busuioc, R.A.; Glavan, L.A.; Costin, H.P.; Bratu, B.G.; Corlatescu, A.D.; Popa, A.A.; et al. From Recognition to Remedy: The Significance of Biomarkers in Neurodegenerative Disease Pathology. Int. J. Mol. Sci. 2023, 24, 16119. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Wang, W.; Liao, J.; Peng, R.; Liang, L.; Li, W.; Feng, S.; Huang, Y.; Fong, L.M.; Zhou, J.; et al. Biological age prediction in schizophrenia using brain MRI, gut microbiome and blood data. Brain Res. Bull. 2025, 226, 111363. [Google Scholar] [CrossRef]
- Mitra, S. Special Issue ‘Advances in Neurodegenerative Diseases Research and Therapy 2.0’. Int. J. Mol. Sci. 2024, 25, 4709. [Google Scholar] [CrossRef]
- Rogers, M.A.; Greene, M.T.; Young, V.B.; Saint, S.; Langa, K.M.; Kao, J.Y.; Aronoff, D.M. Depression, antidepressant medications, and risk of Clostridium difficileinfection. BMC Med. 2013, 11, 121. [Google Scholar] [CrossRef]
- Boustany, A.; Feuerstadt, P.; Tillotson, G. The 3 Ds: Depression, Dysbiosis, and Clostridiodes difficile. Adv. Ther. 2024, 41, 3982–3995. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Mitrea, L.; Nemes, S.A.; Szabo, K.; Teleky, B.E.; Vodnar, D.C. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front. Med. 2022, 9, 813204. [Google Scholar] [CrossRef]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Komane, P.; Kumar, P.; Choonara, Y. Functionalised Carbon Nanotubes: Promising Drug Delivery Vehicles for Neurovascular Disorder Intervention. AAPS PharmSciTech 2023, 24, 201. [Google Scholar] [CrossRef]
- Hallett, M.; Aybek, S.; Dworetzky, B.A.; McWhirter, L.; Staab, J.P.; Stone, J. Functional neurological disorder: New subtypes and shared mechanisms. Lancet Neurol. 2022, 21, 537–550, Correction in Lancet Neurol. 2022, 21, E6. [Google Scholar] [CrossRef]
- Farooqui, A.A. Neurochemical Aspects of Neurological Disorders. In Curcumin for Neurological and Psychiatric Disorders; Academic Press: Oxford, UK, 2019; pp. 1–22. [Google Scholar]
- Kovacs, G.G. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int. J. Mol. Sci. 2016, 17, 189. [Google Scholar] [CrossRef]
- Harrison, J.E.; Weber, S.; Jakob, R.; Chute, C.G. ICD-11: An international classification of diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 2021, 21 (Suppl. S6), 206. [Google Scholar] [CrossRef]
- World Health Organization, (WHO). International Classification of Diseases, 11th Revision (ICD-11). Available online: https://icd.who.int (accessed on 6 January 2025).
- Rajakulendran, S.; Dua, T.; Harper, M.; Shakir, R. The classification of neurological disorders in the 11th revision of the International Classification of Diseases (ICD-11). J. Neurol. Neurosurg. Psychiatry 2014, 85, 952–953. [Google Scholar] [CrossRef]
- Wilson, D.M.r.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of neurodegenerative diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef]
- Balusu, S.; Praschberger, R.; Lauwers, E.; De Strooper, B.; Verstreken, P. Neurodegeneration cell per cell. Neuron 2023, 111, 767–786. [Google Scholar] [CrossRef]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef]
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 2012, 7, 376–385. [Google Scholar] [CrossRef]
- Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2015, 53, 4094–4125. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004, 10, S10–S17. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.S.; Ahmed, M.R.; Khalid, B.; Mahmood, A.; Hassan, R.; Kuga, M.C. Biomarker Detection of Neurological Disorders through Spectroscopy Analysis. Int. Dent. Med. J. Adv. Res. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci. 2018, 8, 177. [Google Scholar] [CrossRef]
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef]
- Haller, S.; Garibotto, V.; Barkhof, F. Neurodegenerative Disorders: Classification and Imaging Strategy. In Clinical Neuroradiology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–26. [Google Scholar]
- Kovacs, G.G. Concepts and classification of neurodegenerative diseases. Handb. Clin. Neurol. 2017, 145, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, D.G.; Sugandhi, V.V.; Jha, S.K.; Nangare, S.N.; Gupta, G.; Singh, S.K.; Dua, K.; Cho, H.; Hansbro, P.M.; Paudel, K.R. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res. Rev. 2024, 99, 102357. [Google Scholar] [CrossRef] [PubMed]
- Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv. Ther. 2020, 37, 113–139. [Google Scholar] [CrossRef]
- Koszla, O.; Solek, P. Misfolding and aggregation in neurodegenerative diseases: Protein quality control machinery as potential therapeutic clearance pathways. Cell Commun. Signal 2024, 22, 421. [Google Scholar] [CrossRef]
- Joseph, C.; Mangani, A.S.; Gupta, V.; Chitranshi, N.; Shen, T.; Dheer, Y.; Kb, D.; Mirzaei, M.; You, Y.; Graham, S.L.; et al. Cell Cycle Deficits in Neurodegenerative Disorders: Uncovering Molecular Mechanisms to Drive Innovative Therapeutic Development. Aging Dis. 2020, 11, 946–966. [Google Scholar] [CrossRef]
- Sanghai, N.; Tranmer, G.K. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View. Cells 2023, 12, 2318. [Google Scholar] [CrossRef] [PubMed]
- Ogonowski, N.S.; Garcia-Marin, L.M.; Fernando, A.S.; Flores-Ocampo, V.; Renteria, M.E. Impact of genetic predisposition to late-onset neurodegenerative diseases on early life outcomes and brain structure. Transl. Psychiatry 2024, 14, 185. [Google Scholar] [CrossRef] [PubMed]
- Jahabardeen, A.; Nirenjen, S.; Narayanan, J.; Chitra, V. A Review on the Role of SNCA Gene in Neurodegenerative Diseases. Cureus 2024, 16, e69450. [Google Scholar] [CrossRef]
- World Health Organization, (WHO). Mental Health & Neurological Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response (accessed on 8 January 2025).
- Galderisi, S.; Heinz, A.; Kastrup, M.; Beezhold, J.; Sartorius, N. Genetics and pharmacogenetics of mood disorders. Psychiatr. Pol. 2017, 51, 197–203. [Google Scholar] [CrossRef]
- Elleker, D.; O’Neill, M. Psychiatric Disorders; Springer Dordrecht: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Wolitzky-Taylor, K.; Wen, A.; Freimer, N.; Craske, M.G. Anxiety and depression in emerging adults: The STAND program as a model of scalable screening and intervention. Neuropsychopharmacology 2025, 51, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.M.; Banerjee, A.; Ghosal, A.; Layek, B. Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 3995. [Google Scholar] [CrossRef] [PubMed]
- Balistreri, C.R.; Monastero, R. Neuroinflammation and Neurodegenerative Diseases: How Much Do We Still Not Know? Brain Sci. 2023, 14, 19. [Google Scholar] [CrossRef]
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef]
- Swanson, A.; Wolf, T.; Sitzmann, A.; Willette, A.A. Neuroinflammation in Alzheimer’s disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav. Brain Res. 2018, 347, 49–56. [Google Scholar] [CrossRef]
- Swanson, A.; Willette, A.A.; Alzheimer’s Disease Neuroimaging Initiative. Neuronal Pentraxin 2 predicts medial temporal atrophy and memory decline across the Alzheimer’s disease spectrum. Brain Behav. Immun. 2016, 58, 201–208. [Google Scholar] [CrossRef]
- Bernier, R.A.; Banks, S.J.; Panizzon, M.S.; Andrews, M.J.; Jacobs, E.G.; Galasko, D.R.; Shepherd, A.L.; Akassoglou, K.; Sundermann, E.E.; Alzheimer’s Disease Neuroimaging Initiative. The neuroinflammatory marker sTNFR2 relates to worse cognition and tau in women across the Alzheimer’s disease spectrum. Alzheimers Dement. 2022, 14, e12284. [Google Scholar] [CrossRef]
- Van Schependom, J.; D’Haeseleer, M. Advances in Neurodegenerative Diseases. J. Clin. Med. 2023, 12, 1709. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Durazzo, A.; Lucarini, M.; Valles, S.L.; Poeggeler, B. Antioxidant and neuroprotective potential of alternative and complementary therapeutic approaches against Alzheimer’s disease. Front. Pharmacol. 2023, 14, 1289979. [Google Scholar] [CrossRef]
- Stolzer, I.; Scherer, E.; Suss, P.; Rothhammer, V.; Winner, B.; Neurath, M.F.; Gunther, C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci. 2023, 24, 14925. [Google Scholar] [CrossRef]
- Luo, Y.; Qiu, W.; Wu, B.; Fang, F. An overview of mesenchymal stem cell-based therapy mediated by noncoding RNAs in the treatment of neurodegenerative diseases. Stem Cell Rev. Rep. 2022, 18, 457–473, Correction in Stem Cell Rev. Rep. 2022, 18, 1521. [Google Scholar] [CrossRef]
- Binda, S.; Tremblay, A.; Iqbal, U.H.; Kassem, O.; Le Barz, M.; Thomas, V.; Bronner, S.; Perrot, T.; Ismail, N.; Parker, J.A. Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here? Microorganisms 2024, 12, 634. [Google Scholar] [CrossRef]
- Grau-Del Valle, C.; Fernandez, J.; Sola, E.; Montoya-Castilla, I.; Morillas, C.; Banuls, C. Association between gut microbiota and psychiatric disorders: A systematic review. Front. Psychol. 2023, 14, 1215674. [Google Scholar] [CrossRef]
- Rusch, J.A.; Layden, B.T.; Dugas, L.R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. 2023, 14, 1130689. [Google Scholar] [CrossRef]
- Zhong, H.J.; Wang, S.Q.; Zhang, R.X.; Zhuang, Y.P.; Li, L.; Yi, S.Z.; Li, Y.; Wu, L.; Ding, Y.; Zhang, J.; et al. Supplementation with high-GABA-producing Lactobacillus plantarum L5 ameliorates essential tremor triggered by decreased gut bacteria-derived GABA. Transl. Neurodegener. 2023, 12, 58. [Google Scholar] [CrossRef]
- Xu, J.; Ge, Z.; Wang, H.; Zhang, C.; Xu, J.; Li, Y.; Yang, X.; Zhang, L.; Li, Z.; Liu, Z.; et al. Long-term GABA supplementation mitigates anxiety by modulating complement and neuroinflammatory pathways. NPJ Sci. Food 2025, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Barrio, C.; Arias-Sánchez, S.; Martín-Monzón, I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology 2022, 137, 105640. [Google Scholar] [CrossRef] [PubMed]
- Wallen, Z.D.; Demirkan, A.; Twa, G.; Cohen, G.; Dean, M.N.; Standaert, D.G.; Sampson, T.R.; Payami, H. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 2022, 13, 6958. [Google Scholar] [CrossRef]
- Aho, V.T.E.; Pereira, P.A.B.; Voutilainen, S.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. Gut microbiota in Parkinson’s disease: Temporal stability and relations to disease progression. EBioMedicine 2019, 44, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Casertano, M.; Fogliano, V.; Ercolini, D. Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Res. Int. 2022, 152, 110892. [Google Scholar] [CrossRef] [PubMed]
- Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nutr. Rev. 2012, 70 (Suppl. S1), S38–S44. [Google Scholar] [CrossRef]
- Aburto, M.R.; Cryan, J.F. Gastrointestinal and brain barriers: Unlocking gates of communication across the microbiota–gut–brain axis. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 222–247, Correction in Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 265. [Google Scholar] [CrossRef]
- Fung, C.; Vanden Berghe, P. Functional circuits and signal processing in the enteric nervous system. Cell Mol. Life Sci. 2020, 77, 4505–4522. [Google Scholar] [CrossRef]
- Braga, J.D.; Thongngam, M.; Kumrungsee, T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut-brain axis. NPJ Sci. Food 2024, 8, 16. [Google Scholar] [CrossRef]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Modulation of immunity by tryptophan microbial metabolites. Front. Nutr. 2023, 10, 1209613. [Google Scholar] [CrossRef]
- Dacaya, P.; Sarapis, K.; Hall, R.; Yim, K.; Resciniti, S.; Vinh, A.; Dinh, Q.N.; Truong, T.; Pane, M.; Biesiekierski, J.R.; et al. Exploring neurotransmitter regulation following probiotic supplementation in adults with subthreshold depression: A secondary analysis of a randomized controlled trial. Nutrition 2025, 140, 112891. [Google Scholar] [CrossRef]
- Li, P.; Bai, Y.; Li, S.; Zhang, Z. Characterisation of kefir-derived lactic acid bacteria and their extracellular vesicles. Curr. Res. Food Sci. 2024, 9, 100925. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Zuo, M.; Ding, S.; Li, J.; Feng, S.; Xiao, Y.; Tao, S. Novel mechanism by which extracellular vesicles derived from Lactobacillus murinus alleviates deoxynivalenol-induced intestinal barrier disruption. Env. Int. 2024, 185, 108525. [Google Scholar] [CrossRef]
- Ye, L.; Bae, M.; Cassilly, C.D.; Jabba, S.V.; Thorpe, D.W.; Martin, A.M.; Lu, H.Y.; Wang, J.; Thompson, J.D.; Lickwar, C.R.; et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 2021, 29, 179–196.e179. [Google Scholar] [CrossRef] [PubMed]
- Morkl, S.; Narrath, M.; Schlotmann, D.; Sallmutter, M.T.; Putz, J.; Lang, J.; Brandstatter, A.; Pilz, R.; Karl Lackner, H.; Goswami, N.; et al. Multi-species probiotic supplement enhances vagal nerve function—Results of a randomized controlled trial in patients with depression and healthy controls. Gut Microbes 2025, 17, 2492377. [Google Scholar] [CrossRef]
- Nandha, M.C.; Shukla, R.M. Exploration of probiotic attributes in lactic acid bacteria isolated from fermented Theobroma cacao L. fruit using in vitro techniques. Front. Microbiol. 2023, 14, 1274636. [Google Scholar] [CrossRef]
- Del Toro-Barbosa, M.; Hurtado-Romero, A.; Garcia-Amezquita, L.E.; Garcia-Cayuela, T. Psychobiotics: Mechanisms of Action, Evaluation Methods and Effectiveness in Applications with Food Products. Nutrients 2020, 12, 3896. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Yang, C.H.; Lin, C.T.; Li, S.W.; Cheng, W.S.; Jiang, Y.P.; Wu, C.C.; Chang, C.H.; Tsai, Y.C. Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathog. 2015, 7, 22. [Google Scholar] [CrossRef]
- Torres-Maravilla, E.; Reyes-Pavon, D.; Benitez-Cabello, A.; Gonzalez-Vazquez, R.; Ramirez-Chamorro, L.M.; Langella, P.; Bermudez-Humaran, L.G. Strategies for the Identification and Assessment of Bacterial Strains with Specific Probiotic Traits. Microorganisms 2022, 10, 1389. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Wu, C.C.; Kim, Y.; Hsu, W.Y.; Tsai, Y.C.; Chiu, S.L. Enhancing social behavior in an autism spectrum disorder mouse model: Investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention. Gut Microbes 2024, 16, 2359501. [Google Scholar] [CrossRef]
- Delgado-Ocaña, S.; Cuesta, S. From microbes to mind: Germ-free models in neuropsychiatric research. mBio 2024, 15, e02075-24. [Google Scholar] [CrossRef]
- Planchez, B.; Surget, A.; Belzung, C. Animal models of major depression: Drawbacks and challenges. J. Neural Transm. 2019, 126, 1383–1408. [Google Scholar] [CrossRef]
- Alatan, H.; Liang, S.; Shimodaira, Y.; Wu, X.; Hu, X.; Wang, T.; Luo, J.; Iijima, K.; Jin, F. Supplementation with Lactobacillus helveticus NS8 alleviated behavioral, neural, endocrine, and microbiota abnormalities in an endogenous rat model of depression. Front. Immunol. 2024, 15, 1407620. [Google Scholar] [CrossRef]
- Chudzik, A.; Slowik, T.; Kochalska, K.; Pankowska, A.; Lazorczyk, A.; Andres-Mach, M.; Rola, R.; Stanisz, G.J.; Orzylowska, A. Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats. Int. J. Mol. Sci. 2022, 23, 5173. [Google Scholar] [CrossRef]
- Liao, J.F.; Cheng, Y.F.; Li, S.W.; Lee, W.T.; Hsu, C.C.; Wu, C.C.; Jeng, O.J.; Wang, S.; Tsai, Y.C. Lactobacillus plantarum PS128 ameliorates 2,5-Dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influences on the microbiota-gut-brain-axis. Brain Res Bull. 2019, 153, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Li, Q.; Zhu, H.; Chen, Y.; Lin, G.; Zhang, H.; Chen, W.; Wang, G.; Tian, P. Bifidobacteria with indole-3-lactic acid-producing capacity exhibit psychobiotic potential via reducing neuroinflammation. Cell Rep. Med. 2024, 5, 101798. [Google Scholar] [CrossRef] [PubMed]
- Akbari, E.; Asemi, Z.; Kakhaki, R.D.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Front. Aging Neurosci. 2016, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Cha, L.; Sim, M.; Jung, S.; Chun, W.Y.; Baik, H.W.; Shin, D.M. Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 32–40. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Huang, Y.Y.; Tsai, S.Y.; Kuo, Y.W.; Lin, J.H.; Ho, H.H.; Chen, J.F.; Hsia, K.C.; Sun, Y. Efficacy of Probiotic Supplements on Brain-Derived Neurotrophic Factor, Inflammatory Biomarkers, Oxidative Stress and Cognitive Function in Patients with Alzheimer’s Dementia: A 12-Week Randomized, Double-Blind Active-Controlled Study. Nutrients 2024, 16, 16. [Google Scholar] [CrossRef]
- Jouni, N.; Akhgarjand, C.; Vahabi, Z.; Shab-Bidar, S.; Khalifeh, H.; Djafarian, K. Strain specific effects of probiotic supplementation on serum amino acid profiles in Alzheimer’s disease: A randomized, double blind, placebo controlled trial. Sci. Rep. 2025, 15, 29924. [Google Scholar] [CrossRef]
- Magistrelli, L.; Contaldi, E.; Visciglia, A.; Deusebio, G.; Pane, M.; Amoruso, A. The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data. Brain Sci. 2024, 14, 1147. [Google Scholar] [CrossRef]
- Tan, A.H.; Lim, S.Y.; Chong, K.K.; A Manap, M.A.A.; Hor, J.W.; Lim, J.L.; Low, S.C.; Chong, C.W.; Mahadeva, S.; Lang, A.E. Probiotics for Constipation in Parkinson Disease: A Randomized Placebo-Controlled Study. Neurology 2021, 96, e772–e782. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ali, R.A.R.; Manaf, M.R.A.; Ahmad, N.; Tajurruddin, F.W.; Qin, W.Z.; Desa, S.H.M.; Ibrahim, N.M. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial. PLoS ONE 2020, 15, e0244680. [Google Scholar] [CrossRef]
- Borzabadi, S.; Oryan, S.; Eidi, A.; Asemi, Z. The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-blind, PlaceboControlled Trial. Arch. Iran. Med. 2018, 21, 289–295. [Google Scholar] [PubMed]
- Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2011, 2, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Heidarzadeh-Rad, N.; Gokmen-Ozel, H.; Kazemi, A.; Almasi, N.; Djafarian, K. Effects of a Psychobiotic Supplement on Serum Brain-derived Neurotrophic Factor Levels in Depressive Patients: A Post Hoc Analysis of a Randomized Clinical Trial. J. Neurogastroenterol. Motil. 2020, 26, 486–495. [Google Scholar] [CrossRef]
- Reininghaus, E.Z.; Platzer, M.; Kohlhammer-Dohr, A.; Hamm, C.; Morkl, S.; Bengesser, S.A.; Fellendorf, F.T.; Lahousen-Luxenberger, T.; Leitner-Afschar, B.; Schoggl, H.; et al. PROVIT: Supplementary Probiotic Treatment and Vitamin B7 in Depression-A Randomized Controlled Trial. Nutrients 2020, 12, 3422. [Google Scholar] [CrossRef]
- Zhu, R.; Fang, Y.; Li, H.; Liu, Y.; Wei, J.; Zhang, S.; Wang, L.; Fan, R.; Wang, L.; Li, S.; et al. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Front. Immunol. 2023, 14, 1158137. [Google Scholar] [CrossRef]
- Tran, N.; Zhebrak, M.; Yacoub, C.; Pelletier, J.; Hawley, D. The gut-brain relationship: Investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults. J. Affect. Disord. 2019, 252, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Walden, K.E.; Moon, J.M.; Hagele, A.M.; Allen, L.E.; Gaige, C.J.; Krieger, J.M.; Jager, R.; Mumford, P.W.; Pane, M.; Kerksick, C.M. A randomized controlled trial to examine the impact of a multi-strain probiotic on self-reported indicators of depression, anxiety, mood, and associated biomarkers. Front. Nutr. 2023, 10, 1219313. [Google Scholar] [CrossRef]
- Ma, T.; Jin, H.; Kwok, L.Y.; Sun, Z.; Liong, M.T.; Zhang, H. Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiol. Stress. 2021, 14, 100294. [Google Scholar] [CrossRef]
- Novoa, C.; Salazar, P.; Cisternas, P.; Gherardelli, C.; Vera-Salazar, R.; Zolezzi, J.M.; Inestrosa, N.C. Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biol. Res. 2022, 55, 39. [Google Scholar] [CrossRef]
- Kulkarni, R.; Kumari, S.; Dhapola, R.; Sharma, P.; Singh, S.K.; Medhi, B.; HariKrishnaReddy, D. Association between the gut microbiota and Alzheimer’s disease: An update on signaling pathways and translational therapeutics. Mol. Neurobiol. 2025, 62, 4499–4519. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, J.; Cao, S.; Xu, X.; Zhou, J.; Zhang, R.; Huang, B.; Lu, P.; Peng, L.; Liu, M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. Int. J. Mol. Sci. 2025, 26, 1373. [Google Scholar] [CrossRef]
- McGregor, M.M.; Nelson, A.B. Circuit Mechanisms of Parkinson’s Disease. Neuron 2019, 101, 1042–1056. [Google Scholar] [CrossRef]
- Dexter, D.T.; Jenner, P. Parkinson disease: From pathology to molecular disease mechanisms. Free Radic. Biol. Med. 2013, 62, 132–144. [Google Scholar] [CrossRef]
- Xu, D.-C.; Chen, Y.; Xu, Y.; ShenTu, C.-Y.; Peng, L.-H. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 73. [Google Scholar] [CrossRef]
- Maiti, P.; Manna, J.; Dunbar, G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 2017, 6, 28. [Google Scholar] [CrossRef]
- Popescu, B.O.; Batzu, L.; Ruiz, P.J.G.; Tulba, D.; Moro, E.; Santens, P. Neuroplasticity in Parkinson’s disease. J. Neural Transm. 2024, 131, 1329–1339. [Google Scholar] [CrossRef]
- Absalyamova, M.; Traktirov, D.; Burdinskaya, V.; Artemova, V.; Muruzheva, Z.; Karpenko, M. Molecular basis of the development of Parkinson’s disease. Neuroscience 2025, 565, 292–300. [Google Scholar] [CrossRef]
- Pajares, M.; Rojo, A.I.; Manda, G.; Bosca, L.; Cuadrado, A. Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells 2020, 9, 1687. [Google Scholar] [CrossRef]
- Shadrina, M.I.; Slominsky, P.A.; Limborska, S.A. Molecular mechanisms of pathogenesis of Parkinson’s disease. In International Review of Cell and Molecular Biology; Jeon, K.W., Ed.; International Review of Cytology; Academic Press: San Diego, CA, USA, 2010; Volume 281, pp. 229–266. [Google Scholar]
- Pang, S.; Ren, Z.; Ding, H.; Chan, P. Short-chain fatty acids mediate enteric and central nervous system homeostasis in Parkinson’s disease: Innovative therapies and their translation. Neural Regen. Res. 2026, 21, 938–956. [Google Scholar] [CrossRef]
- Brown, G.C.; Camacho, M.; Williams-Gray, C.H. The Endotoxin Hypothesis of Parkinson’s Disease. Mov. Disord. 2023, 38, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, B.; Cheng, G.; Hardy, M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson’s disease and therapeutic implications. Redox Biol. 2024, 71, 103092. [Google Scholar] [CrossRef]
- Chand, S.P.; Arif, H. Depression. In StatPearls [Internet]; StatPearls, Ed.; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Medina-Mora, M.E.; Orozco, R.; Rafful, C.; Cordero, M.; Bishai, J.; Ferrari, A.; Santomauro, D.; Benjet, C.; Borges, G.; Mantilla-Herrera, A.M. Los trastornos mentales en México 1990-2021. Resultados del estudio Global Burden of Disease 2021. Gac. Médica De México 2023, 159, 512–522. [Google Scholar] [CrossRef]
- Lanni, C.; Govoni, S.; Lucchelli, A.; Boselli, C. Depression and antidepressants: Molecular and cellular aspects. Cell Mol. Life Sci. 2009, 66, 2985–3008. [Google Scholar] [CrossRef]
- Bottaccioli, A.G.; Bologna, M.; Bottaccioli, F. Rethinking Depression-Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment. Int. J. Mol. Sci. 2025, 26, 2759. [Google Scholar] [CrossRef]
- Hossain, M.N.; Lee, J.; Choi, H.; Kwak, Y.S.; Kim, J. The impact of exercise on depression: How moving makes your brain and body feel better. Phys. Act. Nutr. 2024, 28, 43–51. [Google Scholar] [CrossRef]
- Lukic, I.; Ivkovic, S.; Mitic, M.; Adzic, M. Tryptophan metabolites in depression: Modulation by gut microbiota. Front. Behav. Neurosci. 2022, 16, 987697. [Google Scholar] [CrossRef]
- Kearns, R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell Mol. Neurobiol. 2024, 44, 64. [Google Scholar] [CrossRef]
- Mayneris-Perxachs, J.; Castells-Nobau, A.; Arnoriaga-Rodríguez, M.; Martin, M.; de la Vega-Correa, L.; Zapata, C.; Burokas, A.; Blasco, G.; Coll, C.; Escrichs, A.; et al. Microbiota alterations in proline metabolism impact depression. Cell Metab. 2022, 34, 681–701.e610. [Google Scholar] [CrossRef]
- World Health Organization, (WHO). Mental Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 3 March 2025).
- Craske, M.G.; Stein, M.B. Anxiety. Lancet 2016, 388, 3048–3059. [Google Scholar] [CrossRef]
- Fu, X.; Tasker, J.G. Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety. Front. Cell. Neurosci. 2024, 18, 1421617. [Google Scholar] [CrossRef]
- Nelles, P.A.; Singewald, N.; Sperner-Unterweger, B.; Hüfner, K. The “conflict avoidance theory of inflammation-induced anxiety” (CATIA): A psychoneuroimmunologic hypothesis. Med. Hypotheses 2025, 196, 111580. [Google Scholar] [CrossRef]
- Abraham, L.; Raise, A.; Beney, L.; Lapaquette, P.; Rieu, A. Membrane vesicles produced by next-generation probiotics from the gut as innovative tools for human health. Gut Microbes 2025, 17, 2552344. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; He, F.; Wu, W.; Xu, K.; Ren, Y.; Chen, J.; Xie, P. Akkermansia muciniphila-derived SCFAs improve the depression-like behaviors of mice by inhibiting neuroinflammation. Pharmacol. Res. 2025, 220, 107938. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, T. Engineered Akkermansia muciniphila: A promising agent against diseases (Review). Exp. Ther. Med. 2020, 20, 285. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, X.; Ye, Y.; Yan, X.; Cheng, Y.; Zhao, L.; Chen, F.; Ling, Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Front. Immunol. 2022, 13, 937555. [Google Scholar] [CrossRef]
- Jiang, C.; Caskurlu, A.; Ganesh, T.; Dingledine, R. Inhibition of the prostaglandin EP2 receptor prevents long-term cognitive impairment in a model of systemic inflammation. Brain Behav. Immun. Health 2020, 8, 100132. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, T.; Tang, C.; Zhong, Y.; Shi, L.; Fang, X.; Chen, D.; Zhu, Z. Gastrodin improves neuroinflammation-induced cognitive dysfunction in rats by regulating NLRP3 inflammasome. BMC Anesth. 2022, 22, 371. [Google Scholar] [CrossRef]
- Aguiar, A.B.; Aguiar, A.B.; de Albuquerque Filho, L.B.; Ramanzini, L.G.; da Silva, J.G.M.; Lima, M.P.P.; Ribas, M.Z.; Paticcié, G.F.; Noleto, F.M.; dos Santos, J.C.C. Neuropsychiatric and cognitive comorbidities in epilepsy. Res. Soc. Dev. 2023, 12, e33121043331. [Google Scholar] [CrossRef]
- Wang, S.; Guan, Y.G.; Zhu, Y.H.; Wang, M.Z. Role of high mobility group box protein 1 in depression: A mechanistic and therapeutic perspective. World J. Psychiatry 2022, 12, 779–786. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef]
- Kyei-Baffour, V.O.; Vijaya, A.K.; Burokas, A.; Daliri, E.B. Psychobiotics and the gut-brain axis: Advances in metabolite quantification and their implications for mental health. Crit. Rev. Food Sci. Nutr. 2025, 65, 7085–7104. [Google Scholar] [CrossRef]
- Berding, K.; Bastiaanssen, T.F.S.; Moloney, G.M.; Boscaini, S.; Strain, C.R.; Anesi, A.; Long-Smith, C.; Mattivi, F.; Stanton, C.; Clarke, G.; et al. Feed your microbes to deal with stress: A psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 2022, 28, 601–610. [Google Scholar] [CrossRef]
- Lin, A.; Shih, C.T.; Huang, C.L.; Wu, C.C.; Lin, C.T.; Tsai, Y.C. Hypnotic Effects of Lactobacillus fermentum PS150(TM) on Pentobarbital-Induced Sleep in Mice. Nutrients 2019, 11, 2409. [Google Scholar] [CrossRef]
- Morales-Torres, R.; Carrasco-Gubernatis, C.; Grasso-Cladera, A.; Cosmelli, D.; Parada, F.J.; Palacios-Garcia, I. Psychobiotic Effects on Anxiety Are Modulated by Lifestyle Behaviors: A Randomized Placebo-Controlled Trial on Healthy Adults. Nutrients 2023, 15, 1706. [Google Scholar] [CrossRef]
- Dhyani, P.; Goyal, C.; Dhull, S.B.; Chauhan, A.K.; Singh Saharan, B.; Harshita; Duhan, J.S.; Goksen, G. Psychobiotics for Mitigation of Neuro-Degenerative Diseases: Recent Advancements. Mol. Nutr. Food Res. 2023, 68, e2300461. [Google Scholar] [CrossRef]
- Dev, P.S.; Eljo, J.J.G. Ethical considerations for older adults. Nusant. J. Behav. Soc. Sci. 2024, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aththanayaka, M. Gut microbiota and psychobiotics: A novel approach in anxiety management—A comprehensive literature review. J. Ment. Health Behav. Sci. 2024, 2, 28–36. [Google Scholar] [CrossRef]


| Condition | Probiotic Strain(s) | Study Design | Reported Outcomes | Reference |
|---|---|---|---|---|
| Alzheimer’s Disease | Lab. acidophilus, Lbs. casei, B. bifidum, Lmb. Fermentum | Double-blind, RCT, 12 weeks | ↑ Cognition (MMSE), ↓ hs-CRP and MDA | [81] |
| Alzheimer’s Disease | B. bifidum BGN4, B. longum BORI | RCT, 63 elderly adults | ↑ Mental flexibility, ↑ serum BDNF, ↓ pro-inflammatory taxa | [82] |
| Alzheimer’s Disease | B. longum subsp. infantis BLI-02, B. breve Bv-889, B. animalis subsp. lactis CP-9, B. bifidum VDD088, Lpb. plantarum PL-02 | Double-blind, RCT, 12 weeks | ↑ BDNF levels, improved cognitive measures | [83] |
| Alzheimer’s Disease | Lbs. rhamnosus HA-114, B. longum R0175 | RCT, 12 weeks | ↑ Serum amino acid profile; neurotransmitter precursor relevance | [84] |
| Parkinson’s Disease | B. lactis BS01, B. longum BL03, B. adolescentis BA02 + FOS | RCT, 12 weeks | ↑ Motor and non-motor scores, ↓ IL-6, ↑ TGF-β | [85] |
| Parkinson’s Disease | Lab. acidophilus, Lbs. casei, Lab. Delbrueckii subsp. lactis, B. bifidum, B. infantis, B. longum (Hexbio®, B-Crobes Laboratory Sdn Bhd, Ipoh, Malaysia) | 2 RCTs | ↑ Bowel movements, ↓ gut transit time | [86,87] |
| Parkinson’s Disease | RCT, 12 weeks | ↓ IL-1, IL-8, TNF-α; ↑ TGF-β, PPAR-γ | [88] | |
| Depression | Lab. helveticus R0052, B. longum R0175 | Double-blind, placebo-controlled, 30 days | ↓ Anxiety and depression (HADS, GSI) | [89] |
| Depression | Lab. helveticus R0052, B. longum R0175 | RCT, 8 weeks + pharmacotherapy | ↓ BDI scores, ↑ BDNF | [90] |
| Depression | OMNi-BiOTiC® Stress Repair (a multi-strain probiotic, Institute AllergoSan, Graz, Austria) | Double-blind RCT, 28 days | ↓ Symptoms, ↑ IL-17 pathway modulation | [91] |
| Depression | Lpb. plantarum JYLP-326 | RCT, 3 weeks in anxious students | ↓ Depression, anxiety, insomnia; ↓ Bacteroides, Faecalibacterium, Roseburia | [92] |
| Anxiety | Multi-strain: B. lactis, Lab. acidophilus, Lbs. rhamnosus, etc. | RCT, 28 days (students) | ↓ Anxiety (questionnaires) | [93] |
| Anxiety | Lpb. plantarum LP01, Lmb. fermentum LF16, Lbs. rhamnosus LR06, B. longum 04 | RCT, 28 days | ↑ Serotonin, ↓ CRP, ↑ mood | [94] |
| Anxiety | Lpb. plantarum P-18 | RCT, 12 weeks | ↓ Anxiety and depression, microbiome SGB enrichment | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Pareyón, G.R.; Cristóbal-Luna, J.M.; García-Martínez, Y.; Garfias-Noguez, C.; Ramírez-Damián, M.; Torres-Maravilla, E.; Sánchez-Pardo, M.E. Psychobiotics at the Frontiers of Neurodegenerative and Neuropsychiatric Research. Microorganisms 2025, 13, 2718. https://doi.org/10.3390/microorganisms13122718
Jiménez-Pareyón GR, Cristóbal-Luna JM, García-Martínez Y, Garfias-Noguez C, Ramírez-Damián M, Torres-Maravilla E, Sánchez-Pardo ME. Psychobiotics at the Frontiers of Neurodegenerative and Neuropsychiatric Research. Microorganisms. 2025; 13(12):2718. https://doi.org/10.3390/microorganisms13122718
Chicago/Turabian StyleJiménez-Pareyón, Guillermo Roberto, José Melesio Cristóbal-Luna, Yuliana García-Martínez, Cynthia Garfias-Noguez, Morayma Ramírez-Damián, Edgar Torres-Maravilla, and María Elena Sánchez-Pardo. 2025. "Psychobiotics at the Frontiers of Neurodegenerative and Neuropsychiatric Research" Microorganisms 13, no. 12: 2718. https://doi.org/10.3390/microorganisms13122718
APA StyleJiménez-Pareyón, G. R., Cristóbal-Luna, J. M., García-Martínez, Y., Garfias-Noguez, C., Ramírez-Damián, M., Torres-Maravilla, E., & Sánchez-Pardo, M. E. (2025). Psychobiotics at the Frontiers of Neurodegenerative and Neuropsychiatric Research. Microorganisms, 13(12), 2718. https://doi.org/10.3390/microorganisms13122718

