Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (446)

Search Parameters:
Keywords = growing up milk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4190 KiB  
Article
Dairy’s Development and Socio-Economic Transformation: A Cross-Country Analysis
by Ana Felis, Ugo Pica-Ciamarra and Ernesto Reyes
World 2025, 6(3), 105; https://doi.org/10.3390/world6030105 - 1 Aug 2025
Viewed by 184
Abstract
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to [...] Read more.
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to a more balanced vision of the UN SDGs thanks to the inclusion of a socio-economic dimension. Here we present a novel empirical approach to assess the socio-economic impacts of dairy development using a new global dataset and non-parametric modelling techniques (local polynomial regressions), with yield as a proxy for sectoral performance. We find that as dairy systems intensify, the number of farm households engaged in production declines, yet household incomes rise. On-farm labour productivity also increases, accompanied by a reduction in employment but higher wages. In dairy processing, employment initially grows, peaks, and then contracts, again with rising wages. The most substantial impact is observed among consumers: an increased milk supply leads to lower prices and improved affordability, expanding the access to dairy products. Additionally, dairy development is associated with greater agricultural value added, an expanding tax base, and the increased formalization of the economy. These findings suggest that dairy development, beyond its environmental footprint, plays a significant and largely positive role in social transformation, yet is having to adapt sustainably while tackling labour force relocation, and that dairy development’s social impacts mimic the general agricultural sector. These results might be of interest for the assessment of policies regarding dairy development. Full article
Show Figures

Graphical abstract

16 pages, 1192 KiB  
Article
Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk
by Gordana Jovanović, Timea Bezdan, Snježana Herceg Romanić, Marijana Matek Sarić, Martina Biošić, Gordana Mendaš, Andreja Stojić and Mirjana Perišić
Toxics 2025, 13(8), 631; https://doi.org/10.3390/toxics13080631 - 27 Jul 2025
Viewed by 332
Abstract
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence [...] Read more.
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside p,p’-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138–PCB-153, PCB-138–PCB-180, and PCB-180–PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios. Full article
Show Figures

Figure 1

13 pages, 1849 KiB  
Article
HMOs Induce Butyrate Production of Faecalibacterium prausnitzii via Cross-Feeding by Bifidobacterium bifidum with Different Mechanisms for HMO Types
by Haruka Onodera, Yohei Sato, Yosuke Komatsu, Makoto Yamashita, Yuta Watanabe and Takeshi Kokubo
Microorganisms 2025, 13(7), 1705; https://doi.org/10.3390/microorganisms13071705 - 21 Jul 2025
Viewed by 456
Abstract
Human milk oligosaccharides (HMOs) have garnered significant attention as one of the bioactive components in human milk, with growing applications in infant formula and food products. HMOs enhance butyrate production, which is produced by butyrate-producing bacteria such as Faecalibacterium prausnitzii and contributes to [...] Read more.
Human milk oligosaccharides (HMOs) have garnered significant attention as one of the bioactive components in human milk, with growing applications in infant formula and food products. HMOs enhance butyrate production, which is produced by butyrate-producing bacteria such as Faecalibacterium prausnitzii and contributes to gut health through its diverse biological functions. However, the specific mechanisms by which individual HMOs promote butyrate production remain unclear. In this study, we conducted in vitro co-culture experiments of F. prausnitzii and Bifidobacterium bifidum, examining their relative abundance, fatty acid production, residual sugar levels, and gene expression. Our results revealed that B. bifidum utilizes HMOs and provides the constituent sugars to F. prausnitzii, thereby promoting butyrate production by F. prausnitzii. Furthermore, we found that the underlying mechanisms vary depending on the structure of the HMOs. Specifically, 2′-fucosyllactose and 3′-sialyllactose enhance the butyrate production efficiency of F. prausnitzii, while 6′-sialyllactose primarily promotes the growth of F. prausnitzii. These findings not only deepen our understanding of how HMOs influence infant gut health but also suggest new directions for developing nutritional products that leverage the distinct functional properties of each HMO. Full article
(This article belongs to the Special Issue Gut Microbiota, Diet, and Gastrointestinal Cancer)
Show Figures

Figure 1

16 pages, 1822 KiB  
Article
Upcycling Microalgal Residues: Physicochemical Insights and Biocomposite Enhancement
by Valerio Cuboni, Raffaella Lettieri, Alice Caravella, Martina Corvino, Viviana Scognamiglio, Amina Antonacci and Emanuela Gatto
Macromol 2025, 5(3), 32; https://doi.org/10.3390/macromol5030032 - 8 Jul 2025
Viewed by 350
Abstract
The growing concern for environmental sustainability has led to an increased interest in biodegradable materials derived from renewable resources. This study explores the innovative use of residual biomass from the green photosynthetic microalga Chlamydomonas reinhardtii, left over after polysaccharide extraction, as a [...] Read more.
The growing concern for environmental sustainability has led to an increased interest in biodegradable materials derived from renewable resources. This study explores the innovative use of residual biomass from the green photosynthetic microalga Chlamydomonas reinhardtii, left over after polysaccharide extraction, as a natural filler in the development of the compostable protein-based material SP-Milk®. The microalgal biomass was characterized using Fourier transform infrared spectroscopy (FTIR) and UV-Visible Spectroscopy to assess its chemical and structural composition. Subsequently, it was incorporated into a biodegradable protein matrix, and the resulting biocomposites were evaluated for mechanical and thermal properties. The results demonstrate that the incorporation of algal filler improves the mechanical strength and elasticity of the material while reducing its glass transition temperature, highlighting its potential for use in sustainable applications as a possible substitute for conventional plastics. The biocomposite materials developed, based on the protein-based material SP-Milk® and residual microalgal biomass, are environmentally friendly, contributing to the reduction in pollution and the risks associated with plastic accumulation. Thus, this study offers a simple, effective, and sustainable strategy for the valorization of microalgal biomass, enabling the production of biodegradable materials with enhanced mechanical performance, suitable for applications such as sustainable packaging within a circular economy framework. Full article
Show Figures

Figure 1

12 pages, 911 KiB  
Article
Estimation of Milk Casein Content Using Machine Learning Models and Feeding Simulations
by Bence Tarr, János Tőzsér, István Szabó and András Revoly
Dairy 2025, 6(4), 35; https://doi.org/10.3390/dairy6040035 - 3 Jul 2025
Cited by 1 | Viewed by 376
Abstract
Milk quality has a growing importance for farmers as component-based pricing becomes more widespread. Food quality and precision manufacturing techniques demand consistent milk composition. Udder health, general cow condition, environmental factors, and especially feed composition all influence milk quality. The large volume of [...] Read more.
Milk quality has a growing importance for farmers as component-based pricing becomes more widespread. Food quality and precision manufacturing techniques demand consistent milk composition. Udder health, general cow condition, environmental factors, and especially feed composition all influence milk quality. The large volume of routinely collected milk data can be used to build prediction models that estimate valuable constituents from other measured parameters. In this study, casein was chosen as the target variable because of its high economic value. We developed a multiple linear-regression model and a feed-forward neural network model to estimate casein content from twelve commonly recorded milk traits. Evaluated on an independent test set, the regression model achieved R2 = 0.86 and RMSE = 0.018%, with mean bias = +0.003% and slope bias = −0.10, whereas the neural network improved performance to R2 = 0.924 and RMSE = 0.084%. In silico microgreen inclusion from 0% to 100% of dietary dry matter raised the predicted casein concentration from 2.662% to 3.398%, a relative increase of 27.6%. To extend practical applicability, a simulation module was created to explore how microgreen supplementation might modify milk casein levels, enabling virtual testing of dietary strategies before in vivo trials. Together, the predictive models and the microgreen simulation form a cost-effective, non-invasive decision-support tool that can accelerate diet optimization and improve casein management in precision dairy production. Full article
Show Figures

Figure 1

17 pages, 1790 KiB  
Article
Interaction Between Ruminal Acetate Infusion and Diet Fermentability on Milk Fat Production in Dairy Cows
by Natalie L. Urrutia, Camila Muñoz, Emilio M. Ungerfeld, Claudia Cisterna and Kevin J. Harvatine
Animals 2025, 15(13), 1931; https://doi.org/10.3390/ani15131931 - 30 Jun 2025
Viewed by 363
Abstract
Acetate is naturally produced in the rumen through feed degradation and fermentation. It serves as a primary energy source for ruminants and as a key substrate for de novo fatty acid synthesis in the mammary gland. The interaction of exogenous acetate with different [...] Read more.
Acetate is naturally produced in the rumen through feed degradation and fermentation. It serves as a primary energy source for ruminants and as a key substrate for de novo fatty acid synthesis in the mammary gland. The interaction of exogenous acetate with different animal and dietary factors is an area of growing interest, as it may have significant implications for milk fat synthesis. This study aimed to assess the effect of two diet fermentability levels on the short-term response of lactation to acetate supplementation in dairy cows. Eight ruminally cannulated multiparous European Holstein cows were randomly assigned to treatments in a crossover design that tested the effect of diet fermentability, acetate supply, and their interaction. Using corn silage as the only forage source and a constant forage-to-concentrate ratio, high-fermentability (HF) and low-fermentability (LF) diets were formulated. Acetate supply was investigated by infusing ruminally 10 moles of sodium acetate/d (ACE) or an equimolar infusion of control (CON). Therefore, the treatments were as follows: LF + CON; LF + ACE; HF + CON; and HF + ACE. No interactions between acetate and diet fermentability were found on performance variables. Acetate infusion decreased dry matter intake (DMI), milk yield, and milk protein yield and content but did not affect milk fat yield; however, it increased milk fat concentration, and this response tended to be more pronounced in the HF diet. Acetate infusions increased plasma β-hydroxybutyrate in the HF diet, but not in the LF diet, and increased plasma non-esterified fatty acid, which was likely a lipolysis response to reduced DMI and decreased energy balance. This study demonstrates that acetate availability can be a constraint on mammary lipogenesis, even with adequate dietary fiber. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

31 pages, 5399 KiB  
Review
Non-Bovine Milk as Functional Foods with Focus on Their Antioxidant and Anti-Inflammatory Bioactivities
by Yan Li, Qingshan Ma, Mengmeng Li, Wenqiang Liu, Yihong Liu, Menghan Wang, Changfa Wang and Muhammad Zahoor Khan
Antioxidants 2025, 14(7), 801; https://doi.org/10.3390/antiox14070801 - 27 Jun 2025
Viewed by 672
Abstract
The growing interest in functional foods has directed scientific attention toward alternative milk sources, particularly camel and donkey milk, which have been traditionally consumed for their purported health benefits across diverse cultures. These milk sources possess unique nutritional profiles and bioactive compositions that [...] Read more.
The growing interest in functional foods has directed scientific attention toward alternative milk sources, particularly camel and donkey milk, which have been traditionally consumed for their purported health benefits across diverse cultures. These milk sources possess unique nutritional profiles and bioactive compositions that differ substantially from conventional bovine milk. This review examines the current scientific understanding of the anti-inflammatory and antioxidant bioactivities of camel and donkey milk, exploring their bioactive constituents and therapeutic potential. Camel and donkey milk demonstrate notable antioxidant and anti-inflammatory properties that may exceed those of conventional milk sources. Key bioactive compounds include lactoferrin, lysozyme, immunoglobulins, bioactive peptides, vitamins C and E, and polyunsaturated fatty acids. Mechanistic studies reveal that milk from donkeys and camels suppresses inflammatory pathways through NF-κB inhibition, cytokine modulation (reducing IL-6, IL-1β, and TNF-α while enhancing IL-10), and antioxidant pathway activation via Nrf2-ARE signaling. Donkey milk exhibits particularly high lysozyme content and demonstrates significant immunomodulatory effects, while camel milk shows remarkable therapeutic potential in diabetes management, nephroprotection, and hepatoprotection. Preclinical studies demonstrate efficacy in treating oxidative stress-related disorders, inflammatory conditions, metabolic dysfunction, and tissue injury models. Altogether, the published data show that camel and donkey milk represent promising functional foods with significant antioxidant and anti-inflammatory bioactivities mediated through multiple molecular pathways. Their unique bioactive profiles offer therapeutic potential for various health conditions, warranting further clinical investigation and development as nutraceutical interventions. Full article
(This article belongs to the Special Issue Potential Health Benefits of Dietary Antioxidants)
Show Figures

Figure 1

25 pages, 579 KiB  
Article
Leveraging Milk-Traceability Technologies for Supply-Chain Performance: Evidence from Saudi Dairy Firms
by Afyaa Alessa, Himanshu Shee and Tharaka De Vass
Sustainability 2025, 17(13), 5902; https://doi.org/10.3390/su17135902 - 26 Jun 2025
Viewed by 608
Abstract
Growing concern over food safety and adulteration has thrust milk traceability technologies to the forefront of agrifood supply chains. This qualitative study explores the technological, organisational, and environmental (TOE) determinants of traceability technology adoption in Saudi Arabia’s dairy sector. In-depth semi-structured interviews with [...] Read more.
Growing concern over food safety and adulteration has thrust milk traceability technologies to the forefront of agrifood supply chains. This qualitative study explores the technological, organisational, and environmental (TOE) determinants of traceability technology adoption in Saudi Arabia’s dairy sector. In-depth semi-structured interviews with nine senior managers from small-, medium-, and large-scale dairy farms were analysed thematically in NVivo. Thematic analysis revealed that technological cost and compatibility played crucial role, while contrary to the prior literature, respondents downplayed technological complexity, arguing that training could offset it. Organisational culture and employee resistance were the primary inhibitors within dairy firms. Saudi Vision 2030, post COVID-19 consumer pressure and competitor pressure emerged as the dominant environmental factors. The findings offer insights for managers and policymakers on how to improve supply chain transparency, operational efficiency, product quality, and consumer trust while advancing several UN SDGs. Full article
(This article belongs to the Special Issue Digital Transformation of Supply Chain Innovation)
Show Figures

Figure 1

18 pages, 1792 KiB  
Article
Towards a More Holistic Comparative Assessment of Plant-Based Alternative Beverages and Dairy Milk: A True Cost Accounting Approach
by Mauricio R. Bellon, Nicholas Benard, Jane E. Coghlan and Kathleen Merrigan
Foods 2025, 14(13), 2196; https://doi.org/10.3390/foods14132196 - 23 Jun 2025
Viewed by 433
Abstract
There is a growing market for plant-based alternative beverages (PBAs) promoted as alternatives to dairy milk. Part of their popularity is that consumers consider them better for both the environment and human health. These perceptions, however, may not be entirely supported by scientific [...] Read more.
There is a growing market for plant-based alternative beverages (PBAs) promoted as alternatives to dairy milk. Part of their popularity is that consumers consider them better for both the environment and human health. These perceptions, however, may not be entirely supported by scientific evidence. A holistic comparison of dairy milk and PBAs is difficult because their prices typically do not reflect their environmental and nutritional health impacts, although PBAs tend to be significantly more expensive than dairy milk. Here, we integrate key results from the scientific literature using a True Cost Accounting (TCA) approach to compare dairy milk and five PBAs based on their market retail price and a quantification—and when possible, monetization—of key environmental, nutritional, and social impacts: Global Warming Potential (GWP), dietary risks, and forced labor, respectively. We compare whole dairy milk with five PBAs: soy, almond, oat, coconut, and pea, which account for 97% of retail market sales in the USA. The results show that while environmental, nutritional, and social benefits attributed to PBAs compared to dairy milk exist and can be significant, they are heterogenous, and for some PBAs, they may not be as significant as commonly perceived, particularly when the price premium they command are considered. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

5 pages, 176 KiB  
Commentary
Highly Pathogenic Avian Influenza A(H5N1) Virus: How Far Are We from a New Pandemic?
by Giovanni Di Guardo
Vet. Sci. 2025, 12(6), 566; https://doi.org/10.3390/vetsci12060566 - 9 Jun 2025
Cited by 2 | Viewed by 1128
Abstract
The focus of this commentary is represented by the pandemic risk associated with the highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b. More in detail, the herein dealt pandemic alarm appears to be primarily justified by the huge and progressively growing number [...] Read more.
The focus of this commentary is represented by the pandemic risk associated with the highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b. More in detail, the herein dealt pandemic alarm appears to be primarily justified by the huge and progressively growing number of virus-susceptible domestic and wild birds and mammals, including threatened marine mammal species like South American sea lions and elephant seals as well as harbour porpoises, bottlenose dolphins and polar bears. Of major concern is the susceptibility of dairy cattle to HPAI A(H5N1) virus, particularly the documented and unprecedented colonization of host’s mammary gland tissue, resulting in viral shedding through the milk alongside a large series of cases of infection in dairy farm workers in several USA locations. Despite well-documented zoonotic capability, no evidences of a sustained and efficient HPAI A(H5N1) viral transmission between people have been hitherto reported. If this were to happen sooner or later, a new pandemic might consequently arise. Therefore, keeping all this in mind and based upon the lessons taught by the COVID-19 pandemic, a “One Health, One Earth, One Ocean”-centered approach would be absolutely needed in order to deal in the most appropriate way with the HPAI A(H5N1) virus-associated zoonotic and pandemic risk. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
36 pages, 1505 KiB  
Review
Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling
by Anna Luparelli, Daniela Trisciuzzi, William Matteo Schirinzi, Leonardo Caputo, Leonardo Smiriglia, Laura Quintieri, Orazio Nicolotti and Linda Monaci
Biomedicines 2025, 13(6), 1311; https://doi.org/10.3390/biomedicines13061311 - 27 May 2025
Cited by 1 | Viewed by 1853
Abstract
The whey protein (WP) fraction represents 18–20% of the total milk nitrogen content. It was originally considered a dairy industry waste, but upon its chemical characterization, it was found to be a precious source of bioactive components, growing in popularity as nutritional and [...] Read more.
The whey protein (WP) fraction represents 18–20% of the total milk nitrogen content. It was originally considered a dairy industry waste, but upon its chemical characterization, it was found to be a precious source of bioactive components, growing in popularity as nutritional and functional food ingredients. This has generated a remarkable increase in interest in applications in the different sectors of nutrition, food industry, and pharmaceutics. WPs comprise immunoglobulins and proteins rich in branched and essential amino acids, and peptides endowed with several biological activities (antimicrobial, antihypertensive, antithrombotic, anticancer, antioxidant, opioid, immunomodulatory, and gut microbiota regulation) and technological properties (gelling, water binding, emulsification, and foaming ability). Currently, various process technologies and biotechnological methods are available to recover WPs and convert them into BioActive Peptides (BAPs) for commercial use. Additionally, in silico approaches could have a significant impact on the development of novel foods and/or ingredients and therapeutic agents. This review provides an overview of current and emerging methods for the production, selection, and application of whey peptides, offering insights into bioactivity profiling and potential therapeutic targets. Recent updates in legislation related to commercialized WPs-based products are also presented. Full article
Show Figures

Figure 1

13 pages, 238 KiB  
Article
Genetic Evaluation of Early Growth Traits in Yunnan Semi-Fine Wool Sheep
by Yaqian Wang, Hongyuan Yang, Xiaoqi Zhao, Xiaojun Ni, Yuanchong Zhao, Zhengrong You, Qingwei Lu, Sen Tang, Guobo Quan and Xuefeng Fu
Animals 2025, 15(11), 1512; https://doi.org/10.3390/ani15111512 - 22 May 2025
Viewed by 519
Abstract
With economic development and improved living standards, the demand for mutton and wool continues to grow, and improving the production performance and genetic potential of sheep breeds has become the key to promoting the high-quality development of the sheep industry. Thus, this study [...] Read more.
With economic development and improved living standards, the demand for mutton and wool continues to grow, and improving the production performance and genetic potential of sheep breeds has become the key to promoting the high-quality development of the sheep industry. Thus, this study analyzes the influencing factors of the early production traits of Yunnan semi-fine wool sheep, optimizes the genetic evaluation model, and relies on accurate genetic parameter estimation to provide a theoretical basis for formulating a scientific and efficient breeding strategy for this breed. Data were collected from the Laishishan and Xiaohai breeding farms in Qiaojia, Yunnan, covering production records of the core flock from 2018 to 2022. Using the GLM procedure in SAS 9.4 software, this study analyzed the non-genetic influences on early production traits in Yunnan semi-fine wool sheep. Concurrently, Danish Milk Unit 5 (DMU 5) software estimated the variance components across various animal models for each trait. Employing the Akaike Information Criterion (AIC) and likelihood ratio test (LRT), six models were tested, incorporating or excluding maternal inheritance and environmental impacts, to identify the optimal model for deriving the genetic parameters. The results show that the birth year, dam age, sex, flock and litter size significantly affect both the Birth Weight (BWT) and Weaning Weight (WWT) (p < 0.01). Additionally, the birth month was found to exert a significant effect on Birth Weight (BWT) (p < 0.01), the weaning month has a significant effect on the Weaning Weight (WWT) (p < 0.05). No significant effects of farm location were observed on either trait (p > 0.05). The most accurate genetic evaluation model determined the heritability of the Birth Weight (BWT) and Weaning Weight (WWT) as 0.3123 and 0.3471. From a production perspective, improving lamb birth, Weaning Weight (WWT), feed composition, and maternal nutrition during gestation is vital for breeding efficiency. This study not only identified the optimal animal models for early growth traits in Yunnan semi-fine wool sheep, offering a precise basis for estimating genetic parameters but also provides theoretical guidance for genetic selection and breed improvement in this population. Full article
27 pages, 1721 KiB  
Review
Biologically Active Components of Milk—Production and Properties of Lactoferrin
by Monika Ostrowska, Bartosz Brzozowski, Andrzej Babuchowski and Marek Adamczak
Processes 2025, 13(6), 1620; https://doi.org/10.3390/pr13061620 - 22 May 2025
Viewed by 745
Abstract
The aim of this article was to present the biological activity of milk components, particularly lactoferrin (LF), and techniques for its extraction and purification. Dairy products have long been recognized for their significant contributions to human health and nutrition. Recent studies indicate that [...] Read more.
The aim of this article was to present the biological activity of milk components, particularly lactoferrin (LF), and techniques for its extraction and purification. Dairy products have long been recognized for their significant contributions to human health and nutrition. Recent studies indicate that dairy consumption offers various health benefits, particularly concerning bone health, metabolic wellness, and cardiovascular health. LF, abundantly present in milk, exhibits a range of health-promoting properties that are increasingly recognized for their significance in nutrition and disease prevention. The production of LF can be approached through two main avenues: extraction from milk and recombinant expression systems. Both methods present unique advantages and challenges that influence the efficiency of LF production on an industrial scale. Moreover, advances in purification and drying techniques are crucial to enhance the overall efficiency of LF production. Recent studies have focused on methods such as monolithic ion-exchange chromatography and membrane technologies to improve yield and reduce costs of LF extraction. These innovations not only facilitate the extraction but also preserve the structural integrity and the functional properties of LF. The article presents the discussion of the applications of the LF in the dairy industry, indicating its growing importance as a functional ingredient in health products. Full article
Show Figures

Figure 1

18 pages, 1648 KiB  
Article
Exploring the Potential of Cleansing Hydrogel and Shampoo with Whey as a Contemporary Approach to Sustainability
by Maja Bjelošević Žiberna, Blaž Grilc, Mirjana Gašperlin and Mirjam Gosenca Matjaž
Gels 2025, 11(5), 374; https://doi.org/10.3390/gels11050374 - 20 May 2025
Cited by 1 | Viewed by 802
Abstract
Cosmetology is one of the fastest-growing scientific areas, and within it, individual needs and preferences have to be considered. Specifically, cosmetic products with incorporated biological macromolecules, i.e., proteins and peptides, that contribute to improved skin features are gaining in importance. Similar to other [...] Read more.
Cosmetology is one of the fastest-growing scientific areas, and within it, individual needs and preferences have to be considered. Specifically, cosmetic products with incorporated biological macromolecules, i.e., proteins and peptides, that contribute to improved skin features are gaining in importance. Similar to other fields, cosmetology is also faced with the zero-waste paradigm and strives for a collaboration with other industries. Whey is a co-product in milk production and represents a high environmental burden. In this regard, the idea of the present study was to utilise whey in order to develop sustainable cosmetic products, i.e., cleansing hydrogel and shampoo. The initial phase of the study was dedicated to the development of an optimised hydrogel and shampoo base, followed by whey integration and an in-depth physico-chemical characterisation of both prototypes. In the subsequent phases, particular emphasis was placed on evaluating the potential skin irritancy of the whey-based formulations in vitro, complemented by in vivo assessment on volunteers. The results obtained indicate that the incorporation of whey at concentrations of up to 30% (m/m) is feasible for both formulation types. Moreover, neither product exhibited any irritative effects and a study on volunteers showed that whey has great potential in terms of providing adequate skin hydration. Taken together, all the findings support the development of advanced cosmetic formulations with a zero-waste concept built-in, thus offering a promising platform for cross-sector collaboration, and representing a meaningful step toward potential hydrogel and shampoo commercialisation. Full article
(This article belongs to the Special Issue Global Excellence in Bioactive Gels)
Show Figures

Graphical abstract

21 pages, 6799 KiB  
Article
Diversity of Lactiplantibacillus plantarum in Wild Fermented Food Niches
by Ilenia Iarusso, Jennifer Mahony, Gianfranco Pannella, Silvia Jane Lombardi, Roberto Gagliardi, Francesca Coppola, Michela Pellegrini, Mariantonietta Succi and Patrizio Tremonte
Foods 2025, 14(10), 1765; https://doi.org/10.3390/foods14101765 - 16 May 2025
Cited by 1 | Viewed by 778
Abstract
This study aimed to explore the genetic and functional diversity of Lactiplantibacillus plantarum (Lpb. plantarum) strains from wild fermented foods to identify traits that are useful for food innovation. The growing demand for clean-label, plant-based, and functionally enriched fermented foods exposes [...] Read more.
This study aimed to explore the genetic and functional diversity of Lactiplantibacillus plantarum (Lpb. plantarum) strains from wild fermented foods to identify traits that are useful for food innovation. The growing demand for clean-label, plant-based, and functionally enriched fermented foods exposes the limitations of current industrial fermentation practices, which rely on standardized lactic acid bacteria (LAB) strains with limited metabolic plasticity. This constraint hinders the development of new food formulations and the replacement of conventional additives. To address this gap, 343 LAB strains were analyzed, including 69 Lpb plantarum strains, isolated from five minimally processed, spontaneously fermented matrices: fermented millet, kombucha, and sourdough (plant-based), wild fermented mountain milk, and natural whey starter (animal-based). Whole-genome sequencing was performed to assess phylogenetic relationships and to annotate genes encoding carbohydrate-active enzymes (CAZymes) and antimicrobial compounds. The results revealed a marked strain-level diversity. Glycoside hydrolase (GH) families GH13 and GH1 were widely distributed, while GH25 and GH32 showed variable presence across clusters. Strains grouped into clusters enriched with plant-based isolates exhibited distinct CAZyme profiles adapted to complex carbohydrates. Clusters with animal-based strains exhibited a broader gene repertoire related to bacteriocin biosynthesis. These findings highlight the untapped potential of wild fermented food environments as reservoirs of Lpb. plantarum with unique genomic traits. Harnessing this diversity can expand the functional capabilities of starter cultures, promoting more sustainable, adaptive, and innovative fermentation systems. This study underscores the strategic value of underexploited microbial niches in meeting the evolving demands of modern food production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

Back to TopTop