Biologically Active Components of Milk—Production and Properties of Lactoferrin
Abstract
:1. Introduction
Scope of Analysis/Dairy Products | Impact on Human Health | Literature |
---|---|---|
Cohort analysis of data on dairy product consumption and its impact on overweight or obesity, hypertension, and type 2 diabetes. | Dairy consumption was associated with a low risk of overweight or obesity (milk and yogurt), hypertension (low-fat dairy and milk), and type 2 diabetes (yogurt). | [24] |
Analysis of 13 cohort studies, including the Epidemiology and Nutrition Dietary Determinants (BLEND). | No evidence linking dairy consumption to bladder cancer risk. Yogurt consumption may be associated with a reduced risk of developing bladder cancer. | [25] |
Analysis of data from 1334 healthy patients (median age 67 years at baseline) with a mean follow-up of 5.6 years from the CoLaus|PsyColaus cohort in Lausanne, Switzerland. | Adding dairy to the diet or replacing meat, vegetables, or fruit with milk did not affect cognitive function in a cohort study of the older adults. Replacing fish and eggs with dairy may have a negative effect on some outcomes, but more studies examining food substitutions are needed to confirm these results. | [26] |
Analysis of milk consumption from adolescence to adulthood in relation to breast cancer incidence, menopausal status, and molecular subtypes of cancer in the Nurses’ Health Study (NHS) cohort. | Overall dairy intake was not associated with breast cancer risk. However, heterogeneity was observed for dairy food type, life span, and cancer subtypes. | [27] |
Examination of the association between dairy product consumption and renal dysfunction in patients after myocardial infarction (MI). | Consumption of milk, cheese, or dairy desserts was not associated with worsening renal function after MI. The adverse association with yogurt consumption should be verified in other cohort studies. | [28] |
Evaluation of the effect of total dairy products, yogurt, milk, and cheese on the bone health of women in the Nurses’ Health Study (NHS) conducted in the United States. | Higher total milk, milk, and cheese intake is associated with a lower risk of fractures in women in the NHS. | [29] |
Meta-analysis of prospective cohort studies to determine the association between dairy consumption and cancer incidence and mortality. | High milk consumption, particularly high-fat milk, was associated with increased cancer mortality compared with low milk consumption. High consumption of fermented dairy products was associated with reduced cancer mortality, and this association was particularly notable in women. High milk consumption was associated with increased mortality from liver, ovarian, and prostate cancers. | [30] |
Effect of dairy consumption on mortality from ischemic heart disease (IHD), cardiovascular disease (CVD), stroke, and survival after myocardial infarction (MI). | In post-MI patients, yogurt consumption reduced CVD mortality and all-cause mortality. Associations for milk and other dairy products were neutral or inconsistent. | [31] |
Analysis of the relationship between dairy consumption and the initial development of type 2 diabetes. | A positive relationship is suggested between moderate milk and cheese consumption and the prevention of diabetes development. Further comprehensive analyses are necessary. | [32] |
The assessment of the relationship between long-term consumption of milk and fermented milk products and the risk of breast cancer. | In postmenopausal women, long-term milk consumption was associated with an increased risk of breast cancer, whereas long-term consumption of fermented milk products was associated with a reduced risk of breast cancer. | [33] |
2. Characteristics and Biological Activity of Lactoferrin
Raw Material/Product | Lactoferrin Concentration (mg/cm3 or mg/g) | Analytical Technique Used | Literature |
---|---|---|---|
Raw milk | 0.020–0.200 | Radioimmunoassay | [59] |
0.157 ± 0.007 | ELISA * | ||
0.182 | Immunosensor | ||
188.4 ± 13.2 | HPLC (reverse phase system) | ||
Raw milk (Holstein Friesian) | 13.06 | RID ** | [60] |
Raw milk (Simmental cows) | 13.64 | ||
Raw milk crossbreed (Lithuanian Black-and-White and Holstein dairy cows) | 0.08–0.12 | ELISA * | [61] |
Raw milk (Chinese Holstein cows) | 0.031 and 0.485 | ||
Raw milk (Gyr cows) | 16.80 ± 12.41 μg/cm3 | Immunoenzymatic kit | [62] |
Raw milk (Holstein and Simmental cows) | 0.128–0.179 | RID ** | [60] |
Whey from Feta cheese production | 0.272 ± 0.024 | HPLC/UV | [63] |
Pasteurized milk | 0.020–0.032 | Immunoaffinity magnetic purification coupled with HPLC-FLD *** | [64] |
Baby food | 0.079–0.773 | ||
Whey protein concentrate | 0.590–0.623 | ||
Pasteurized milk | 0.174 ± 0.017 | ELISA * | [59] |
UHT milk | 0.018 | Immunosensor | |
Swiss-type cheese | 1.112 ± 0.111 | ELISA * | [65] |
Semi-hard cheese | 1.143 ± 0.118 | ||
Soft cheese | 0.680 ± 0.015 |
3. Isolation and Purification of Lactoferrin
Process or Unit Operation | Parameters | Origin/Type Lactoferrin | Effect on Lactoferrin | Literature |
---|---|---|---|---|
Heat treatment | 65–121 °C, 2–300 s | bLF | Denaturation rates up to 80 °C likely reflected the greater heat stability of the more iron-saturated LF | [120] |
Heat treatment | 180 °C | bLF | Apo-LF stabilized by whey protein | [121] |
Heat treatment | 72–95 °C | bLF | Irreversible changes of the structure and physicochemical properties | [122] |
Heat treatment | pH 2–5, >100 °C | bLF | No effect | [123] |
pH > 6 | bLF | Denaturation | ||
Heat treatment | 72–64 °C, 50 min | bLF | No effect | [124] |
Heat treatment | 60 and 90 °C, 20 min | bLF | Denaturation, formation of nanoparticles | [125] |
Heat treatment | pH 3–7 | bLF, caprine lactoferrin (cLF) | A gradual reduction in the denaturation temperature of LF when decreasing the pH | [126] |
Heat treatment | 60–100 °C, 20 min, pH 3–9 | bLF | Antimicrobial activity: inactivated at >75 °C, stable at pH 6–9, but no inhibition at pH 3–5 | [127] |
Heat treatment | 72 °C, 15 s | bLF | No effect | [128] |
Heat treatment | 72–95 °C | bLF | Irreversible changes | [122] |
Heat treatment | 72 °C, 20 s; 85 °C, 20 min; 135 °C, 8 s | hLF | No effect | [129] |
Heat treatment | 90–100 °C, 5 min, pH 4.0 | Apo-LF | No effect | [130] |
Heat treatment | 65 °C for 30 min | bLF | Stimulated the growth of Lactococcus lactis subsp. cremoris | [131] |
High hydrostatic pressure (HPP) | 300–700 MPa, 30 or 60 min | bLF | Significant modification with increased intensity of HPP, indicating partial denaturation and aggregation; improved solubility, foaming, and emulsifying properties; denaturation increases with increasing pressure | [132] |
HPP | 450–700 MPa, 20 °C | bLF | Denaturation increased with the increase in pressure and holding time | [133] |
HPP | 800 MPa, 30 min, | bLF | Aggregation | [134] |
High-pressure homogenization (HPH) | 100 MPa | bLF | Enhanced antimicrobial activity against Listeria monocytogenes | [135] |
Ultra-high-pressure homogenization (UHPH) | 200–300 MPa, 5–30 min, 24 °C | bLF | No effect | [136] |
Pulsed electric field (PEF) | 35 kV/cm, 19.2 μs using bipolar 2 μs pulses, 0.17 to 1.04 S/m | bLF | Iron depletion, no conformational change | [137] |
Fermentation (yogurt) | pH 4.5; 28 days | bLF | No effect | [138] |
Fermentation | pH 4.6; 21 days | bLF | No effect | [139] |
Drying | Tinlet 190 °C, Toutlet 75 or 95 °C | bLF | Spray-dried LF showed a significantly larger extent of denaturation and lower iron-binding capacity when compared with fresh or freeze-dried LF | [140] |
Spray drying | 80, 100 and 120 °C, 4 and 7 μm | LF-glycomacropeptide nanohydrogels | No effect | [141] |
Freeze drying | −40 °C, 24 h | No effect (high stability) | ||
Convective air-drying | 75 and 90 °C | bLF (native LF, apo-LF, holo-LF) | Holo-LF more stable than apo-LF | [142] |
Spray drying | Tinlet 180 °C, Toutlet 95 °C | bLF | No effect | [143] |
Freeze drying | −80 °C, vacuum 16 Pa | bLF | No effect | |
Freeze drying | −80 °C, 72 h | hLF | No effect | [144] |
Droplet atomization via two-fluid nozzle | Two-fluid pneumatic nozzle: 0.7 and 1.5 mm, atomizing gas flow rate 0–40 dm3/min | bLF | Denaturation, aggregation | [145] |
Cross-linking complex LF and α-lactoalbumin | Reaction catalyzed by transglutaminase | bLF | Increased thermal stability | [146] |
Separation Technique | Method Description | Extraction Efficiency | Literature |
---|---|---|---|
Dye-affinity chromatography | Cross-linked chitosan mini-spheres with immobilized Yellow HE-4R dye | 77% | [156] |
Cation-exchange chromatography | Carboxymethyl-Toyopearl® column chromatography | Lactoferrin-a 31.3%; lactoferrin-b 68.7% | [167] |
Ion exchange Chromatography | XK16 cation exchanger | Absorption efficiency: 48.6 mg/cm3 | [168] |
Membrane absorption | Cationic membrane | bLF purity > 94% | [169] |
Foam separation | Surfactant stabilized microbubbles. Anionic surfactant | 90% | [170] |
Cationic membrane | SP cation exchanger built into the membrane | Efficiency > 95% | [171] |
Magnetic nanoparticles | Magnetic nanoparticles with heparin | bLF absorption efficiency 164 mg/g, purity higher than commercial standard | [172] |
Two-phase system | Poly(ethylene glycol) and sodium citrate | >94% | [173] |
Two-phase system | 1-butyl-3-methylimidazole bisimide: water | Extraction efficiency 80 mg/dm3 | [174] |
Membrane technique and magnetic field separation | Microfiltration, ultrafiltration and bLF absorption on iron oxide | Efficiency 60%, bLF purity 78% | [175] |
Ion exchange chromatography | Strong cation exchange membrane with sulfonic acid ligand | 70% apo-LF; >85% holo-LF | [176] |
Type of Organism | Origin of Lactoferrin | Efficiency of Synthesis (mg/dm3) | Biological Activity of Lactoferrin (In Vitro) | Literature |
---|---|---|---|---|
Nicotiana tabacum hairy roots | LFchimera | 4.8 μg/g fresh weight | Antimicrobial | [179] |
Pichia pastoris Glucose-Inducible Expression System | Porcine | 87 | Antimicrobial, anticancer | [180] |
Javanica rice cv. Rojolele | Human | 2 mg/g dry wet dehusked seeds | Antibacterial | [181] |
Pichia pastoris | Human | 1200 | Glycosylation | [182] |
Pichia pastoris | Bovine | 3500 | Antimicrobial activity | [70] |
Chinese hamster ovary cells | Human | >200 | Protective effect against oxidative stress | [66] |
Komagataella phaffii | Helaina recombinant hLF | No data. Industrial scale production. | 100% identical amino acid sequence to hLF | [183] |
Transgenic mice | Porcine | 40–106 µL/cm3 | Similar properties to those of native LF | [184] |
Bacillus subtilis | Bovine N-lobe | 16.5 | Antibacterial | [185] |
Transgenic cow | Human | 2900 | No protection against intrauterine infection | [186] |
Transgenic cow | Human | 4500–13,600 | Chelation and iron ion release like hLF | [178] |
Saccharomyces cerevisiae | Human | 1.5–2.0 | Iron- and copper-binding activity | [187] |
Escherichia coli | Bovine | 15.3 | Antibacterial | [177] |
Lactobacillus casei | Human | 10.6 | Antibacterial | [188] |
Bacillus subtilis | Human | 16.5 | Antibacterial | [185] |
Pichia pastoris | Human | 115 | Antibacterial, Antiviral | [189] |
Pichia pastoris | Bovine | 3500 | Antibacterial | [70] |
Pichia pastoris | Bovine | 824.93 | Antibacterial | [190] |
Aspergillus nidulans | Human | 5 | Iron ion chelation | [191] |
Aspergillus awamori | Human | 2000 | Antibacterial, Iron ion chelation | [192] |
4. Obtaining Products Containing Lactoferrin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/4/ac911e/ac911e05.htm (accessed on 24 February 2025).
- Future Market Insights Inc. Available online: https://www.futuremarketinsights.com/reports/functional-dairy-products-market (accessed on 24 February 2025).
- Taormina, V.M.; Unger, A.L.; Kraft, J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? Front. Nutr. 2024, 11, 1386257. [Google Scholar] [CrossRef] [PubMed]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-chain fatty acids—An underexplored class of dairy-derived fatty acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef] [PubMed]
- McCrorie, T.A.; Keaveney, E.M.; Wallace, J.M.W.; Binns, N.; Livingstone, M.B.E. Human health effects of conjugated linoleic acid from milk and supplements. Nutr. Res. Rev. 2011, 24, 206–227. [Google Scholar] [CrossRef]
- Wang, K.; Xin, Z.; Chen, Z.; Li, H.; Wang, D.; Yuan, Y. Progress of conjugated linoleic acid on milk fat metabolism in ruminants and humans. Animals 2023, 13, 3429. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, Y.; Kim, Y.J.; Park, Y. Conjugated linoleic acid: Potential health benefits as a functional food ingredient. Ann. Rev. Food Sci. Technol. 2016, 7, 221–244. [Google Scholar] [CrossRef]
- Kleber, M.E.; Delgado, G.E.; Lorkowski, S.; März, W.; von Schacky, C. Trans fatty acids and mortality in patients referred for coronary angiography: The Ludwigshafen Risk and Cardiovascular Health Study. Eur. Heart J. 2016, 37, 1072–1078. [Google Scholar] [CrossRef]
- Guillocheau, E.; Penhoat, C.; Drouin, G.; Godet, A.; Catheline, D.; Legrand, P.; Rioux, V. Current intakes of trans-palmitoleic (trans-C16:1 n-7) and trans-vaccenic (trans-C18:1 n-7) acids in France are exclusively ensured by ruminant milk and ruminant meat: A market basket investigation. Food Chem. X 2020, 5, 100081. [Google Scholar] [CrossRef]
- Korkus, E.; Szustak, M.; Madaj, R.; Chworos, A.; Drzazga, A.; Koziołkiewicz, M.; Dąbrowski, G.; Czaplicki, S.; Konopka, I.; Gendaszewska-Darmach, E. Trans-palmitoleic acid, a dairy fat biomarker, stimulates insulin secretion and activates G protein-coupled receptors with a different mechanism from the cis isomer. Food Funct. 2023, 14, 6496–6512. [Google Scholar] [CrossRef]
- Szustak, M.; Korkus, E.; Madaj, R.; Chworos, A.; Dąbrowski, G.; Czaplicki, S.; Tabandeh, E.; Maciejewska, G.; Koziołkiewicz, M.; Konopka, I.; et al. Lysophosphatidylcholines enriched with cis and trans palmitoleic acid regulate insulin secretion via GPR119 receptor. ACS Med. Chem. Lett. 2024, 15, 197–204. [Google Scholar] [CrossRef]
- Romo Ventura, E.; Konigorski, S.; Rohrmann, S.; Schneider, H.; Stalla, G.K.; Pischon, T.; Linseisen, J.; Nimptsch, K. Association of dietary intake of milk and dairy products with blood concentrations of insulin-like growth factor 1 (IGF-1) in Bavarian adults. Eur. J. Nutr. 2020, 59, 1413–1420. [Google Scholar] [CrossRef]
- Davies, N.; Frampton, C.; Fuad, M.; Slykerman, R. The effect of supplementation with milk fat globule membranes on psychological health: A randomized clinical trial in healthy adults with moderate stress. J. Funct. Foods 2023, 105, 105585. [Google Scholar] [CrossRef]
- Slykerman, R.; Davies, N.; Fuad, M.; Dekker, J. Milk fat globule membranes for mental health across the human lifespan. Foods 2024, 13, 1631. [Google Scholar] [CrossRef] [PubMed]
- Auestad, N.; Layman, D.K. Dairy bioactive proteins and peptides: A narrative review. Nutr. Rev. 2021, 79, 36–47. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Fiori, L.; Li, J.; Fanzaga, M.; d’Adduzio, L.; Tosi, M.; Burlina, A.; Zuccotti, G.; Verduci, E. Glycomacropeptide (GMP) rescued the oxidative and inflammatory activity of free L-AAs in human Caco-2 cells: New insights that support GMP as a valid and health-promoting product for the dietary management of phenylketonuria (PKU) patients. Food Res. Int. 2023, 173, 113258. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, A.M.; Barile, D. Bovine milk as a source of functional oligosaccharides for improving human health. Adv. Nutr. 2011, 2, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.C. Structures and metabolic properties of bovine milk oligosaccharides and their potential in the development of novel therapeutics. Front. Nutr. 2019, 6, 50. [Google Scholar] [CrossRef]
- Kurakevich, E.; Hennet, T.; Hausmann, M.; Rogler, G.; Borsig. Milk oligosaccharide sialyl(α2,3)lactose activates intestinal CD11c+ cells through TLR4. Proc. Natl Acad. Sci. USA 2013, 110, 17444–17449. [Google Scholar] [CrossRef]
- Pouliot, Y.; Gauthier, S.F. Milk growth factors as health products: Some technological aspects. Int. Dairy J. 2006, 16, 1415–1420. [Google Scholar] [CrossRef]
- Watling, C.Z.; Kelly, R.K.; Dunneram, Y.; Knuppel, A.; Piernas, C.; Schmidt, J.A.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Associations of intakes of total protein, protein from dairy sources, and dietary calcium with risks of colorectal, breast, and prostate cancer: A prospective analysis in UK Biobank. Br. J. Cancer 2023, 129, 636–647. [Google Scholar] [CrossRef]
- Mulet-Cabero, A.-I.; Torres-Gonzalez, M.; Geurts, J.; Rosales, A.; Farhang, B.; Marmonier, C.; Ulleberg, E.K.; Hocking, E.; Neiderer, I.; Gandolfi, I.; et al. The dairy matrix: Its importance, definition, and current application in the context of nutrition and health. Nutrients 2024, 16, 2908. [Google Scholar] [CrossRef]
- Gallo, V.; Arienzo, A.; Tomassetti, F.; Antonini, G. Milk bioactive compounds and gut microbiota modulation: The role of whey proteins and milk oligosaccharides. Foods 2024, 13, 907. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhao, Y.; Liu, J.; Huang, Z.; Yang, X.; Qin, P.; Chen, C.; Luo, X.; Li, Y.; Wu, Y.; et al. Consumption of dairy products and the risk of overweight or obesity, hypertension, and type 2 diabetes mellitus: A dose–response meta-analysis and systematic review of cohort studies. Adv. Nutr. 2022, 13, 2165–2179. [Google Scholar] [CrossRef]
- Acham, M.; Wesselius, A.; van Osch, F.H.M.; Yu, E.Y.-W.; van den Brandt, P.A.; White, E.; Adami, H.-O.; Weiderpass, E.; Brinkman, M.; Giles, G.G.; et al. Intake of milk and other dairy products and the risk of bladder cancer: A pooled analysis of 13 cohort studies. Eur. J. Clin. Nutr. 2020, 74, 28–35. [Google Scholar] [CrossRef]
- Ortega, N.; Carmeli, C.; Efthimiou, O.; Beer, J.-H.; Gunten, A.v.; Preisig, M.; Zullo, L.; Vaucher, J.; Vollenweider, P.; Marques-Vidal, P.; et al. Effect of dairy consumption on cognition in older adults: A population-based cohort study. J. Nutr. Health Aging 2024, 28, 100031. [Google Scholar] [CrossRef] [PubMed]
- Riseberg, E.; Wu, Y.; Lam, W.C.; Eliassen, A.H.; Wang, M.; Zhang, X.; Willett, W.C.; Smith-Warner, S.A. Lifetime dairy product consumption and breast cancer risk: A prospective cohort study by tumor subtypes. Am. J. Clin. Nutr. 2024, 119, 302–313. [Google Scholar] [CrossRef]
- van Westing, A.C.; Cruijsen, E.; Voortman, T.; Geleijnse, J.M. Dairy products and kidney function decline after myocardial infarction: A prospective analysis in the Alpha Omega Cohort. Clin. Nutr. 2023, 42, 1501–1509. [Google Scholar] [CrossRef]
- Yuan, M.; Hu, F.B.; Li, Y.; Cabral, H.J.; Das, S.K.; Deeney, J.T.; Zhou, X.; Paik, J.M.; Moore, L.L. Types of dairy foods and risk of fragility fracture in the prospective Nurses’ Health Study cohort. Am. J. Clin. Nutr. 2023, 118, 1172–1181. [Google Scholar] [CrossRef]
- Jin, S.; Je, Y. Dairy consumption and total cancer and cancer-specific mortality: A meta-analysis of prospective cohort studies. Adv. Nutr. 2022, 13, 1063–1082. [Google Scholar] [CrossRef] [PubMed]
- Cruijsen, E.; Jacobo Cejudo, M.G.; Küpers, L.K.; Busstra, M.C.; Geleijnse, J.M. Dairy consumption and mortality after myocardial infarction: A prospective analysis in the Alpha Omega Cohort. Am. J. Clin. Nutr. 2021, 114, 59–69. [Google Scholar] [CrossRef]
- Slurink, I.A.L.; Vogtschmidt, Y.D.; Brummel, B.; Smeets, T.; Kupper, N.; Soedamah-Muthu, S.S. Dairy intake in relation to prediabetes and continuous glycemic outcomes: A systematic review and dose-response meta-analysis of prospective cohort studies. Curr. Dev. Nutr. 2024, 8, 104470. [Google Scholar] [CrossRef]
- Kaluza, J.; Komatsu, S.; Lauriola, M.; Harris, H.R.; Bergkvist, L.; Michaëlsson, K.; Wolk, A. Long-term consumption of non-fermented and fermented dairy products and risk of breast cancer by estrogen receptor status—Population-based prospective cohort study. Clin. Nutr. 2021, 40, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Actor, J.K.; Kruzel, M.L. The potential for lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int. Immunopharmacol. 2021, 95, 107571. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Bioactives in bovine milk: Chemistry, technology, and applications. Nutr. Rev. 2021, 79, 48–69. [Google Scholar] [CrossRef] [PubMed]
- Eck, N.; Waltman, L. Manual for VOSviewer Version, 1 6 18. 2022. Available online: https://www.vosviewer.com/ (accessed on 19 May 2025).
- Fortune Buisness Insights. Available online: www.fortunebusinessinsight.com (accessed on 24 February 2025).
- Artym, J. Lactoferrin-An Unusual Protein; Borgis Sp. z o.o.: Warszawa, Poland, 2012. (In Polish) [Google Scholar]
- Superti, F. Lactoferrin from bovine milk: A protective companion for life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef]
- Lomax, K.J.; Gallin, J.I.; Rotrosen, D.; Raphael, G.D.; Kaliner, M.A.; Benz, E.J., Jr.; Boxer, L.A.; Malech, H.L. Selective defect in myeloid cell lactoferrin gene expression in neutrophil specific granule deficiency. J. Clin. Investig. 1989, 83, 514–519. [Google Scholar] [CrossRef]
- Chen, M.; Wen, F.; Zhang, Y.; Li, P.; Zheng, N.; Wang, J. Determination of native lactoferrin in milk by HPLC on HiTrapTM Heparin HP column. Food Anal. Methods 2019, 12, 2518–2526. [Google Scholar] [CrossRef]
- Tsakali, E.; Aggarwal, R.K.; Houhoula, D.; Konteles, S.; Batrinou, A.; Verheyen, D.; Van Impe, J.F.M.; Chatzilazarou, A. Lactoferrin in breast milk-based powders. J. Dairy Res. 2023, 90, 409–412. [Google Scholar] [CrossRef]
- Ostertag, F.; Sommer, D.; Berensmeier, S.; Hinrichs, J. Development and validation of an enzyme-linked immunosorbent assay for the determination of bovine lactoferrin in various milk products. Int. Dairy J. 2022, 125, 105246. [Google Scholar] [CrossRef]
- Liu, H.; Gao, X.; Qin, H.; Yan, M.; Zhu, C.; Li, L.; Qu, F. Self-responsive fluorescence aptasensor for lactoferrin determination in dairy products. Molecules 2024, 29, 3013. [Google Scholar] [CrossRef]
- Frueh, J.L.; Shu, P.; Vennard, T.R.; Gray, M.A.; Phillips, S.C. Determination of bovine lactoferrin in powdered infant formula and adult nutritionals by heparin affinity extraction and reverse-phase high-performance liquid chromatography/ultraviolet detection (HPLC/UV): Single-laboratory validation, First Action 2021.10. J. AOAC Internat. 2024, 107, 693–704. [Google Scholar]
- Dyrda-Terniuk, T.; Pomastowski, P. The multifaceted roles of bovine lactoferrin: Molecular structure, isolation methods, analytical characteristics, and biological properties. J. Agric. Food Chem. 2023, 71, 20500–20531. [Google Scholar] [CrossRef] [PubMed]
- Schwerin, M.; Solinas Toldo, S.; Eggen, A.; Brunner, R.; Seyfert, H.M.; Fries, R. The bovine lactoferrin gene (LTF) maps to chromosome 22 and syntenic group U12. Mamm. Genome 1994, 5, 486–489. [Google Scholar] [CrossRef]
- Jiang, R.; Du, X.; Lönnerdal, B. Comparison of bioactivities of talactoferrin and lactoferrins from human and bovine milk. J. Pediatr. Gastroenterol. Nutrit. 2014, 59, 642–652. [Google Scholar] [CrossRef]
- Kim, B.J.; Kuhfeld, R.F.; Haas, J.L.; Anaya, Y.M.; Martinez, R.R.; Sah, B.N.P.; Breen, B.; Newsham, K.; Malinczak, C.-A.; Dallas, D.C. Digestive profiles of human milk, recombinant human and bovine lactoferrin: Comparing the retained intact protein and peptide release. Nutrients 2024, 16, 2360. [Google Scholar] [CrossRef]
- Takayama, Y.; Mizumachi, K. Effect of bovine lactoferrin on extracellular matrix calcification by human osteoblast-like cells. Biosci. Biotechnol. Biochem. 2008, 72, 226–230. [Google Scholar] [CrossRef]
- Eker, F.; Bolat, E.; Pekdemir, B.; Duman, H.; Karav, S. Lactoferrin: Neuroprotection against Parkinson’s disease and secondary molecule for potential treatment. Front. Aging Neurosci. 2023, 15, 1204149. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.J.; Veerakumarasivam, A.; Lim, W.L.; Chew, J. Neuroprotective effects of lactoferrin in Alzheimer’s and Parkinson’s diseases: A narrative review. ACS Chem. Neurosci. 2023, 14, 1342–1355. [Google Scholar] [CrossRef]
- Ashraf, M.F.; Zubair, D.; Bashir, M.N.; Alagawany, M.; Ahmed, S.; Shah, Q.A.; Buzdar, J.A.; Arain, M.A. Nutraceutical and health-promoting potential of lactoferrin, an iron-binding protein in human and animal: Current knowledge. Biol. Trace Elem. Res. 2024, 202, 56–72. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Ghazanfar, S.; Abdel-Hamid, M.; Abdel-Latif, H.M.R.; Zhang, Z.; Naiel, M.A.E. Therapeutic uses and applications of bovine lactoferrin in aquatic animal medicine: An overview. Vet. Res. Commun. 2023, 47, 1015–1029. [Google Scholar] [CrossRef]
- Lakshman, D.K.; Natarajan, S.; Mandal, S.; Mitra, A. Lactoferrin-derived resistance against plant pathogens in transgenic plants. J. Agric. Food Chem. 2013, 61, 11730–11735. [Google Scholar] [CrossRef]
- Buziashvili, A.; Yemets, A. Lactoferrin and its role in biotechnological strategies for plant defense against pathogens. Transgenic Res. 2023, 32, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Artym, J. Lactoferrrin—A sensor and regulator of iron absorption. Adv. Cell Biol. 2015, 42, 283–308. (In Polish) [Google Scholar]
- Cutone, A.; Ianiro, G.; Lepanto, M.S.; Rosa, L.; Valenti, P.; Bonaccorsi di Patti, M.C.; Musci, G. Lactoferrin in the prevention and treatment of intestinal inflammatory pathologies associated with colorectal cancer development. Cancers 2020, 12, 3806. [Google Scholar] [CrossRef] [PubMed]
- Niero, G.; Thomas, S.A.; Mouratidou, K.; Visentin, G.; De Marchi, M.; Penasa, M.; Cassandro, M. Lactoferrin concentration in bovine milk: Validation of radial immunodiffusion technique, sources of variation, and association to udder health status. Ital. J. Anim. Sci. 2023, 22, 230–238. [Google Scholar] [CrossRef]
- Musayeva, K.; Sederevičius, A.; Želvytė, R.; Monkevičienė, I.; Beliavska-Aleksiejūnė, D.; Kerzienė, S. Concentration of lactoferrin and immunoglobulin G in cows’ milk in relation to health status of the udder, lactation and season. Pol. J. Vet. Sci. 2016, 19, 737–744. [Google Scholar] [CrossRef]
- Ujita, A.; Negrão, J.A.; Filho, A.E.V.; Fernandes, A.R.; Faro, L.E. Milk lactoferrin and milk constituents in dairy Gyr heifers. Livest. Sci. 2019, 226, 87–92. [Google Scholar] [CrossRef]
- Tsakali, E.; Chatzilazarou, A.; Houhoula, D.P.; Koulouris, S.; Tsaknis, J.; Van Impe, J.F.M. A rapid HPLC method for the determination of lactoferrin in milk of various species. J. Dairy Res. 2019, 86, 238–241. [Google Scholar] [CrossRef]
- Pang, J.; Xiao, Q.; Yan, H.; Cao, Y.; Miao, J.; Wang, S.; Li, X.; Li, H.; Cheng, Z. Bovine lactoferrin quantification in dairy products by a simple immunoaffinity magnetic purification method coupled with high-performance liquid chromatography with fluorescence detection. J. Agric. Food Chem. 2020, 68, 892–898. [Google Scholar] [CrossRef]
- Dupont, D.; Arnould, C.; Rolet-Repecaud, O.; Duboz, G.; Faurie, F.; Martin, B.; Beuvier, E. Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. Int. Dairy J. 2006, 16, 1081–1087. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Actor, J.K.; Zimecki, M.; Wise, J.; Płoszaj, P.; Mirza, S.; Hwang, S.-A.; Ba, X.; Boldogh, I. Novel recombinant human lactoferrin: Differential activation of oxidative stress related gene expression. J. Biotechnol. 2013, 168, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Gruden, Š.; Poklar Ulrih, N. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.; Giansanti, F.; Boffi, A.; Ajello, M.; Valenti, P.; Chiancone, E.; Antonini, G. Ca2+ binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochem. Cell Biol. 2002, 80, 41–48. [Google Scholar] [CrossRef]
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.-s.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2023, 9, 1018336. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Figueroa, B.; Valdiviezo-Godina, N.; Siqueiros-Cendón, T.; Sinagawa-García, S.; Arévalo-Gallegos, S.; Rascón-Cruz, Q. High-level expression of recombinant bovine lactoferrin in Pichia pastoris with antimicrobial activity. Int. J. Mol. Sci. 2016, 17, 902. [Google Scholar] [CrossRef]
- García-Borjas, K.A.; Ceballos-Olvera, I.; Luna-Castro, S.; Peña-Avelino, Y. Bovine lactoferrin can decrease the in vitro biofilm production and show synergy with antibiotics against Listeria and Escherichia coli isolates. Protein Pept. Lett. 2021, 28, 101–107. [Google Scholar] [CrossRef]
- Ciccaglione, A.F.; Di Giulio, M.; Di Lodovico, S.; Di Campli, E.; Cellini, L.; Marzio, L. Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: An in vitro and in vivo study. J. Antimicrob. Chemother. 2019, 74, 1069–1077. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Prebiotic and modulatory evidence of lactoferrin on gut health and function. J. Funct. Foods 2023, 108, 105741. [Google Scholar] [CrossRef]
- Liu, Z.-S.; Chen, P.-W. Featured prebiotic agent: The roles and mechanisms of direct and indirect prebiotic activities of lactoferrin and its application in disease control. Nutrients 2023, 15, 2759. [Google Scholar] [CrossRef]
- Chen, P.W.; Jheng, T.T.; Shyu, C.L.; Mao, F.C. Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens. J. Dairy Sci. 2013, 96, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-S.; Rahman, M.M.; Kumura, H.; Shimazaki, K.-I. Comparison of growth promoting effects on Bifidobacterium spp. by bovine lactoferrin hydrolysates. Biosci. Microflora 2005, 24, 119–123. [Google Scholar] [CrossRef]
- Chen, P.-W.; Liu, Z.-S.; Kuo, T.-C.; Hsieh, M.-C.; Li, Z.-W. Prebiotic effects of bovine lactoferrin on specific probiotic bacteria. BioMetals 2017, 30, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, C.H.; Green, I.; Rich, R.R.; Schade, A.L. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: Relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J. Infec. Dis. 1971, 124, 539–544. [Google Scholar] [CrossRef]
- Nikawa, H.; Samaranayake, L.P.; Tenovuo, J.; Pang, K.M.; Hamada, T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch. Oral Biol. 1993, 38, 1057–1063. [Google Scholar] [CrossRef]
- Ikadai, H.; Tanaka, T.; Shibahara, N.; Tanaka, H.; Matsuu, A.; Kudo, N.; Shimazaki, K.; Igarashi, I.; Oyamada, T. Inhibitory effect of lactoferrin on in vitro growth of Babesia caballi. Am. J. Trop. Med. Hyg. 2005, 73, 710–712. [Google Scholar] [CrossRef]
- Wilson, M.E.; Britigan, B.E. Iron acquisition by parasitic protozoa. Parasitol. Today 1998, 14, 348–353. [Google Scholar] [CrossRef]
- Frontera, L.S.; Moyano, S.; Quassollo, G.; Lanfredi-Rangel, A.; Rópolo, A.S.; Touz, M.C. Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci. Rep. 2018, 8, 18020. [Google Scholar] [CrossRef]
- Aguilar-Diaz, H.; Canizalez-Roman, A.; Nepomuceno-Mejia, T.; Gallardo-Vera, F.; Hornelas-Orozco, Y.; Nazmi, K.; Bolscher, J.G.M.; Carrero, J.C.; Leon-Sicairos, C.; Leon-Sicairos, N. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem. Cell Biol. 2017, 95, 82–90. [Google Scholar] [CrossRef]
- Eker, F.; Duman, H.; Ertürk, M.; Karav, S. The potential of lactoferrin as antiviral and immune-modulating agent in viral infectious diseases. Front. Immunol. 2024, 15, 1402135. [Google Scholar] [CrossRef]
- Shestakov, A.; Jenssen, H.; Nordström, I.; Eriksson, K.M. Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infection in mice. Antivir. Res. 2012, 93, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Krzyzowska, M.; Chodkowski, M.; Janicka, M.; Dmowska, D.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Bednarczyk, K.; Celichowski, G.; Grobelny, J. Lactoferrin-functionalized noble metal nanoparticles as new antivirals for HSV-2 infection. Microorganisms 2022, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Ammendolia, M.G.; Agamennone, M.; Pietrantoni, A.; Lannutti, F.; Siciliano, R.A.; De Giulio, B.; Amici, C.; Superti, F. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathog. Glob. Health 2012, 106, 12–19. [Google Scholar] [CrossRef]
- Manns, M.P.; Buti, M.; Gane, E.; Pawlotsky, J.-M.; Razavi, H.; Terrault, N.; Younossi, Z. Hepatitis C virus infection. Nat. Rev. Dis. Primers 2017, 3, 17006. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Ikeda, M.; Saito, S.; Matsumoto, S.; Numata, K.; Kato, N.; Tanaka, K.; Sekihara, H. Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes. Hepatol. Res. 2002, 24, 228–235. [Google Scholar] [CrossRef]
- Siciliano, R.; Rega, B.; Marchetti, M.; Seganti, L.; Antonini, G.; Valenti, P. Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus type 1 infection. Biochem. Biophys. Res. Commun. 1999, 264, 19–23. [Google Scholar] [CrossRef]
- Puddu, P.; Valenti, P.; Gessani, S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie 2009, 91, 11–18. [Google Scholar] [CrossRef]
- Arnold, D.; Di Biase, A.M.; Marchetti, M.; Pietrantoni, A.; Valenti, P.; Seganti, L.; Superti, F. Antiadenovirus activity of milk proteins: Lactoferrin prevents viral infection. Antivir. Res. 2002, 53, 153–158. [Google Scholar] [CrossRef]
- Superti, F.; Ammendolia, M.G.; Valenti, P.; Seganti, L. Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microb. Immunol. 1997, 186, 83–91. [Google Scholar] [CrossRef]
- Tinari, A.; Pietrantoni, A.; Ammendolia, M.G.; Valenti, P.; Superti, F. Inhibitory activity of bovine lactoferrin against echovirus induced programmed cell death in vitro. Int. J. Antimicrob. Agents 2005, 25, 433–438. [Google Scholar] [CrossRef]
- Oda, H.; Kolawole, A.O.; Mirabelli, C.; Wakabayashi, H.; Tanaka, M.; Yamauchi, K.; Abe, F.; Wobus, C.E. Antiviral effects of bovine lactoferrin on human norovirus. Biochem. Cell Biol. 2020, 99, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Kaczyńska, K.; Kleczkowska, P.; Bukowska-Ośko, I.; Kramkowski, K.; Sulejczak, D. The lactoferrin phenomenon—A miracle molecule. Molecules 2022, 27, 2941. [Google Scholar] [CrossRef]
- Krolitzki, E.; Schwaminger, S.P.; Pagel, M.; Ostertag, F.; Hinrichs, J.; Berensmeier, S. Current practices with commercial scale bovine lactoferrin production and alternative approaches. Int. Dairy J. 2022, 126, 105263. [Google Scholar] [CrossRef]
- Narmuratova, Z.; Hentati, F.; Girardet, J.-M.; Narmuratova, M.; Cakir-Kiefer, C. Equine lactoferrin: Antioxidant properties related to divalent metal chelation. LWT Food Sci. Technol. 2022, 161, 113426. [Google Scholar] [CrossRef]
- Burrow, H.; Kanwar, R.K.; Mahidhara, G.; Kanwar, J.R. Effect of selenium-saturated bovine lactoferrin (Se-bLF) on antioxidant enzyme activities in human gut epithelial cells under oxidative stress. Anti-Cancer Agents Med. Chem. 2011, 11, 762–771. [Google Scholar] [CrossRef]
- Rascón-Cruz, Q.; Espinoza-Sánchez, E.A.; Siqueiros-Cendón, T.S.; Nakamura-Bencomo, S.I.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F. Lactoferrin: A glycoprotein involved in immunomodulation, anticancer, and antimicrobial processes. Molecules 2021, 26, 205. [Google Scholar] [CrossRef]
- Figueroa-Lozano, S.; Valk-Weeber, R.L.; Akkerman, R.; Abdulahad, W.; Van Leeuwen, S.S.; Dijkhuizen, L.; De Vos, P. Inhibitory effects of dietary N-glycans from bovine lactoferrin on toll-like receptor 8; comparing efficacy with chloroquine. Front. Immunol. 2020, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Valk-Weeber, R.L.; Eshuis-De Ruiter, T.; Dijkhuizen, L.; Van Leeuwen, S.S. Dynamic temporal variations in bovine lactoferrin glycan structures. J. Agric. Food Chem. 2020, 68, 549–560. [Google Scholar] [CrossRef]
- Legrand, D. Overview of lactoferrin as a natural immune modulator. J. Pediatr. 2016, 173, S10–S15. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a context of inflammation-induced pathology. Front. Immunol. 2017, 8, 1438. [Google Scholar] [CrossRef]
- Hu, L.; Hu, X.; Long, K.; Gao, C.; Dong, H.L.; Zhong, Q.; Gao, X.M.; Gong, F.Y. Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci. Rep. 2017, 7, 4230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lima, C.F.; Rodrigues, L.R. Anticancer effects of lactoferrin: Underlying mechanisms and future trends in cancer therapy. Nutr. Rev. 2014, 72, 763–773. [Google Scholar] [CrossRef]
- Ramírez-Rico, G.; Drago-Serrano, M.E.; León-Sicairos, N.; de la Garza, M. Lactoferrin: A nutraceutical with activity against colorectal cancer. Front. Pharmacol. 2022, 13, 855852. [Google Scholar] [CrossRef]
- Duarte, D.C.; Nicolau, A.; Teixeira, J.A.; Rodrigues, L.R. The effect of bovine milk lactoferrin on human breast cancer cell lines. J. Dairy Sci. 2011, 94, 66–76. [Google Scholar] [CrossRef]
- Yu-Tang, T.; Chen, H.C.; Yen, C.C.; Lee, P.Y.; Tsai, H.C.; Lin, M.F.; Chen, M.C. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. J. Dairy Sci. 2013, 96, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.X.; Jiang, H.R.; Li, H.B.; Zhang, T.N.; Zhou, Q.; Liu, N. Apoptosis of stomach cancer cell SGC-7901 and regulation of Akt signaling way induced by bovine lactoferrin. J. Dairy Sci. 2010, 93, 2344–2350. [Google Scholar] [CrossRef]
- Chea, C.; Miyauchi, M.; Inubushi, T.; Febriyanti Ayuningtyas, N.; Subarnbhesaj, A.; Nguyen, P.T.; Shrestha, M.; Haing, S.; Ohta, K.; Takata, T. Molecular mechanism of inhibitory effects of bovine lactoferrin on the growth of oral squamous cell carcinoma. PLoS ONE 2018, 13, e0191683. [Google Scholar] [CrossRef]
- Guedes, J.P.; Pereira, C.S.; Rodrigues, L.R.; Côrte-Real, M. Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Front. Oncol. 2018, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Gallo, V.; Antonini, G. Controversial role of lactoferrin in cancer: A narrative review. Biomed. Pharmacother. 2024, 181, 117743. [Google Scholar] [CrossRef]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi Di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef]
- Nakamura-Bencomo, S.; Gutierrez, D.A.; Robles-Escajeda, E.; Iglesias-Figueroa, B.; Siqueiros-Cendón, T.S.; Espinoza-Sánchez, E.A.; Arévalo-Gallegos, S.; Aguilera, R.J.; Rascón-Cruz, Q.; Varela-Ramirez, A. Recombinant human lactoferrin carrying humanized glycosylation exhibits antileukemia selective cytotoxicity, microfilament disruption, cell cycle arrest, and apoptosis activities. Investig. New Drugs 2021, 39, 400–415. [Google Scholar] [CrossRef] [PubMed]
- Bystrom, L.M.; Guzman, M.L.; Rivella, S. Iron and reactive oxygen species: Friends or foes of cancer cells? Antiox. Redox Signal. 2014, 20, 1917–1924. [Google Scholar] [CrossRef] [PubMed]
- Massodi, I.; Thomas, E.; Raucher, D. Application of thermally responsive elastin-like polypeptide fused to a lactoferrin-derived peptide for treatment of pancreatic cancer. Molecules 2009, 14, 1999–2015. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Menéndez, S.; Peixoto, R.R.A.; Fernández-Colomer, B.; Suarez-Rodríguez, M.; Sanz-Medel, A.; Fernández-Sánchez, M.L. Effect of holder pasteurisation on total concentrations and iron-binding profiles of holo-lactoferrin used as fortifier in donor human milk. Int. Dairy J. 2020, 100, 104564. [Google Scholar] [CrossRef]
- Liu, H.; Boggs, I.; Weeks, M.; Li, Q.; Wu, H.; Harris, P.; Ma, Y.; Day, L. Kinetic modelling of the heat stability of bovine lactoferrin in raw whole milk. J. Food Eng. 2020, 280, 109977. [Google Scholar] [CrossRef]
- Darmawan, K.K.; Karagiannis, T.C.; Hughes, J.G.; Small, D.M.; Hung, A. High temperature induced structural changes of apo-lactoferrin and interactions with β-lactoglobulin and α-lactalbumin for potential encapsulation strategies. Food Hydrocoll. 2020, 105, 105817. [Google Scholar] [CrossRef]
- Goulding, D.A.; O’Regan, J.; Bovetto, L.; O’Brien, N.M.; O’Mahony, J.A. Influence of thermal processing on the physicochemical properties of bovine lactoferrin. Int. Dairy J. 2021, 119, 105001. [Google Scholar] [CrossRef]
- Saito, H.; Takase, M.; Tamura, Y.; Shimamura, S.; Tomita, M. Physicochemical and antibacterial properties of lactoferrin and its hydrolysate produced by heat treatment at acidic pH. Adv. Exp. Med. Biol. 1994, 357, 219–226. [Google Scholar]
- Sanchez, L.; Peiro, J.M.; Castillo, H.; Perez, M.D.; Ena, J.M.; Calvo, M. Kinetic parameters for denaturation of bovine milk lactoferrin. J. Food Sci. 1992, 57, 873–879. [Google Scholar] [CrossRef]
- Bengoechea, C.; Peinado, I.; McClements, D.J. Formation of protein nanoparticles by controlled heat treatment of lactoferrin: Factors affecting particle characteristics. Food Hydrocoll. 2011, 25, 1354–1360. [Google Scholar] [CrossRef]
- Sreedhara, A.; Flengsrud, R.; Prakash, V.; Krowarsch, D.; Langsrud, T.; Kaul, P.; Devold, T.G.; Vegarud, G.E. A comparison of effects of pH on the thermal stability and conformation of caprine and bovine lactoferrin. Int. Dairy J. 2010, 20, 487–494. [Google Scholar] [CrossRef]
- Khatoon, A.; Khan, U.M.; Kaur, M. Exploring the antimicrobial potentials and thermal stability of bovine lactoferrin against foodborne pathogens. Int. J. Food Sci. Technol. 2025, 60, vvae019. [Google Scholar] [CrossRef]
- Navarro, F.; Harouna, S.; Calvo, M.; Pérez, M.D.; Sánchez, L. Kinetic and thermodynamic parameters for thermal denaturation of ovine milk lactoferrin determined by its loss of immunoreactivity. J. Dairy Sci. 2015, 98, 4328–4337. [Google Scholar] [CrossRef] [PubMed]
- Mata, L.; Sánchez, L.; Headon, D.R.; Calvo, M. Thermal denaturation of human lactoferrin and its effect on the ability to bind iron. J. Agric. Food Chem. 1998, 46, 3964–3970. [Google Scholar] [CrossRef]
- Abe, H.; Saito, H.; Miyakawa, H.; Tamura, Y.; Shimamura, S.; Nagao, E.; Tomita, M. Heat stability of bovine lactoferrin at acidic pH. J. Dairy Sci. 1991, 74, 65–71. [Google Scholar] [CrossRef]
- Kim, W.-S. Effects of heat-treated bovine lactoferrin on the growth of Lactococcus lactis subsp. cremoris JCM 20076. J. Milk Sci. Biotechnol. 2019, 37, 129–135. [Google Scholar] [CrossRef]
- He, X.; Mao, L.; Gao, Y.; Yuan, F. Effects of high pressure processing on the structural and functional properties of bovine lactoferrin. Innov. Food Sci. Emerg. Technol. 2016, 38, 221–230. [Google Scholar] [CrossRef]
- Mazri, C.; Sánchez, L.; Ramos, S.J.; Calvo, M.; Pérez, M.D. Effect of high-pressure treatment on denaturation of bovine lactoferrin and lactoperoxidase. J. Dairy Sci. 2012, 95, 549–557. [Google Scholar] [CrossRef]
- Patel, H.A.; Singh, H.; Anema, S.G.; Creamer, L.K. Effects of heat and high-hydrostatic pressure treatments on the aggregation of whey proteins in whey protein concentrate solutions. Food New Zealand 2004, 4, 29–35. [Google Scholar]
- Iucci, L.; Patrignani, F.; Vallicelli, M.; Guerzoni, M.E.; Lanciotti, R. Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control 2007, 18, 558–565. [Google Scholar] [CrossRef]
- Grácia-Juliá, A.; René, M.; Cortés-Muñoz, M.; Picart, L.; López-Pedemonte, T.; Chevalier, D.; Dumay, E. Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments. Food Hydrocoll. 2008, 22, 1014–1032. [Google Scholar] [CrossRef]
- Sui, Q.; Roginski, H.; Williams, R.P.; Wooster, T.J.; Versteeg, C.; Wan, J. Effect of the ionic strength of pulsed electric field treatment medium on the physicochemical and structural characteristics of lactoferrin. J. Agric. Food Chem. 2010, 58, 11725–11731. [Google Scholar] [CrossRef] [PubMed]
- Franco, I.; Castillo, E.; Pérez, M.D.; Calvo, M.; Sánchez, L. Effect of bovine lactoferrin addition to milk in yogurt manufacturing. J. Dairy Sci. 2010, 93, 4480–4489. [Google Scholar] [CrossRef]
- Palmano, K.P.; Ramos, R.; Watson, M.; Callon, K.E.; Cornish, J. Survival and bone-active properties of bovine lactoferrin supplemented into stirred yoghurt. Int. Dairy J. 2011, 21, 477–483. [Google Scholar] [CrossRef]
- Morel, J.; Md Zain, S.N.; Archer, R. Comparison of drying techniques for bovine lactoferrin: Iron binding and antimicrobial properties of dried lactoferrin. Int. Dairy J. 2021, 124, 105142. [Google Scholar] [CrossRef]
- Bourbon, A.I.; Barbosa-Pereira, L.; Vicente, A.A.; Cerqueira, M.A.; Pastrana, L. Dehydration of protein lactoferrin-glycomacropeptide nanohydrogels. Food Hydrocoll. 2020, 101, 105550. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Mild thermal treatment and in-vitro digestion of three forms of bovine lactoferrin: Effects on functional properties. Int. Dairy J. 2017, 64, 22–30. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Characteristics of bovine lactoferrin powders produced through spray and freeze drying processes. Int. J. Biol. Macromol. 2017, 95, 985–994. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Rożek, P.; Puta, M. The effect of freeze-drying and storage on lysozyme activity, lactoferrin content, superoxide dismutase activity, total antioxidant capacity and fatty acid profile of freeze-dried human milk. Dry. Technol. 2022, 40, 615–625. [Google Scholar] [CrossRef]
- Dao, H.M.; Sahakijpijarn, S.; Chrostowski, R.R.; Moon, C.; Mangolini, F.; Cui, Z.; Williams, R.O., 3rd. Aggregation of lactoferrin caused by droplet atomization process via a two-fluid nozzle: The detrimental effect of air-water interfaces. Mol. Pharm. J. 2022, 19, 2662–2675. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, T.; Dadmohammadi, Y.; Li, P.; Dong, H.; Yang, L.; He, Y.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Using transglutaminase to cross-link complexes of lactoferrin and α-lactalbumin to increase thermal stability. J. Food Sci. 2024, 89, 5488–5502. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.M.A.; Da Silva, S.L.; Da Silva, L.H.M.; Minim, V.P.R.; Da Silva, M.C.H.; Carvalho, L.M.; Minim, L.A. Cryogel poly(acrylamide): Synthesis, structure and applications. Sep. Purif. Rev. 2014, 43, 241–262. [Google Scholar] [CrossRef]
- Saleh, Z.S.; Hossain, M.M. A study of the separation of proteins from multicomponent mixtures by a semi-batch foaming process. Chem. Eng. Process. Process Intensif. 2001, 40, 371–378. [Google Scholar] [CrossRef]
- Lu, R.R.; Xu, S.Y.; Wang, Z.; Yang, R.J. Isolation of lactoferrin from bovine colostrum by ultrafiltration coupled with strong cation exchange chromatography on a production scale. J. Membr. Sci. 2007, 297, 152–161. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, G.Q.; Kentish, S.E. Isolation of lactoferrin and immunoglobulins from dairy whey by an electrodialysis with filtration membrane process. Sep. Purif. Technol. 2020, 233, 115987. [Google Scholar] [CrossRef]
- Pawar, S.S.; Iyyaswami, R.; Belur, P.D. Selective extraction of lactoferrin from acidic whey using CTAB/n-heptanol reverse micellar system. J. Food Sci. Technol. 2019, 56, 2553–2562. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, S.; Radhakrishnan, U.; Eldho, L.; Kk, J. Isolation and purification of lactoferrin from colostrum of malabari goats. J. Exp. Biol. Agric. Sci. 2017, 5, 550–555. [Google Scholar] [CrossRef]
- Parc, A.L.; Dallas, D.C.; Duaut, S.; Léonil, J.; Martin, P.; Barile, D. Characterization of goat milk lactoferrin N-glycans and comparison with the N-glycomes of human and bovine milk. Electrophoresis 2014, 35, 1560–1570. [Google Scholar] [CrossRef]
- Abbas, Z.H.; Doosh, K.S.; Yaseen, N.Y. Isolation, Purification and characterization of lactoferrin from goat colostrum whey. Pak. J. Nutrit. 2015, 14, 517–523. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, Z.; Yong-jiu, Z.; Zhao, J.; Li, J. Current advances in production and drying technologies of lactoferrin. J. Biobased Mater. Bioenergy 2024, 18, 339–358. [Google Scholar] [CrossRef]
- Baieli, M.F.; Urtasun, N.; Miranda, M.V.; Cascone, O.; Wolman, F.J. Bovine lactoferrin purification from whey using yellow HE-4R as the chromatographic affinity ligand. J. Sep Sci. 2014, 37, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Lv, X.; Sun, G.; Wu, W.Y.; Xu, H.; Li, Y.; Liu, Y.; Li, J.; Du, G.; Wang, M.; et al. Recent advances and prospects in purification and heterologous expression of lactoferrin. Food Bioeng. 2022, 1, 58–67. [Google Scholar] [CrossRef]
- Du, Q.-Y.; Lin, D.Q.; Xiong, Z.-S.; Yao, S.J. One-step purification of lactoferrin from crude sweet whey using cation-exchange expanded bed adsorption. Ind. Eng. Chem. Res. 2013, 52, 2693–2699. [Google Scholar] [CrossRef]
- Pilbrow, J.; Bekhit, A.E.A.; Carne, A. Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins. Food Chem. 2016, 203, 165–174. [Google Scholar] [CrossRef]
- Jin, Z. Expanded bed adsorption expanded bed adsorption—Challenges and advances in column and process design. Pharm. Eng. 2015, 35, 1–12. [Google Scholar]
- Kong, Y.; Liu, M.; Wei, D.; Wang, C.; Du, M.; Zhang, L. Purification and identification of lactoferrin from bovine milk. Adv. Mater. Res. 2012, 524–527, 2290–2293. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Xu, E.; Chen, L.; Feng, H.; Lu, C.; Deng, L.; Guo, D. Determination of lactoferrin in camel milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an isotope-labeled winged peptide as internal standard. Molecules 2019, 24, 4199. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, X.; Wu, M.; Zhu, W. Simultaneous isolation of lactoferrin and lactoperoxidase from bovine colostrum by SPEC 70 SLS cation exchange resin. Int. J. Environ. Res. Public Health 2011, 8, 3764–3776. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tong, Z.; Zhang, X.; Dahmani, M.; Zhao, M.; Hu, M.; Li, X.; Xue, Z. A review: Development of a synthetic lactoferrin biological system. Biodes. Res. 2024, 6, 0040. [Google Scholar] [CrossRef]
- Narmuratova, M.; Cakir-Kiefer, C.; Narmuratova, Z. Isolation and purification of lactoferrin from Kazakhstan mare milk. Int. J. Biol. Chem. 2019, 12, 64–69. [Google Scholar] [CrossRef]
- Mahala, N.; Mittal, A.; Lal, M.; Dubey, U.S. Isolation and characterization of bioactive lactoferrin from camel milk by novel pH-dependent method for large scale production. Biotechnol. Rep. 2022, 36, e00765. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Wei, Z.; Shinmura, Y.; Fukunaga, N. Separation of lactoferrin-a and -b from bovine colostrum. J. Dairy Sci. 2000, 83, 2211–2215. [Google Scholar] [CrossRef] [PubMed]
- Fee, C.J.; Chand, A. Capture of lactoferrin and lactoperoxidase from raw whole milk by cation exchange chromatography. Sep. Purif. Technol. 2006, 48, 143–149. [Google Scholar] [CrossRef]
- Wolman, F.J.; González Maglio, D.; Grasselli, M.; Cascone, O. One-step lactoferrin purification from bovine whey and colostrum by affinity membrane chromatography. J. Membr. Sci. 2007, 288, 132–138. [Google Scholar] [CrossRef]
- Fuda, E.; Jauregi, P.; Pyle, D.L. Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons (CGAs) generated from an anionic surfactant, AOT. Biotechnol. Prog. 2004, 20, 514–525. [Google Scholar] [CrossRef]
- Saufi, S.M.; Fee, C.J. Recovery of lactoferrin from whey using cross-flow cation exchange mixed matrix membrane chromatography. Sep. Purif. Technol. 2011, 77, 68–75. [Google Scholar] [CrossRef]
- Chen, L.; Guo, C.; Guan, Y.; Liu, H. Isolation of lactoferrin from acid whey by magnetic affinity separation. Sep. Purif. Technol. 2007, 56, 168–174. [Google Scholar] [CrossRef]
- Costa, A.R.d.; Jane Sélia dos Reis, C.; Ferreira, L.A.; Marcos, J.C.; Santos, I.J.B.; Saldaña, M.D.; Teixeira, J.A. Partitioning of bovine lactoferrin in aqueous two-phase system containing poly(ethylene glycol) and sodium citrate. Food Bioprod. Process. 2015, 95, 118–124. [Google Scholar] [CrossRef]
- Alvarez-Guerra, E.; Irabien, A. Extraction of lactoferrin with hydrophobic ionic liquids. Sep. Purif. Technol. 2012, 98, 432–440. [Google Scholar] [CrossRef]
- Krolitzki, E.; Ostertag, F.; Schwaminger, S.P.; Hinrichs, J.; Berensmeier, S. Purification of lactoferrin through a sequential filtration and magnetic separation process: A processing example for acid whey valorization. Future Foods 2024, 9, 100342. [Google Scholar] [CrossRef]
- Voswinkel, L.; Vogel, T.; Kulozik, U. Impact of the iron saturation of bovine lactoferrin on adsorption to a strong cation exchanger membrane. Int. Dairy J. 2016, 56, 134–140. [Google Scholar] [CrossRef]
- García-Montoya, I.; Salazar-Martínez, J.; Arévalo-Gallegos, S.; Sinagawa-García, S.; Rascón-Cruz, Q. Expression and characterization of recombinant bovine lactoferrin in E. coli. BioMetals 2013, 26, 113–122. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z.; Yu, T.; Ding, F.; Li, L.; Wang, X.; Fu, M.; Wang, H.; Huang, J.; Li, N.; et al. Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows. Sci. Rep. 2017, 7, 10733. [Google Scholar] [CrossRef] [PubMed]
- Chahardoli, M.; Fazeli, A.; Ghabooli, M. Recombinant production of bovine lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol. Biochem. 2018, 123, 414–421. [Google Scholar] [CrossRef]
- Yen, C.-C.; Wu, P.-Y.; Ou-Yang, H.; Chen, H.-L.; Chong, K.-Y.; Chang, R.-L.; Chen, C.-M. Production of bioactive porcine lactoferrin through a novel glucose-inducible expression system in Pichia pastoris: Unveiling antimicrobial and anticancer functionalities. Int. J. Mol. Sci. 2024, 25, 1818. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, D.; Mori, T.; Hosaka, T.; Takaiwa, F.; Inoue, E.; Anzai, H. Production and characterization of recombinant human lactoferrin in transgenic Javanica rice. Breed. Sci. 2005, 55, 213–222. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, L.; Jia, S.; Chen, L.; Ma, Y. High-level expression and production of human lactoferrin in Pichia pastoris. Dairy Sci. Technol. 2008, 88, 173–181. [Google Scholar] [CrossRef]
- Lu, X.; Cummings, C.; Osuala, U.A.; Yennawar, N.H.; Namitz, K.E.W.; Hellner, B.; Besada-Lombana, P.B.; Peterson, R.D.; Clark, A.J. Characterization of recombinant human lactoferrin expressed in Komagataella phaffii. Analyst 2024, 149, 3636–3650. [Google Scholar] [CrossRef]
- Wu, S.-C.; Chen, H.-L.; Yen, C.-C.; Kuo, M.-F.; Yang, T.-S.; Wang, S.-R.; Weng, C.-N.; Chen, C.-M.; Cheng, W.T.K. Recombinant porcine lactoferrin expressed in the milk of transgenic mice enhances offspring growth performance. J. Agric. Food Chem. 2007, 55, 4670–4677. [Google Scholar] [CrossRef]
- Jin, L.; Li, L.; Zhou, L.; Zhang, R.; Xu, Y.; Li, J. Improving expression of bovine lactoferrin N-lobe by promoter optimization and codon engineering in Bacillus subtilis and its antibacterial activity. J. Agric. Food Chem. 2019, 67, 9749–9756. [Google Scholar] [CrossRef]
- Hyvönen, P.; Suojala, L.; Orro, T.; Haaranen, J.; Simola, O.; Røntved, C.; Pyörälä, S. Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection. Infect. Immun. 2006, 74, 6206–6212. [Google Scholar] [CrossRef]
- Liang, Q.; Richardson, T. Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae. J. Agric. Food Chem. 1993, 41, 1800–1807. [Google Scholar] [CrossRef]
- Chen, H.-L.; Lai, Y.-W.; Chen, C.-S.; Chu, T.-W.; Lin, W.; Yen, C.-C.; Lin, M.-F.; Tu, M.-Y.; Chen, C.-M. Probiotic Lactobacillus casei expressing human lactoferrin elevates antibacterial activity in the gastrointestinal tract. BioMetals 2010, 23, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.; Wu, S.; Wang, J.; Zhao, X.; Chen, J.; Zhang, X.; Hou, Y. Producing human lactoferrin by high-density fermentation recombinant Pichia pastoris. Chin. J. Exp. Clin. Virol. 2004, 18, 181–185. [Google Scholar]
- Zhang, X.; Xi, Z.; Zhao, H.; Zhang, W.; Xu, Y.; Zhang, R. Efficient heterologous expression of bovine lactoferrin in Pichia pastoris and characterization of antibacterial activity. Syst. Microbiol. Biomanufacturing 2025, 5, 237–248. [Google Scholar] [CrossRef]
- Ward, P.P.; May, G.S.; Headon, D.R.; Conneely, O.M. An inducible expression system for the production of human lactoferrin in Aspergillus nidulans. Gene 1992, 122, 219–223. [Google Scholar] [CrossRef]
- Sun, X.-L.; Baker, H.M.; Shewry, S.C.; Jameson, G.B.; Baker, E.N. Structure of recombinant human lactoferrin expressed in Aspergillus awamori. Acta Crystallogr. D 1999, 55, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Gajda-Morszewski, P.; Śpiewak-Wojtyła, K.; Oszajca, M.; Brindell, M. Strategies for oral delivery of metal-saturated lactoferrin. Curr. Protein Pept. Sci. 2019, 20, 1046–1051. [Google Scholar] [CrossRef]
- Cao, L.; Van de Walle, D.; Hirmz, H.; Wynendaele, E.; Dewettinck, K.; Parakhonskiy, B.V.; Skirtach, A.G. Food-based biomaterials: pH-responsive alginate/gellan gum/carboxymethyl cellulose hydrogel beads for lactoferrin delivery. Biomater. Adv. 2024, 165, 213999. [Google Scholar] [CrossRef]
- Wang, K.; Sun, H.; Cui, Z.; Wang, J.; Hou, J.; Lu, F.; Liu, Y. Lactoferrin–chitosan composite hydrogels induced by microbial transglutaminase: Potential delivery systems for thermosensitive bioactive substances. J. Agric. Food Chem. 2024, 72, 14302–14314. [Google Scholar] [CrossRef]
- Vergara, D.; López, O.; Bustamante, M.; Shene, C. An in vitro digestion study of encapsulated lactoferrin in rapeseed phospholipid–based liposomes. Food Chem. 2020, 321, 126717. [Google Scholar] [CrossRef] [PubMed]
- Gajda-Morszewski, P.; Poznańska, A.; Yus, C.; Arruebo, M.; Brindell, M. Encapsulation of iron-saturated lactoferrin for proteolysis protection with preserving iron coordination and sustained release. Nanomaterials 2023, 13, 2524. [Google Scholar] [CrossRef] [PubMed]
- Eilander, A.; Olumakaiye, M.; Moretti, D.; Zimmermann, M.; Owojuyigbe, T.; Blonk, C.; Duchateau, G. High bioavailability from ferric pyrophosphate-fortified bouillon cubes in meals is not increased by sodium pyrophosphate: A stable iron isotope study in young nigerian women. J. Nutr. 2019, 149, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Cercamondi, C.; Duchateau, G.; Harika, R.; Berg, R.; Murray, P.; Koppenol, W.; Moretti, D. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate. Br. J. Nutr. 2016, 116, 496–503. [Google Scholar] [CrossRef]
- Choe, Y.; Oh, Y.; Lee, N.; Imoto, I.; Adachi, Y.; Toyoda, N.; Gabazza, E. Lactoferrin sequestration and its contribution to iron-deficiency anemia in helicobacter pylori-infected gastric mucosa. J. Gastroenterol. Hepatol. 2003, 18, 980–985. [Google Scholar] [CrossRef]
- Bayoumy, K.; Ragab, S.; Elghareeb, N. Compliance and efficacy of oral lactoferrin versus ferrous sulfate in treatment of nutritional iron deficiency anemia during second trimester among egyptian ladies. Egypt. J. Hosp. Med. 2021, 83, 903–909. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Teng, X.; Luo, J.; Luo, Y.; An, P. Comparative effects between oral lactoferrin and ferrous sulfate supplementation on iron-deficiency anemia: A comprehensive review and meta-analysis of clinical trials. Nutrients 2022, 14, 543. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M.; Kruzel, M. Lactoferrin for prevention and treatment of anemia and inflammation in pregnant women: A comprehensive review. Biomedicines 2021, 9, 898. [Google Scholar] [CrossRef]
- Farsy, M.; El-Hakim, I.; Rabie, H. Oral lactoferrin as a source of iron supplementation in pediatric hemodialysis patients. Geget 2021, 16, 23–30. [Google Scholar] [CrossRef]
- Siqueiros-Cendón, T.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.; García-Montoya, I.; Salazar-Martínez, J.; Rascón-Cruz, Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol. Sin. 2014, 35, 557–566. [Google Scholar] [CrossRef]
- Nadi, W.G.; Taher, E.M.; Awad, A.A.N.; Ahmed, L.I. Lactoferrin’s potential application in enhancing yoghurt’s microbial and sensory qualities, with emphasis on the starter culture activity. J. Dairy Res. 2023, 90, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Jańczuk, A.; Brodziak, A.; Król, J.; Czernecki, T. Properties of yoghurt fortified in lactoferrin with effect of storage time. Animals 2023, 13, 1610. [Google Scholar] [CrossRef] [PubMed]
- Adnan, A.; Nadeem, M.; Ahmad, M.H.; Tayyab, M.; Kamran Khan, M.; Imran, M.; Iqbal, A.; Rahim, M.A.; Awuchi, C.G. Effect of lactoferrin supplementation on composition, fatty acids composition, lipolysis and sensory characteristics of cheddar cheese. Int. J. Food Prop. 2023, 26, 437–452. [Google Scholar] [CrossRef]
- Abad, I.; Pemán, L.; Pérez, M.D.; Grasa, L.; Sánchez, L. Does lactoferrin, free, encapsulated or in dairy matrices, maintain its antibacterial activity after in vitro digestion? J. Funct. Foods 2024, 112, 105936. [Google Scholar] [CrossRef]
- Ali, A.S.; Hasan, S.S.; Kow, C.S.; Merchant, H.A. Lactoferrin reduces the risk of respiratory tract infections: A meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2021, 45, 26–32. [Google Scholar] [CrossRef]
- Navarro, R.M.; Paredes, J.L.; Tucto, L.; Medina, C.; Angles-Yanqui, E.; Nario, J.C.; Ruiz-Cabrejos, J.; Quintana, J.L.; Turpo-Espinoza, K.; Mejia-Cordero, F.; et al. Bovine lactoferrin for the prevention of COVID-19 infection in health care personnel: A double-blinded randomized clinical trial (LF-COVID). BioMetals 2023, 36, 463–472. [Google Scholar] [CrossRef]
- Wang, W.; An, Q.; Huang, K.; Dai, Y.; Meng, Q.; Zhang, Y. Unlocking the power of lactoferrin: Exploring its role in early life and its preventive potential for adult chronic diseases. Food Res. Int. 2024, 182, 114143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, M.; Brzozowski, B.; Babuchowski, A.; Adamczak, M. Biologically Active Components of Milk—Production and Properties of Lactoferrin. Processes 2025, 13, 1620. https://doi.org/10.3390/pr13061620
Ostrowska M, Brzozowski B, Babuchowski A, Adamczak M. Biologically Active Components of Milk—Production and Properties of Lactoferrin. Processes. 2025; 13(6):1620. https://doi.org/10.3390/pr13061620
Chicago/Turabian StyleOstrowska, Monika, Bartosz Brzozowski, Andrzej Babuchowski, and Marek Adamczak. 2025. "Biologically Active Components of Milk—Production and Properties of Lactoferrin" Processes 13, no. 6: 1620. https://doi.org/10.3390/pr13061620
APA StyleOstrowska, M., Brzozowski, B., Babuchowski, A., & Adamczak, M. (2025). Biologically Active Components of Milk—Production and Properties of Lactoferrin. Processes, 13(6), 1620. https://doi.org/10.3390/pr13061620