Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,408)

Search Parameters:
Keywords = group polarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2344 KB  
Article
The Diverse Effect of HDAC Inhibitors: Sodium Butyrate and Givinostat on Microglia Polarization After Hypoxia-Ischemia In Vitro
by Karolina Ziabska, Paulina Pawelec, Luiza Stanaszek and Malgorzata Ziemka-Nalecz
Int. J. Mol. Sci. 2026, 27(2), 1114; https://doi.org/10.3390/ijms27021114 - 22 Jan 2026
Viewed by 15
Abstract
Microglia play a key role in the development of neuroinflammation induced by cerebral ischemia. On the other hand, these cells participate in neurorepair processes. This dual role of microglia stems from the ability to shift their phenotype from pro-inflammatory M1 to protective M2. [...] Read more.
Microglia play a key role in the development of neuroinflammation induced by cerebral ischemia. On the other hand, these cells participate in neurorepair processes. This dual role of microglia stems from the ability to shift their phenotype from pro-inflammatory M1 to protective M2. Histone deacetylase inhibitors (HDACis) are a group of agents that exhibit neuroprotective effects in some models of ischemia, among others, by modulation of signaling pathways that regulate microglial activation. This study aimed to examine the effect of HDACis—sodium butyrate and Givinostat—on polarization of microglia and their potential mechanism of action in a model of ischemia in vitro (oxygen and glucose deprivation, OGD). We examined the expression of pro- and anti-inflammatory markers in the BV2 microglial cell line after OGD and HDACis treatment by qPCR; polarization of microglia by flow cytometry; and the activation/phosphorylation of ERK and AKT in BV2 cells by Western blot and ELISA. Our findings demonstrate a divergent impact of HDACis on the phenotype of microglial cells. Sodium butyrate significantly suppressed the mRNA expression of pro-inflammatory markers (IL-1β, TNF-α, CD86) and increased the level of anti-inflammatory factors in BV2 microglial cells after OGD, whereas Givinostat failed to attenuate these inflammatory responses. Our findings demonstrate that sodium butyrate, but not Givinostat, promotes a shift in microglia toward an anti-inflammatory M2 phenotype under ischemic conditions. This effect is associated with suppression of pro-inflammatory gene expression and activation of the PI3K/AKT signaling pathway. These results identify sodium butyrate as a potential modulator of microglial responses following ischemic injury. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanism in Neuroinflammation Research)
20 pages, 1190 KB  
Article
Compositional Group Analysis of Biocrude Oils Obtained from Swine Manure by Slow Pyrolysis
by Lenia Gonsalvesh, Stefan Marinov, Maya Stefanova, Jan Czech, Robert Carleer and Jan Yperman
Processes 2026, 14(2), 382; https://doi.org/10.3390/pr14020382 - 22 Jan 2026
Viewed by 23
Abstract
The study comprises an in-depth characterization of compositional groups of the liquid by-products obtained from the pyrolysis of swine manure at 500 °C, with the aim of providing an alternative and efficient approach for the valorisation of this waste stream, alongside with the [...] Read more.
The study comprises an in-depth characterization of compositional groups of the liquid by-products obtained from the pyrolysis of swine manure at 500 °C, with the aim of providing an alternative and efficient approach for the valorisation of this waste stream, alongside with the production of biogas and char, the latter of which can be further converted into activated carbon. Two samples were considered: de-watered cake and solid product from anaerobic digestion of swine manure. Biocrude oils were fractionated into weak acidic, strong acidic, alkaline and neutral oil fractions. Subsequently, the neutral oil fraction was separated into paraffinic–naphthenic, slightly polar and polar fractions. All fractions were analyzed by GC–MS. The major identified compositional groups were: (i) for de-watered cake: steroids (40.7%), fatty acids, FAs (23.7%) and n-alkenes/n-alkanes (23.3%); (ii) for solid product from anaerobic digestion: FAs (31.0%), phenols/methoxy phenols (26.6%), n-alkenes/n-alkanes (10.8%) and steroids (10.6%). A variety of short-chain FAs (i.e., linear saturated, mono- and di-unsaturated, cis (i-), trans (ai-), isoprenoid, phenyl alkanoic, amongst others) and methyl esters (FAMEs) were identified as well. FA distribution, nC12nC20, was similar for both manures studied with nC16 and nC18 as major compounds. FAMEs (nC14nC28, with even carbon number dominance) in the slightly polar fraction of both samples were accompanied by considerable amounts of oleic (nC18:1) and linoleic (nC18:2) acids, and corresponding methyl esters. Hydrocarbons, i.e., n-alkenes/n-alkanes, were in the range of nC15nC34, with nC18 maximizing. Anaerobically digested manure has resulted in (i) an increase in the portion of longer homologues of hydrocarbons and FAMEs and (ii) the appearance of new FAs series of long chain members nC22:1nC26:1, ω-9. The comprehensive analysis of the biocrude oils obtained from the slow pyrolysis of swine manure indicates their potential for use as biodiesel additives or as feedstock to produce value-added materials. Full article
(This article belongs to the Special Issue Biomass Pyrolysis Characterization and Energy Utilization)
Show Figures

Figure 1

11 pages, 964 KB  
Article
Effect of Melatonin and Epigallocatechin-3-Gallate Combination on In Vitro Maturation of Mouse Oocytes
by Shuangshuang Li, Lili Chen, Yi Li, Lingyang Xu, Yan Chen and Yi Ma
Int. J. Mol. Sci. 2026, 27(2), 1089; https://doi.org/10.3390/ijms27021089 - 22 Jan 2026
Viewed by 15
Abstract
In vitro oocyte maturation (IVM) is a pivotal process influencing the success of embryo production in laboratory and clinical settings. However, oxidative stress (OS) often compromises oocyte quality during IVM. Antioxidants such as melatonin and epigallocatechin-3-gallate (EGCG) are known to mitigate OS by [...] Read more.
In vitro oocyte maturation (IVM) is a pivotal process influencing the success of embryo production in laboratory and clinical settings. However, oxidative stress (OS) often compromises oocyte quality during IVM. Antioxidants such as melatonin and epigallocatechin-3-gallate (EGCG) are known to mitigate OS by neutralizing reactive oxygen species (ROS) and bolstering antioxidant defenses. Despite extensive studies on their individual effects, the synergistic impact of melatonin and EGCG remains underexplored. Utilizing a mouse model, this study evaluated their combined effect on oocyte maturation, focusing on nuclear and cytoplasmic development, intracellular ROS, glutathione (GSH) levels, and subsequent embryonic competence. The results demonstrated that melatonin and EGCG significantly enhanced the polar body extrusion rate (p < 0.05), with the combination group achieving the highest rate of 91.96%. Cumulus expansion was observed to improve across all treated groups, with the combination treatment showing the highest cumulus expansion index (CEI) of 3.06. Furthermore, the combination treatment significantly reduced ROS levels and increased GSH content, indicating enhanced antioxidant capacity (p < 0.01). Embryonic development outcomes, including cleavage and blastocyst rates, were markedly higher in the combination group at 75.23% and 53.97%, respectively, demonstrating superior developmental potential (p < 0.01). These findings suggest that the melatonin–EGCG combination offers a novel and effective strategy to combat oxidative damage during IVM, thereby improving oocyte quality and embryonic development potential in mice. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 1335 KB  
Systematic Review
Systematic Review and Meta-Analysis of Milk Fat Globule Membrane Supplementation for Mental Well-Being
by Charlotte Mawson, Andrew M. Carroll, Stefanie Evas, Sarah J. Spies and Maher Fuad
Nutrients 2026, 18(2), 342; https://doi.org/10.3390/nu18020342 - 21 Jan 2026
Viewed by 94
Abstract
Background/Objectives: The milk fat globule membrane (MFGM) is a complex structure of polar lipids, gangliosides, and glycoproteins that has demonstrated anti-inflammatory, neuroprotective, and gut-modulatory effects in preclinical and human studies, but its effects on adult psychological outcomes have not been systematically synthesised. [...] Read more.
Background/Objectives: The milk fat globule membrane (MFGM) is a complex structure of polar lipids, gangliosides, and glycoproteins that has demonstrated anti-inflammatory, neuroprotective, and gut-modulatory effects in preclinical and human studies, but its effects on adult psychological outcomes have not been systematically synthesised. Methods: We conducted a systematic literature search across multiple databases using combined relevant keywords and Medical Subject Headings terms, with manual reference checks to ensure comprehensiveness. Of the 35 articles initially identified, 3 randomised controlled trials met the inclusion criteria: adult participants (≥20 years); bovine MFGM supplementation; a placebo or control group; and outcomes measuring stress, anxiety, or depression. A random-effects meta-analysis was performed, calculating standardised mean differences for stress, anxiety, and depression outcomes. Results: MFGM supplementation produced small but statistically significant reductions in stress and anxiety. Effects on depression were non-significant, though directionally favourable. Risk-of-bias assessments were conducted using Cochrane criteria and indicated low concerns across trials. Publication bias was not indicated, but interpretation was limited by the small number of studies. Conclusions: Whilst the evidence for depression is inconclusive, bovine MFGM supplementation may confer modest benefits for stress and anxiety in adults and could be part of a nutritional strategy to support overall mental well-being. Full article
Show Figures

Figure 1

18 pages, 4345 KB  
Article
The Influence of Different Zirconium Oxide Processing Variants on Selected Parameters of Roughness, Surface Wettability, and Phase Transformations
by Beata Śmielak, Leszek Klimek, Marco Ferrari and Kamil Krześniak
Ceramics 2026, 9(1), 10; https://doi.org/10.3390/ceramics9010010 - 21 Jan 2026
Viewed by 46
Abstract
How does zirconia processing affect the degree of tetragonal to monoclinic phase transformation (t ⟶ m) and the development and wettability of the surface? One hundred and twenty-four samples made of sintered zirconium were divided into four groups based on the following treatments: [...] Read more.
How does zirconia processing affect the degree of tetragonal to monoclinic phase transformation (t ⟶ m) and the development and wettability of the surface? One hundred and twenty-four samples made of sintered zirconium were divided into four groups based on the following treatments: grinding, polishing, sandblasting with Al2O3, or sandblasting with SiC. After surface treatment, the samples were subjected to the following tests: X-ray diffraction, microscopic examination, surface roughness measurements, and surface wettability. The highest values are achieved after the grinding process (Ra = 0.63; Rz = 9.29; Rq = 1.28), and the lowest values are found after polishing (Ra = 0.11; Rz = 0.71; Rq = 0.36). All samples, apart from those sandblasted with Al2O3 (Θ = 121.59°), showed wettability with the polar liquid. The best wettability was noted for sandblasted SiC samples (Θ = 41.22°) and the lowest was noted for polished samples (Θ = 80.61°). All samples showed wettability with an apolar liquid (Θ < 90°). A significant transformation (t ⟶ m) was noted in all tested samples: about 14% for ground, 17% for polished, 13.8% for Al2O3 sandblasting, and 13.1% for SiC sandblasting samples. The type of processing method has a significant impact on the selected parameters of roughness, surface wettability, and phase transformations. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

20 pages, 1579 KB  
Article
Phthalimide Derivatives as Anti-Inflammatory Agents: In Silico COX-2 Targeting and In Vitro Inhibition of PGE2 Production
by Héctor M. Heras Martínez, Blanca Sánchez-Ramírez, Linda-Lucila Landeros-Martínez, David Rodríguez-Guerrero, José C. Espinoza-Hicks, Gerardo Zaragoza-Galán, Alejandro Bugarin and David Chávez-Flores
Pharmaceutics 2026, 18(1), 129; https://doi.org/10.3390/pharmaceutics18010129 - 20 Jan 2026
Viewed by 176
Abstract
Background/Objectives: The development of specific inhibitors for cyclooxygenase-2 (COX-2) is a challenge for public health. A series of 17 N-phthalimide hybrids was evaluated using a functional M06 meta-GGA hybrid in combination with a polarized 6-311G (d, p) basis set. The top [...] Read more.
Background/Objectives: The development of specific inhibitors for cyclooxygenase-2 (COX-2) is a challenge for public health. A series of 17 N-phthalimide hybrids was evaluated using a functional M06 meta-GGA hybrid in combination with a polarized 6-311G (d, p) basis set. The top three candidates (6, 10, and 17) were synthesized and evaluated as selective COX-2 inhibitors of PGE-2 using an integrated in silico–in vitro approach. Methods: Molecular docking against COX-2 (PDB 5KIR) and COX-1 (PDB 6Y3C), supported by homology modeling and DFT geometry optimization (B3LYP/6-31G*), revealed that the phthalimide carbonyl groups and the 3,4,5-trimethoxyphenyl or geranyl-derived moieties establish key hydrogen bonds and hydrophobic contacts with Arg120, Tyr355, Tyr385, and Ser530 in the COX-2 active site, conferring predicted selectivity ΔGCOX−2 vs. COX−1 = −1.4 to −2.8 kcal/mol. Results: The compounds complied with Lipinski’s and Veber’s rules and displayed favorable ADMET profiles. In vitro assessment in LPS-stimulated J774A.1 murine macrophages confirmed potent inhibition of PGE2 production, 3.05 µg/mL, with compound 17 exhibiting the highest efficacy, 97.79 ± 5.02% inhibition at 50 µg/mL, and 10 showing 95.22 ± 6.03% inhibition at 50 µg/mL. Notably, all derivatives maintained >90% cell viability up to 250 µg/mL by resazurin assay and showed no evidence of cytotoxicity or mitosis potential in the tests at 24 h. Conclusions: These results demonstrate that strategic hybridization of phthalimide with natural and synthetic product-derived fragments yields highly potential PGE2 inhibitors. Therefore, compounds 6, 10, and 17 are promising lead candidates for the development of safer anti-inflammatory agents. Full article
(This article belongs to the Special Issue Natural Pharmaceuticals Focused on Anti-inflammatory Activities)
Show Figures

Graphical abstract

11 pages, 1850 KB  
Article
Self-Assembling Conjugated Organic Materials with a Silazane Anchor Group: Synthesis, Self-Organization, and Semiconductor Properties
by Elizaveta A. Bobrova, Maxim S. Skorotetсky, Bogdan S. Kuleshov, Victoria P. Gaidarzhi, Askold A. Trul, Elena V. Agina, Oleg V. Borshchev and Sergey A. Ponomarenko
Nanomaterials 2026, 16(2), 124; https://doi.org/10.3390/nano16020124 - 16 Jan 2026
Viewed by 185
Abstract
An efficient synthetic method for the preparation of self-assembling conjugated organic materials with a silazane anchor group based on direct hydrosilylation reaction is reported. A novel organic semiconductor molecule, NH(Si-Und-BTBT-Hex)2, consisting of a polar silazane anchor group linked through undecylenic (Und) [...] Read more.
An efficient synthetic method for the preparation of self-assembling conjugated organic materials with a silazane anchor group based on direct hydrosilylation reaction is reported. A novel organic semiconductor molecule, NH(Si-Und-BTBT-Hex)2, consisting of a polar silazane anchor group linked through undecylenic (Und) aliphatic spacers to conjugated blocks based on benzothieno[3,2-b][1]benzothiophene (BTBT) and solubilizing hexyl (Hex) end groups, was synthesized. Its self-organization on the air-water interface and solid substrates into ultrathin layers obtained by the Langmuir–Schaefer or Langmuir–Blodgett methods was investigated. Monolayer organic field-effect transistors manufactured from NH(Si-Und-BTBT-Hex)2 showed operation in the p-type mode. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

19 pages, 5439 KB  
Article
Decoupling Additive and Non-Additive Genetic Effects to Optimize Breeding Strategies for Apple Phenology and Fruit Quality
by Pablo Asprelli, Guido Cipriani and Gloria De Mori
Horticulturae 2026, 12(1), 93; https://doi.org/10.3390/horticulturae12010093 - 16 Jan 2026
Viewed by 132
Abstract
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were [...] Read more.
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were obtained by crossing six apple varieties selected as pollen receptors and four apple genotypes resistant to scab selected as pollen donors. Data related to bud burst date, flowering date, harvest date, lengths of the periods between bud burst and flowering and from flowering to harvest (developmental period), fruit equatorial and polar diameter, fruit polar/diameter ratio, soluble solid content (SSC) and flesh firmness were analysed as a genetic partial diallel design. The study’s ANOVA on 24 fruit families across two years revealed significant genotype–environment interactions affecting flowering date, harvest date, and developmental periods, with some variables like fruit weight and soluble solids showing consistent variation. During each year, temperature influenced phenological phases, with earlier budbreak and flowering in warmer, less variable conditions in 2019. Analysis of genetic effects indicated high heritability for phenological traits and moderate heritability for fruit morphology and quality, with parental genetic contributions varying over years. Principal component and Procrustes analyses identified key variable groupings and parent profiles, highlighting genotypes such as ‘Granny Smith’, ‘McIntosh’, and ‘HM100’ with consistent additive effects, and certain families with notable heterotic performance. Overall, genetic and environmental interactions significantly shape phenological and fruit quality traits, guiding breeding strategies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

20 pages, 5228 KB  
Article
Hydrophobic Modification of Alginate Nanofibrous Membrane by Group IV Elements Ion Crosslinking
by Takuma Yamashita and Toshihisa Tanaka
Polymers 2026, 18(2), 221; https://doi.org/10.3390/polym18020221 - 14 Jan 2026
Viewed by 290
Abstract
Hydrophobic nanofiber membranes derived from the biopolymer alginate were fabricated by electrospinning followed by metal ion crosslinking, and their potential as oil-water separation membranes was primarily investigated. Sodium alginate (SA) was co-electrospun with polyethylene glycol and subsequently crosslinked using calcium chloride and group [...] Read more.
Hydrophobic nanofiber membranes derived from the biopolymer alginate were fabricated by electrospinning followed by metal ion crosslinking, and their potential as oil-water separation membranes was primarily investigated. Sodium alginate (SA) was co-electrospun with polyethylene glycol and subsequently crosslinked using calcium chloride and group IV metal ions (zirconium or titanium). Metal ion crosslinking changed the surface wettability of the nanofiber membranes, as confirmed by water contact angle measurements. Both zirconium- and titanium-crosslinked SA nanofiber membranes exhibited effective gravity-driven oil–water separation with complete water blocking. Although hydrophobic modification reduced direct water affinity, the resulting membranes retained residual adsorption capability toward methylene blue, indicating the presence of accessible internal polar sites. The adsorption behavior varied depending on the crosslinking ion. In addition, titanium-crosslinked membranes showed an auxiliary UV-assisted dye removal contribution under irradiation, arising from photoactive Ti species. These findings demonstrate that metal ion crosslinking provides a practical route for tuning the functional properties of alginate nanofiber membranes, with oil-water separation as the primary application and dye adsorption/photocatalysis as secondary functionalities. Full article
Show Figures

Figure 1

14 pages, 1609 KB  
Review
Multimodal Diagnosis of Cardiac Amyloidosis: Integrating Imaging, Histochemistry, and Proteomics of Precise Typing
by Jakub Kancerek, Łukasz Zniszczoł, Piotr Lewandowski and Romuald Wojnicz
Int. J. Mol. Sci. 2026, 27(2), 820; https://doi.org/10.3390/ijms27020820 - 14 Jan 2026
Viewed by 128
Abstract
Amyloidosis is a group of disorders caused by extracellular deposition of insoluble fibrillar proteins, leading to progressive organ dysfunction. Cardiac amyloidosis is clinically significant, as myocardial infiltration results in restrictive cardiomyopathy, arrhythmias, and heart failure. The main subtypes are light-chain (AL) and transthyretin [...] Read more.
Amyloidosis is a group of disorders caused by extracellular deposition of insoluble fibrillar proteins, leading to progressive organ dysfunction. Cardiac amyloidosis is clinically significant, as myocardial infiltration results in restrictive cardiomyopathy, arrhythmias, and heart failure. The main subtypes are light-chain (AL) and transthyretin (ATTR) amyloidosis, while AA and isolated atrial amyloidosis (IAA) are less common. Accurate subtype identification is crucial for management and prognosis. Diagnosis requires a multimodal approach combining imaging and tissue-based techniques. Echocardiography is usually first-line, showing increased wall thickness, biatrial enlargement, and apical sparing. Cardiac magnetic resonance (CMR) provides superior tissue characterization through late gadolinium enhancement and elevated extracellular volume. Nuclear scintigraphy with 99mTc-labeled tracers enables non-invasive ATTR detection, while amyloid-specific PET tracers show potential for early diagnosis. Histochemical confirmation remains essential. Congo Red staining with apple-green birefringence under polarized light is the diagnostic gold standard, supported by Thioflavin T, PAS, and Alcian Blue stains. Immunohistochemistry and mass spectrometry aid amyloid typing, while electron microscopy provides ultrastructural confirmation. Integrating imaging, histochemical, immunohistochemical, and proteomic techniques enhances early recognition and precise classification, improving therapeutic strategies and patient outcomes. Full article
(This article belongs to the Special Issue Myocardial Disease: Molecular Pathology and Treatments)
Show Figures

Figure 1

12 pages, 2153 KB  
Article
High-Performance Polyimides with Enhanced Solubility and Thermal Stability for Biomimetic Structures in Extreme Environment
by Jichao Chen, Jiping Yang, Zhiyong Ma, Zhijian Wang and Yizhuo Gu
Biomimetics 2026, 11(1), 61; https://doi.org/10.3390/biomimetics11010061 - 12 Jan 2026
Viewed by 230
Abstract
Designing the high-performance polyimides (PIs) for the biomimetic structures, which are used in extreme conditions, remains greatly challenging, due to the conflict between processability and thermal stability. Here, we report a series of silicon–alkyne-functionalized diamine-based polyimides that exhibit remarkable processability and thermal stability. [...] Read more.
Designing the high-performance polyimides (PIs) for the biomimetic structures, which are used in extreme conditions, remains greatly challenging, due to the conflict between processability and thermal stability. Here, we report a series of silicon–alkyne-functionalized diamine-based polyimides that exhibit remarkable processability and thermal stability. The incorporation of bulky siloxy groups disrupts chain packing and increases free volume, enabling excellent solubility in polar solvents, while the rigid fluorene core enhances chain stiffness. DFT calculations confirm twisted molecular geometries (Si bond angle ≈ 103°, dihedral angle ≈ 89°) which weak π–π stacking, while heterogeneous electrostatic potentials enable favorable noncovalent interactions (e.g., C–F···H–C), promoting solvent diffusion. After thermal curing, the obtained product shows a high decomposition temperature (Td5% = 560 °C), char yield of 72.0% at 800 °C, and glass transition temperature (Tg) of 354.6 °C. Meanwhile, locally planar fluorene units retain inherent thermal stabilization benefits through constrained rotational mobility. These results demonstrate a spatially decoupled siloxy–alkyne design that synergistically enhances molecular flexibility, disorder, and electronic stability, offering a molecular strategy for tailoring PI-based matrices to meet the demands of emerging biomimetic architectures and other high-performance composites operating under severe thermal loads. Full article
(This article belongs to the Special Issue Design of Natural and Biomimetic Flexible Biological Structures)
Show Figures

Graphical abstract

23 pages, 1257 KB  
Article
Solvatochromic Polarity, Physicochemical Properties, and Spectral Analysis of New Triple NADES-Based on Urea–Glycerol
by Sezan Ahmed, Dimitar Bojilov, Ginka Exner, Soleya Dagnon, Stanimir Manolov and Iliyan Ivanov
Molecules 2026, 31(2), 233; https://doi.org/10.3390/molecules31020233 - 9 Jan 2026
Viewed by 249
Abstract
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and [...] Read more.
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and solvatochromic properties were determined using Nile Red, betaine 30, and Kamlet–Taft parameters. The densities of the systems (1.243–1.361 g/cm3) and the high values of molar refraction and polarizability indicate the formation of highly organized hydrogen-bonded networks, with the incorporated carboxyl and hydroxyl groups enhancing the structural compactness of the NADES. Surface tension varied significantly (46.9–80.3 mN/m), defining systems with low, medium, and high polarity. Solvatochromic analysis revealed high ENR, ET(30), and ETN values, positioning all NADES as highly polar media, comparable or close to water, but with distinguishable H-bond donating/accepting ability depending on the third component. The normalized Kamlet–Taft parameters show that the NADES cover a broad solvent spectrum—from highly H-bond accepting to strongly H-bond donating or dipolar systems—highlighting the potential for fine-tuning the solvent according to target applications. The obtained results highlight the applicability of these NADESs as green, tunable media for the extraction and solvation of bioactive compounds. Full article
Show Figures

Figure 1

22 pages, 7178 KB  
Article
Tuning Hydrophilic–Hydrophobic Properties of PLA Films Through Surface Fluorination and Drying
by Zhipeng He, Jae-Ho Kim and Susumu Yonezawa
Physchem 2026, 6(1), 2; https://doi.org/10.3390/physchem6010002 - 8 Jan 2026
Viewed by 210
Abstract
Polylactic acid (PLA) films were directly fluorinated using fluorine gas at room temperature under varying conditions: fluorine concentrations of 190–760 Torr and reaction times of 10–60 min. Some of the fluorinated samples were subsequently dried at 70 °C for 2 d. Fourier-transform infrared [...] Read more.
Polylactic acid (PLA) films were directly fluorinated using fluorine gas at room temperature under varying conditions: fluorine concentrations of 190–760 Torr and reaction times of 10–60 min. Some of the fluorinated samples were subsequently dried at 70 °C for 2 d. Fourier-transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses verified the successful introduction of fluorine and the formation of -CFx and C=OF groups on the PLA surface after fluorination. The fluorination level initially increased with increasing reaction time or fluorine concentration but then decreased because of the formation and escape of CF4 gasification. Drying further reduced the surface fluorine content. Both fluorination and drying increased the glass transition temperature of PLA, which was attributed to the increase in surface polarity and crosslinking density of the polymer. Fluorination significantly improved the surface hydrophilicity of PLA, with the water contact angle decreasing from 64.09°to 18.75°. This was due to the formation of a rough, porous surface caused by the introduction of polar fluorine atoms, as observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). However, drying the fluorinated samples increased the water contact angle to 91.46°, resulting in hydrophobicity owing to increased surface crosslinking. This study demonstrates a simple and effective method for tuning the hydrophilic–hydrophobic properties of PLA surfaces using direct fluorination and thermal treatment. Full article
(This article belongs to the Topic Polymer Physics)
Show Figures

Graphical abstract

15 pages, 2660 KB  
Article
Accelerated H2O2 Scavenging on a Nano-MnO2/Ti/PVTF Sandwich
by Lanxue Ma, Weiming Lin, Xin Jiang, Xin Xin, Yaoting He, Chengwei Wu and Kui Cheng
J. Compos. Sci. 2026, 10(1), 27; https://doi.org/10.3390/jcs10010027 - 7 Jan 2026
Viewed by 166
Abstract
Early oxidative stress caused by titanium implants can impair osseointegration. Manganese dioxide (MnO2) nanozyme coatings have the potential to scavenge H2O2 and simultaneously generate O2 to alleviate hypoxia, but their activity is mostly static, and the ion [...] Read more.
Early oxidative stress caused by titanium implants can impair osseointegration. Manganese dioxide (MnO2) nanozyme coatings have the potential to scavenge H2O2 and simultaneously generate O2 to alleviate hypoxia, but their activity is mostly static, and the ion release is detrimental. A nano-MnO2/Ti/P(VDF-TrFE) sandwich-structured composite was fabricated, and ferroelectric polarization was applied to preset a tunable surface potential. Kelvin probe force microscopy (KPFM) verified a presettable potential within ±500 mV. Steady-state kinetics confirmed an enhancement in overall catalytic efficiency (higher Vmax and lower Km). This translated to a faster initial decomposition rate at a low, physiologically relevant H2O2 concentration (300 μM). Correspondingly, under these oxidative stress conditions, cell survival in the polarized group was higher than that in the unpolarized group, indicating that the enhanced initial rate can have a positive effect in such conditions. Overall, this study demonstrates a proof-of-concept strategy to tune MnO2 nanozyme catalysis using a polarization-preset surface potential, targeting implantation-relevant ROS-rich conditions. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

13 pages, 7051 KB  
Article
Morphological, Molecular and Phylogenetic Characterization of Ceratomyxa nemiptera sp. nov. (Myxozoa: Ceratomyxidae) Infecting Nemipterus virgatus Houttuyn, 1782 in the East China Sea
by Pingping Li, Yang Zhou, Xiaoping Tan, Yuanjun Zhao and Chengzhong Yang
Animals 2026, 16(2), 166; https://doi.org/10.3390/ani16020166 - 7 Jan 2026
Viewed by 196
Abstract
A newly discovered myxosporean parasite was described from the gallbladder of Nemipterus virgatus Houttuyn, 1782 collected from the East China Sea. Mature myxospores are crescent-shaped with shell valves that taper gradually toward rounded ends. Each myxospore contained two sub-spherical polar capsules located near [...] Read more.
A newly discovered myxosporean parasite was described from the gallbladder of Nemipterus virgatus Houttuyn, 1782 collected from the East China Sea. Mature myxospores are crescent-shaped with shell valves that taper gradually toward rounded ends. Each myxospore contained two sub-spherical polar capsules located near the anterior end, closely aligned along the suture line. The mature myxospores measured 6.2 ± 0.6 (5.4–6.9) μm in length and 44.8 ± 4.6 (38.5–53.1) μm in thickness. Polar capsules measured 2.8 ± 0.2 (2.4–3.1) μm in length and 2.3 ± 0.2 (1.9–2.6) μm in width, with polar filaments coiled in 2–3 turns. The small subunit ribosomal DNA (SSU rDNA) sequence of Ceratomyxa nemiptera sp. nov. was distinct from all known myxosporeans, showing the highest similarity (93.56%) and the shortest genetic distance (0.0637) with Ceratomyxa arcuata Thélohan, 1892. The phylogenetic analysis revealed that C. nemiptera sp. nov. was positioned within a later-diverging lineage, forming a sister-group relationship with a clade containing C. arcuata and Ceratomyxa cretensis Kalatzis, Kokkari & Katharios, 2013. This is the first report of a Ceratomyxa species infecting N. virgatus. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop