Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = group method of data handling (GMDH) networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3174 KB  
Review
A Bibliometric-Systematic Literature Review (B-SLR) of Machine Learning-Based Water Quality Prediction: Trends, Gaps, and Future Directions
by Jeimmy Adriana Muñoz-Alegría, Jorge Núñez, Ricardo Oyarzún, Cristian Alfredo Chávez, José Luis Arumí and Lien Rodríguez-López
Water 2025, 17(20), 2994; https://doi.org/10.3390/w17202994 - 17 Oct 2025
Viewed by 2082
Abstract
Predicting the quality of freshwater, both surface and groundwater, is essential for the sustainable management of water resources. This study collected 1822 articles from the Scopus database (2000–2024) and filtered them using Topic Modeling to create the study corpus. The B-SLR analysis identified [...] Read more.
Predicting the quality of freshwater, both surface and groundwater, is essential for the sustainable management of water resources. This study collected 1822 articles from the Scopus database (2000–2024) and filtered them using Topic Modeling to create the study corpus. The B-SLR analysis identified exponential growth in scientific publications since 2020, indicating that this field has reached a stage of maturity. The results showed that the predominant techniques for predicting water quality, both for surface and groundwater, fall into three main categories: (i) ensemble models, with Bagging and Boosting representing 43.07% and 25.91%, respectively, particularly random forest (RF), light gradient boosting machine (LightGBM), and extreme gradient boosting (XGB), along with their optimized variants; (ii) deep neural networks such as long short-term memory (LSTM) and convolutional neural network (CNN), which excel at modeling complex temporal dynamics; and (iii) traditional algorithms like artificial neural network (ANN), support vector machines (SVMs), and decision tree (DT), which remain widely used. Current trends point towards the use of hybrid and explainable architectures, with increased application of interpretability techniques. Emerging approaches such as Generative Adversarial Network (GAN) and Group Method of Data Handling (GMDH) for data-scarce contexts, Transfer Learning for knowledge reuse, and Transformer architectures that outperform LSTM in time series prediction tasks were also identified. Furthermore, the most studied water bodies (e.g., rivers, aquifers) and the most commonly used water quality indicators (e.g., WQI, EWQI, dissolved oxygen, nitrates) were identified. The B-SLR and Topic Modeling methodology provided a more robust, reproducible, and comprehensive overview of AI/ML/DL models for freshwater quality prediction, facilitating the identification of thematic patterns and research opportunities. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

18 pages, 1634 KB  
Article
Research on Photovoltaic Long-Term Power Prediction Model Based on Superposition Generalization Method
by Yun Chen, Jilei Liu, Bei Liu, Shipeng Liu and Dongdong Zhang
Processes 2025, 13(5), 1263; https://doi.org/10.3390/pr13051263 - 22 Apr 2025
Cited by 2 | Viewed by 826
Abstract
The integration of renewable energy sources, specifically photovoltaic generation, into the grid at a large scale has significantly heightened the volatility and unpredictability of the power system. Consequently, this presents formidable challenges to ensuring the reliable operation of the grid. This study introduces [...] Read more.
The integration of renewable energy sources, specifically photovoltaic generation, into the grid at a large scale has significantly heightened the volatility and unpredictability of the power system. Consequently, this presents formidable challenges to ensuring the reliable operation of the grid. This study introduces a novel stacked model for photovoltaic power prediction, integrating multiple conventional data processing methods as base learners, including Group Method of Data Handling (GMDH), Least Squares Support Vector Machine (LSSVM), Radial Basis Function Neural Network (RBFNN), and Emotional Neural Network (ENN). A Backpropagation Neural Network (BPNN) serves as the meta-learner, utilizing the outputs of the base learners as input features to enhance overall prediction accuracy by mitigating individual model errors. To assess the model’s effectiveness, five evaluation metrics are employed: Bayesian Information Criterion (BIC), Percent Mean Average Relative Error (PMARE), Legates and McCabe Index (LM), Mean Absolute Deviation (MAD), and Root Mean Square Error (RMSE), ensuring long-term stability in photovoltaic power output forecasting. Additionally, the model’s effectiveness and accuracy are validated using operational data from photovoltaic power plants in a particular province of China. The results indicate that the stacked model, after training, testing, and validation on multiple performance metrics, surpasses baseline single models in performance. Full article
Show Figures

Figure 1

19 pages, 5659 KB  
Article
Advanced Soft Computing Techniques for Monthly Streamflow Prediction in Seasonal Rivers
by Mohammed Achite, Okan Mert Katipoğlu, Veysi Kartal, Metin Sarıgöl, Muhammad Jehanzaib and Enes Gül
Atmosphere 2025, 16(1), 106; https://doi.org/10.3390/atmos16010106 - 19 Jan 2025
Cited by 3 | Viewed by 1647
Abstract
The rising incidence of droughts in specific global regions in recent years, primarily attributed to global warming, has markedly increased the demand for reliable and accurate streamflow estimation. Streamflow estimation is essential for the effective management and utilization of water resources, as well [...] Read more.
The rising incidence of droughts in specific global regions in recent years, primarily attributed to global warming, has markedly increased the demand for reliable and accurate streamflow estimation. Streamflow estimation is essential for the effective management and utilization of water resources, as well as for the design of hydraulic infrastructure. Furthermore, research on streamflow estimation has gained heightened importance because water is essential not only for the survival of all living organisms but also for determining the quality of life on Earth. In this study, advanced soft computing techniques, including long short-term memory (LSTM), convolutional neural network–recurrent neural network (CNN-RNN), and group method of data handling (GMDH) algorithms, were employed to forecast monthly streamflow time series at two different stations in the Wadi Mina basin. The performance of each technique was evaluated using statistical criteria such as mean square error (MSE), mean bias error (MBE), mean absolute error (MAE), and the correlation coefficient (R). The results of this study demonstrated that the GMDH algorithm produced the most accurate forecasts at the Sidi AEK Djillali station, with metrics of MSE: 0.132, MAE: 0.185, MBE: −0.008, and R: 0.636. Similarly, the CNN-RNN algorithm achieved the best performance at the Kef Mehboula station, with metrics of MSE: 0.298, MAE: 0.335, MBE: −0.018, and R: 0.597. Full article
(This article belongs to the Special Issue The Hydrologic Cycle in a Changing Climate)
Show Figures

Figure 1

20 pages, 10622 KB  
Article
Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada
by M. Almetwally Ahmed and S. Samuel Li
Hydrology 2024, 11(9), 151; https://doi.org/10.3390/hydrology11090151 - 12 Sep 2024
Cited by 5 | Viewed by 5005
Abstract
River discharge is an essential input to hydrosystem projects. This paper aimed to modify the group method of data handling (GMDH) to create a new artificial intelligent forecast model (abbreviated as MGMDH) for predicting discharges at river cross-sections (CSs). The basic idea was [...] Read more.
River discharge is an essential input to hydrosystem projects. This paper aimed to modify the group method of data handling (GMDH) to create a new artificial intelligent forecast model (abbreviated as MGMDH) for predicting discharges at river cross-sections (CSs). The basic idea was to optimise the weights for selected hydrometric and meteorological predictors. One novelty of this study was that MGMDH could take the discharge observed from a neighbouring CS as a predictor when observations from the CS of interest had ceased. Another novelty was that MGMDH could include meteorological parameters as extra predictors. The model was validated using data from natural rivers. For given lead times, MGMDH automatically determined the best forecast equations, consistent with physical river hydraulics laws. This automation minimised computing time while improving accuracy. The model gave reliable forecasts, with a coefficient of determination greater than 0.978. For lead times close to the advection time from upstream to the CS of interest, the forecast had the highest reliability. MGMDH results compared well with some other machine learning models, like neural networks and the adaptive structure of the group method of data handling. It has potential applications for efficiently forecasting discharge and offers a tool to support flood management. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

18 pages, 4302 KB  
Article
Prediction of Geometrical Characteristics of an Inclined Negatively Buoyant Jet Using Group Method of Data Handling (GMDH) Neural Network
by Hassan Alfaifi and Hossein Bonakdari
Fluids 2024, 9(9), 198; https://doi.org/10.3390/fluids9090198 - 28 Aug 2024
Viewed by 986
Abstract
A new approach to predicting the geometrical characteristics of the mixing behavior of an inclined dense jet for angles ranging from 15° to 85° is proposed in this study. This approach is called the group method of data handling (GMDH) and is based [...] Read more.
A new approach to predicting the geometrical characteristics of the mixing behavior of an inclined dense jet for angles ranging from 15° to 85° is proposed in this study. This approach is called the group method of data handling (GMDH) and is based on the artificial neural network (ANN) technique. The proposed model was trained and tested using existing experimental data reported in the literature. The model was then evaluated using statistical indices, as well as being compared with analytical models from previous studies. The results of the coefficient of determination (R2) indicate the high accuracy of the proposed model, with values of 0.9719 and 0.9513 for training and testing for the dimensionless distance from the nozzle to the return point xr/D and 0.9454 and 0.9565 for training and testing for the dimensionless terminal rise height yt/D. Moreover, four previous analytical models were used to evaluate the GMDH model. The results showed the superiority of the proposed model in predicting the geometrical characteristics of the inclined dense jet for all tested angles. Finally, the standard error of the estimate (SEE) was applied to demonstrate which model performed the best in terms of approaching the actual data. The results illustrate that all fitting lines of the GMDH model performed very well for all geometrical parameter predictions and it was the best model, with an approximately 10% error, which was the lowest error value among the models. Therefore, this study confirms that the GMDH model can be used to predict the geometrical properties of the inclined negatively buoyant jet with high performance and accuracy. Full article
(This article belongs to the Special Issue Experimental Fluid Mechanics on Bluff Body Wakes and Jets)
Show Figures

Figure 1

24 pages, 3959 KB  
Article
The Perspective of Using Neural Networks and Machine Learning Algorithms for Modelling and Forecasting the Quality Parameters of Coking Coal—A Case Study
by Artur Dyczko
Geosciences 2024, 14(8), 199; https://doi.org/10.3390/geosciences14080199 - 26 Jul 2024
Cited by 1 | Viewed by 1761
Abstract
The quality of coking coal is vital in steelmaking, impacting final product quality and process efficiency. Conventional forecasting methods often rely on empirical models and expert judgment, which may lack accuracy and scalability. Previous research has explored various methods for forecasting coking coal [...] Read more.
The quality of coking coal is vital in steelmaking, impacting final product quality and process efficiency. Conventional forecasting methods often rely on empirical models and expert judgment, which may lack accuracy and scalability. Previous research has explored various methods for forecasting coking coal quality parameters, yet these conventional methods frequently fall short in terms of accuracy and adaptability to different mining conditions. Existing forecasting techniques for coking coal quality are limited in their precision and scalability, necessitating the development of more accurate and efficient methods. This study aims to enhance the accuracy and efficiency of forecasting coking coal quality parameters by employing neural networks and artificial intelligence algorithms, specifically in the context of Knurow and Szczyglowice mines. The research involves gathering historical data on various coking coal quality parameters, including a proximate and ultimate analysis, to train and test neural network models using the Group Method of Data Handling (GMDH). Real-world data from Knurow and Szczyglowice mines’ coal production facilities form the basis of this case study. The integration of neural networks and artificial intelligence techniques significantly improves the accuracy of predicting key quality parameters such as ash content, sulfur content, volatile matter, and calorific value. This study also examines the impact of these quality indicators on operational costs and highlights the importance of final indicators like the Coke Reactivity Index (CRI) and Coke Strength after Reaction (CSR) in expanding industrial reserve concepts. Model performance is evaluated using metrics such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The findings demonstrate the effectiveness of these advanced techniques in enhancing predictive modeling in the mining industry, optimizing production processes, and improving overall operational efficiency. Additionally, this research offers insights into the practical implementation of advanced analytics tools for predictive maintenance and decision-making support within the mining sector. Full article
(This article belongs to the Topic Environmental Geology and Engineering)
Show Figures

Figure 1

19 pages, 3665 KB  
Article
Field Telemetry Drilling Dataset Modeling with Multivariable Regression, Group Method Data Handling, Artificial Neural Network, and the Proposed Group-Method-Data-Handling-Featured Artificial Neural Network
by Amir Mohammad and Mesfin Belayneh
Appl. Sci. 2024, 14(6), 2273; https://doi.org/10.3390/app14062273 - 8 Mar 2024
Cited by 3 | Viewed by 1919
Abstract
This paper presents data-driven modeling and a results analysis. Group method data handling (GMDH), multivariable regression (MVR), artificial neuron network (ANN), and new proposed GMDH-featured ANN machine learning algorithms were implemented to model a field telemetry equivalent mud circulating density (ECD) dataset based [...] Read more.
This paper presents data-driven modeling and a results analysis. Group method data handling (GMDH), multivariable regression (MVR), artificial neuron network (ANN), and new proposed GMDH-featured ANN machine learning algorithms were implemented to model a field telemetry equivalent mud circulating density (ECD) dataset based on surface and subsurface drilling parameters. Unlike the standard GMDH-ANN model, the proposed GMDH-featured ANN utilizes a fully connected network. Based on the considered eighteen experimental modeling designs, all the GMDH regression results showed higher R-squared and minimum mean-square error values than the multivariable regression results. In addition, out of the considered eight experimental designs, the GMDH-ANN model predicts about 37.5% of the experiments correctly, while both algorithms have shown similar results for the remaining experiments. However, further testing with diverse datasets is necessary for better evaluation. Full article
Show Figures

Figure 1

10 pages, 2920 KB  
Proceeding Paper
Prediction of Machining Characteristics and Machining Performance for Grade 2 Titanium Material in a Wire Electric Discharge Machine Using Group Method of Data Handling and Artificial Neural Network
by Sudhir Jain Prathik, Athimoolam Sundaramahalingam, Maddur Eswara Nithyashree, Addamani Rudreshi and Gonchikar Ugrasen
Eng. Proc. 2023, 59(1), 9085; https://doi.org/10.3390/engproc2023059085 - 19 Dec 2023
Cited by 1 | Viewed by 1172
Abstract
The present research focuses on the machining of grade 2 titanium material using the Wire Electric Discharge Machining (WEDM) process by means of L16 Orthogonal Array (OA). This study investigates numerous process parameters, including pulse on time, current, pulse off time, voltage, [...] Read more.
The present research focuses on the machining of grade 2 titanium material using the Wire Electric Discharge Machining (WEDM) process by means of L16 Orthogonal Array (OA). This study investigates numerous process parameters, including pulse on time, current, pulse off time, voltage, bed speed and flush rate. The voltage and flush rate were kept constant throughout the experiment, while the other four parameters were varied for the machining process. In this study, a 0.18 mm molybdenum wire was utilized as the electrode material. Initially, this research aimed to optimize the process parameters to discern their impact on machining characteristics (Surface Roughness and Electrode Wear) as well as on machining performance (Acoustic Emission Signals). Subsequently, simpler functional relationship plots were generated between these parameters to recognize the potential information about the machining characteristics and machining performance. The straightforward approach lacks the capability to furnish information regarding the condition of the material (Surface Roughness), the tool (Electrode Wear) and the signals (Acoustic Emission). Hence, to estimate the experimental values the numerical tools viz., Group Method of Data Handling (GMDH) and Artificial Neural Network (ANN) were used. Upon comparing the predictive performance of ANN and GMDH, it became evident that the ANN’s predictions using 70% of the data for training displayed a higher correlation with the experimental values compared to the GMDH. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

16 pages, 6617 KB  
Article
A Deep GMDH Neural-Network-Based Robust Fault Detection Method for Active Distribution Networks
by Özgür Çelik, Jalal Sahebkar Farkhani, Abderezak Lashab, Josep M. Guerrero, Juan C. Vasquez, Zhe Chen and Claus Leth Bak
Energies 2023, 16(19), 6867; https://doi.org/10.3390/en16196867 - 28 Sep 2023
Cited by 7 | Viewed by 1495
Abstract
The increasing penetration of distributed generation (DG) to power distribution networks mainly induces weaknesses in the sensitivity and selectivity of protection systems. In this manner, conventional protection systems often fail to protect active distribution networks (ADN) in the case of short-circuit faults. To [...] Read more.
The increasing penetration of distributed generation (DG) to power distribution networks mainly induces weaknesses in the sensitivity and selectivity of protection systems. In this manner, conventional protection systems often fail to protect active distribution networks (ADN) in the case of short-circuit faults. To overcome these challenges, the accurate detection of faults in a reasonable fraction of time appears as a critical issue in distribution networks. Machine learning techniques are capable of generating efficient analytical expressions that can be strong candidates in terms of reliable and robust fault detection for several operating scenarios of ADNs. This paper proposes a deep group method of data handling (GMDH) neural network based on a non-pilot protection method for the protection of an ADN. The developed method is independent of the DG capacity and achieves accurate fault detection under load variations, disturbances, and different high-impedance faults (HIFs). To verify the improvements, a test system based on a real distribution network that includes three generators with a capacity of 6 MW is utilized. The extensive simulations of the power network are performed using DIgSILENT Power Factory and MATLAB software. The obtained results reveal that a mean absolute percentage error (MAPE) of 3.51% for the GMDH-network-based protection system is accomplished thanks to formulation via optimized algorithms, without requiring the utilization of any feature selection techniques. The proposed method has a high-speed operation of around 20 ms for the detection of faults, while the conventional OC relay performance is in the blinding mode in the worst situations for faults with HIFs. Full article
(This article belongs to the Special Issue Analysis and Control of Power Systems and Microgrids)
Show Figures

Figure 1

17 pages, 2147 KB  
Article
Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction
by Stefano Frizzo Stefenon, Laio Oriel Seman, Nemesio Fava Sopelsa Neto, Luiz Henrique Meyer, Viviana Cocco Mariani and Leandro dos Santos Coelho
Sensors 2023, 23(13), 6118; https://doi.org/10.3390/s23136118 - 3 Jul 2023
Cited by 25 | Viewed by 2461
Abstract
Disruptive failures threaten the reliability of electric supply in power branches, often indicated by the rise of leakage current in distribution insulators. This paper presents a novel, hybrid method for fault prediction based on the time series of the leakage current of contaminated [...] Read more.
Disruptive failures threaten the reliability of electric supply in power branches, often indicated by the rise of leakage current in distribution insulators. This paper presents a novel, hybrid method for fault prediction based on the time series of the leakage current of contaminated insulators. In a controlled high-voltage laboratory simulation, 15 kV-class insulators from an electrical power distribution network were exposed to increasing contamination in a salt chamber. The leakage current was recorded over 28 h of effective exposure, culminating in a flashover in all considered insulators. This flashover event served as the prediction mark that this paper proposes to evaluate. The proposed method applies the Christiano–Fitzgerald random walk (CFRW) filter for trend decomposition and the group data-handling (GMDH) method for time series prediction. The CFRW filter, with its versatility, proved to be more effective than the seasonal decomposition using moving averages in reducing non-linearities. The CFRW-GMDH method, with a root-mean-squared error of 3.44×1012, outperformed both the standard GMDH and long short-term memory models in fault prediction. This superior performance suggested that the CFRW-GMDH method is a promising tool for predicting faults in power grid insulators based on leakage current data. This approach can provide power utilities with a reliable tool for monitoring insulator health and predicting failures, thereby enhancing the reliability of the power supply. Full article
(This article belongs to the Special Issue Sensors for Measurements and Diagnostic in Electrical Power Systems)
Show Figures

Figure 1

21 pages, 5772 KB  
Article
Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes
by Divesh Ranjan Kumar, Pijush Samui, Warit Wipulanusat, Suraparb Keawsawasvong, Kongtawan Sangjinda and Wittaya Jitchaijaroen
Buildings 2023, 13(6), 1371; https://doi.org/10.3390/buildings13061371 - 24 May 2023
Cited by 32 | Viewed by 2414
Abstract
In this study, various machine learning algorithms, including the minimax probability machine regression (MPMR), functional network (FN), convolutional neural network (CNN), recurrent neural network (RNN), and group method of data handling (GMDH) models, are proposed for the estimation of the seismic bearing capacity [...] Read more.
In this study, various machine learning algorithms, including the minimax probability machine regression (MPMR), functional network (FN), convolutional neural network (CNN), recurrent neural network (RNN), and group method of data handling (GMDH) models, are proposed for the estimation of the seismic bearing capacity factor (Nc) of strip footings on sloping ground under seismic events. To train and test the proposed machine learning model, a total of 1296 samples were numerically obtained by performing a lower-bound (LB) and upper-bound (UB) finite element limit analysis (FELA) to evaluate the seismic bearing capacity factor (Nc) of strip footings. Sensitivity analysis was performed on all dimensionless input parameters (i.e., slope inclination (β); normalized depth (D/B); normalized distance (L/B); normalized slope height (H/B); the strength ratio (cu/γB); and the horizontal seismic acceleration (kh)) to determine the influence on the dimensionless output parameters (i.e., the seismic bearing capacity factor (Nc)). To assess the performance of the proposed models, various performance parameters—namely the coefficient of determination (R2), variance account factor (VAF), performance index (PI), Willmott’s index of agreement (WI), the mean absolute error (MAE), the weighted mean absolute percentage error (WMAPE), the mean bias error (MBE), and the root-mean-square error (RMSE)—were calculated. The predictive performance of all proposed models for a bearing capacity factor (Nc) prediction was compared by using the testing dataset, and it was found that the MPMR model achieved the highest R2 values of 1.000 and 0.957 and the lowest RMSE values of 0.000 and 0.038 in both the training and testing phases, respectively. The parametric analyses, rank analyses, REC curves, and the AIC showed that the proposed models were quite effective and reliable for the estimation of the bearing capacity factor (Nc). Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 6741 KB  
Article
Development of a NOx Calculation Model for Low-Speed Marine Diesel Engines Based on Soft Measurement Technology
by Shenglin Du, Man Gong and Qinpeng Wang
Appl. Sci. 2023, 13(11), 6373; https://doi.org/10.3390/app13116373 - 23 May 2023
Cited by 2 | Viewed by 2477
Abstract
With the increasing level of intelligence of marine engines, there is an increasing demand for the online monitoring of engines, and marine NOx emissions have been of great concern. In this paper, a NOx simulation model is developed based on virtual measurement technology, [...] Read more.
With the increasing level of intelligence of marine engines, there is an increasing demand for the online monitoring of engines, and marine NOx emissions have been of great concern. In this paper, a NOx simulation model is developed based on virtual measurement technology, which can calculate and predict NOx emissions based on the current operating state parameters of low-speed two-stroke diesel engines. First, the calibrated 3D simulation model is used to design the experiments to obtain the simulation experimental samples. Based on the NOx generation mechanism and diesel engine work-related parameters, the relevant factors were selected as alternative input parameters for the NOx emission model. The correlation analysis was then performed on the input parameters using the grey relational analysis correlation method and the Pearson correlation coefficient, and the principal component analysis method was used to reduce the dimensionality of the relevant factors by minimizing the loss of important information in reducing the complexity of the whole model. Then, the structure-related parameters of the backpropagation neural network (BPNN) were adaptively optimized using the group method of data handling (GMDH) to improve the accuracy of the NOx soft measurement model. Finally, the developed GMDH–BP model was validated with data and compared with the error evaluation index of BPNN and BPNN optimized by genetic algorithm (GA), and the developed NOx simulation model demonstrated high prediction accuracy under the same hyperparameter settings. The result provides technical support for the subsequent realization of the real-time online monitoring of NOx emissions from low-speed marine diesel engines without NOx sensors. Full article
Show Figures

Figure 1

18 pages, 2410 KB  
Article
Air Kerma Calculation in Diagnostic Medical Imaging Devices Using Group Method of Data Handling Network
by Licheng Zhang, Fengzhe Xu, Lubing Wang, Yunkui Chen, Ehsan Nazemi, Guohua Zhang and Xicai Zhang
Diagnostics 2023, 13(8), 1418; https://doi.org/10.3390/diagnostics13081418 - 14 Apr 2023
Cited by 3 | Viewed by 2958
Abstract
The air kerma, which is the amount of energy given off by a radioactive substance, is essential for medical specialists who use radiation to diagnose cancer problems. The amount of energy that a photon has when it hits something can be described as [...] Read more.
The air kerma, which is the amount of energy given off by a radioactive substance, is essential for medical specialists who use radiation to diagnose cancer problems. The amount of energy that a photon has when it hits something can be described as the air kerma (the amount of energy that was deposited in the air when the photon passed through it). Radiation beam intensity is represented by this value. Hospital X-ray equipment has to account for the heel effect, which means that the borders of the picture obtain a lesser radiation dosage than the center, and that air kerma is not symmetrical. The voltage of the X-ray machine can also affect the uniformity of the radiation. This work presents a model-based approach to predict air kerma at various locations inside the radiation field of medical imaging instruments, making use of just a small number of measurements. Group Method of Data Handling (GMDH) neural networks are suggested for this purpose. Firstly, a medical X-ray tube was modeled using Monte Carlo N Particle (MCNP) code simulation algorithm. X-ray tubes and detectors make up medical X-ray CT imaging systems. An X-ray tube’s electron filament, thin wire, and metal target produce a picture of the electrons’ target. A small rectangular electron source modeled electron filaments. An electron source target was a thin, 19,290 kg/m3 tungsten cube in a tubular hoover chamber. The electron source–object axis of the simulation object is 20° from the vertical. For most medical X-ray imaging applications, the kerma of the air was calculated at a variety of discrete locations within the conical X-ray beam, providing an accurate data set for network training. Various locations were taken into account in the aforementioned voltages inside the radiation field as the input of the GMDH network. For diagnostic radiology applications, the trained GMDH model could determine the air kerma at any location in the X-ray field of view and for a wide range of X-ray tube voltages with a Mean Relative Error (MRE) of less than 0.25%. This study yielded the following results: (1) The heel effect is included when calculating air kerma. (2) Computing the air kerma using an artificial neural network trained with minimal data. (3) An artificial neural network quickly and reliably calculated air kerma. (4) Figuring out the air kerma for the operating voltage of medical tubes. The high accuracy of the trained neural network in determining air kerma guarantees the usability of the presented method in operational conditions. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

35 pages, 13762 KB  
Article
A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform
by Bassant M. Elbagoury, Luige Vladareanu, Victor Vlădăreanu, Abdel Badeeh Salem, Ana-Maria Travediu and Mohamed Ismail Roushdy
Sensors 2023, 23(7), 3500; https://doi.org/10.3390/s23073500 - 27 Mar 2023
Cited by 60 | Viewed by 6221
Abstract
Artificial intelligence (AI) techniques for intelligent mobile computing in healthcare has opened up new opportunities in healthcare systems. Combining AI techniques with the existing Internet of Medical Things (IoMT) will enhance the quality of care that patients receive at home remotely and the [...] Read more.
Artificial intelligence (AI) techniques for intelligent mobile computing in healthcare has opened up new opportunities in healthcare systems. Combining AI techniques with the existing Internet of Medical Things (IoMT) will enhance the quality of care that patients receive at home remotely and the successful establishment of smart living environments. Building a real AI for mobile AI in an integrated smart hospital environment is a challenging problem due to the complexities of receiving IoT medical sensors data, data analysis, and deep learning algorithm complexity programming for mobile AI engine implementation AI-based cloud computing complexities, especially when we tackle real-time environments of AI technologies. In this paper, we propose a new mobile AI smart hospital platform architecture for stroke prediction and emergencies. In addition, this research is focused on developing and testing different modules of integrated AI software based on XAI architecture, this is for the mobile health app as an independent expert system or as connected with a simulated environment of an AI-cloud-based solution. The novelty is in the integrated architecture and results obtained in our previous works and this extended research on hybrid GMDH and LSTM deep learning models for the proposed artificial intelligence and IoMT engine for mobile health edge computing technology. Its main goal is to predict heart–stroke disease. Current research is still missing a mobile AI system for heart/brain stroke prediction during patient emergency cases. This research work implements AI algorithms for stroke prediction and diagnosis. The hybrid AI in connected health is based on a stacked CNN and group handling method (GMDH) predictive analytics model, enhanced with an LSTM deep learning module for biomedical signals prediction. The techniques developed depend on the dataset of electromyography (EMG) signals, which provides a significant source of information for the identification of normal and abnormal motions in a stroke scenario. The resulting artificial intelligence mHealth app is an innovation beyond the state of the art and the proposed techniques achieve high accuracy as stacked CNN reaches almost 98% for stroke diagnosis. The GMDH neural network proves to be a good technique for monitoring the EMG signal of the same patient case with an average accuracy of 98.60% to an average of 96.68% of the signal prediction. Moreover, extending the GMDH model and a hybrid LSTM with dense layers deep learning model has improved significantly the prediction results that reach an average of 99%. Full article
(This article belongs to the Special Issue Advanced Intelligent Control in Robots)
Show Figures

Figure 1

20 pages, 5607 KB  
Article
Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply
by Manuela Panoiu, Caius Panoiu, Sergiu Mezinescu, Gabriel Militaru and Ioan Baciu
Mathematics 2023, 11(6), 1381; https://doi.org/10.3390/math11061381 - 12 Mar 2023
Cited by 15 | Viewed by 5703
Abstract
Harmonic generation in power system networks presents significant issues that arise in power utilities. This paper describes a machine learning technique that was used to conduct a research study on the harmonic analysis of railway power stations. The research was an investigation of [...] Read more.
Harmonic generation in power system networks presents significant issues that arise in power utilities. This paper describes a machine learning technique that was used to conduct a research study on the harmonic analysis of railway power stations. The research was an investigation of a time series whose values represented the total harmonic distortion (THD) for the electric current. This study was based on information collected at a railway power station. In an electrified substation, measurements of currents and voltages were made during a certain interval of time. From electric current values, the THD was calculated using a fast Fourier transform analysis (FFT) and the results were used to train an adaptive ANN—GMDH (artificial neural network–group method of data handling) algorithm. Following the training, a prediction model was created, the performance of which was investigated in this study. The model was based on the ANN—GMDH method and was developed for the prediction of the THD. The performance of this model was studied based on its parameters. The model’s performance was evaluated using the regression coefficient (R), root-mean-square error (RMSE), and mean absolute error (MAE). The model’s performance was very good, with an RMSE (root-mean-square error) value of less than 0.01 and a regression coefficient value higher than 0.99. Another conclusion from our research was that the model also performed very well in terms of the training time (calculation speed). Full article
(This article belongs to the Special Issue Advanced Methods in Intelligent Transportation Systems)
Show Figures

Figure 1

Back to TopTop