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Abstract: The increasing penetration of distributed generation (DG) to power distribution networks
mainly induces weaknesses in the sensitivity and selectivity of protection systems. In this manner,
conventional protection systems often fail to protect active distribution networks (ADN) in the case
of short-circuit faults. To overcome these challenges, the accurate detection of faults in a reasonable
fraction of time appears as a critical issue in distribution networks. Machine learning techniques
are capable of generating efficient analytical expressions that can be strong candidates in terms of
reliable and robust fault detection for several operating scenarios of ADNs. This paper proposes
a deep group method of data handling (GMDH) neural network based on a non-pilot protection
method for the protection of an ADN. The developed method is independent of the DG capacity and
achieves accurate fault detection under load variations, disturbances, and different high-impedance
faults (HIFs). To verify the improvements, a test system based on a real distribution network that
includes three generators with a capacity of 6 MW is utilized. The extensive simulations of the power
network are performed using DIgSILENT Power Factory and MATLAB software. The obtained
results reveal that a mean absolute percentage error (MAPE) of 3.51% for the GMDH-network-based
protection system is accomplished thanks to formulation via optimized algorithms, without requiring
the utilization of any feature selection techniques. The proposed method has a high-speed operation
of around 20 ms for the detection of faults, while the conventional OC relay performance is in the
blinding mode in the worst situations for faults with HIFs.

Keywords: GMDH-based fault detection; conventional protection scheme; active distribution net-
works; blinding areas

1. Introduction

Distributed generations (DGs) have significantly changed many features of power sys-
tems, such as reducing network losses, voltage profiles, and serving as back-ups, etc. [1–3].
Although DGs can improve some electrical parameters, they may cause several types of
problems in power systems [4]. These problems have direct effects on the conventional
protection schemes in active distribution networks (ADNs). Blinding protection areas [5],
sympathetic tripping (the false tripping of feeders) [6], and failures of the auto-reclosers [7]
are the main challenges that are created by the presence of DG units in distribution networks.
Blinding zones cause the relay to operate with a delay or non-tripping [8,9]. Protective
relays are not able to detect faults in the blinding mode. Indeed, when the short circuit of
the feeders is smaller than the pickup current of the protective relays, the protection system
is under a blinding area [10]. In sympathetic tripping, the fault current feeds from more
than one direction due to the presence of DGs.
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The protective relays of the overcurrent (OC) and earth fault (EF) are the conventional
protection devices used in ADNs. Traditional inverse time current protective relays have
been used as the main protection schemes for radial distribution systems [11]. There have
been several methods proposed to solve the conventional protection problems due to the
presence of DGs. In [12], the protection blinding challenge in the OC protection with the
presence of DGs was investigated. The presented method used mathematical formulations
to increase the resiliency of the OC protective relays. Changing the protective relay settings
to protect the ADN from blinding zones is the conventional method. Changing the trip time
of the OC relays may cause protection coordination loss and may cause damage to the power
systems [12]. In [13], the authors presented a double-inverse OC relay method for improving
the coordination with the optimal settings and considering the DGs’ stability constraints.
In [14], a directional OC protection technique for protecting the distribution network with
a DG embedded was proposed. Adaptive, directional OC protection was employed to
determine the optimal protection setting. However, the directional OC protection scheme is
commonly proposed as a solution for the improvement of protection systems’ selectivity
in meshed distribution networks. Reference [15] presented adaptive OC protective relays
for microgrid applications with distributed generation. The superposition theorem for the
calculation of the relay pickup current was utilized. In [16], an adaptive, directional OC
relay method was presented based on the positive and negative sequences of the current
for microgrid protection. Moreover, the proposed method could estimate the direction of
the fault using the phase changes during the fault conditions. Reference [17] presented an
adaptive OC protection method with a dual-setting directional recloser to coordinate the
recloser–fuse with the presence of DGs in distribution networks. Reference [18] utilized a
dynamic, adaptive OC relaying scheme to estimate the relay pickup that ensured signifi-
cantly less communication overhead. The method used the communication link to relay the
coordination for low short circuit currents in micro-grid modes.

Although conventional protection systems have many advantages, these systems
have many challenges when facing network changes such as the presence of DGs. For
these reasons, several adaptive, intelligent protection methods have been suggested to
protect the power systems with microgrids and the presence of DGs in recent years [19–25].
In [19], an adaptive protection method based on histogram-based gradient boosting in
distribution networks was utilized. It used spectral kurtosis for the feature extraction
of faulted transient signals. Reference [20] presented a deep learning method for fault
detection based on unsupervised and supervised learning in distribution systems. In [21],
a protection technique according to a deep neural network with Hilbert–Huang transform
in micro-grid systems was developed. It used time–frequency signal processing for the
feature extraction for the training of the machine learning method. Reference [22] proposed
machine learning (ML) and signal processing tools for fault detection in ADNs. The ML
method was based on feedforward neural networks. In [23], the authors proposed optimal
setting group coordination to address the protection problems with mixed-integer linear
programming for ADNs. Reference [24] proposed a radial feeder protection method based
on an artificial neural network (ANN). The proposed method used a centralized, intelligent
electronic device (CIED) with the current transformers and circuit breakers of the feeder in
a 34-node radial test feeder. They require communication links between protective devices.
In [25], a multiagent deep deterministic policy gradient (MADDPG) protection scheme in
distribution networks with the presence of DGs was presented. The proposed method had
a better performance than that of conventional protection systems.

In this paper, a group method of data handling (GMDH)-based protection scheme is
proposed to protect distribution networks with the presence of DGs and high-impedance
faults. The proposed method is based on a non-pilot scheme that does not require any
communication signals; it has a high-speed fault detection scheme in active distribution
networks. The proposed method can detect the fault at the blinding areas in an ADN.
Moreover, the method is not dependent on the DG capacity, and it is robust against HIFs.
The main scientific contributions of this research are considered to be as follows:
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(i) GMDH is used for its capability to create simple model equations between input and
target variables without attempting to apply feature selection techniques,

(ii) Fault detection in blinding areas and improving the protection system in ADNs,
(iii) The proposed method achieves high-speed and accurate fault detection independent

of the DG capacities, load variations, disturbances, and impedance faults.

The rest of the paper is organized as follows. Sections 2 and 3 elaborate on the proposed
conventional overcurrent protective relays and the GMDH-based fault detection method
with a flowchart, respectively. Section 4 discusses the DIgSILENT simulation performance
that compares the conventional OC protective relay with the proposed method. Finally, the
conclusion is presented in Section 5.

2. Conventional OC Protective Relay

Overcurrent and earth fault relays have been used as the main protection and con-
ventional protection devices in real distribution networks. The OC and EF protective relay
settings are determined by the pickup current (Ip), fault current (If), and time setting multi-
plier (TMS). In Equation (1) the operating time of OC and EF relays is shown as follows.

top =
α × TMS( I f

Ip

)n
− 1

(1)

where α and n are constants of an inverse-definite minimum time (IDMT) that are given in
Table 1 [26].

Table 1. IEC standard constants for OC and EF time characteristics.

Type of Characteristics α n

Normal Inverse (N.I) 0.14 0.02
Very Inverse (V.I) 13.5 1

Extremely Inverse (EI) 80 2

A traditional OC protective relay becomes more challenging with the presence of
distributed generation. Figure 1 depicts the conventional OC relay characteristic curve in
the operation and blinding zones. The relay has pickup and instantaneous characteristics,
which are denoted by “IP” and “Iinst”, respectively. The operation time between the pickup
and instantaneous currents is according to the inverse time characteristic, and the operation
time is a definite time characteristic after Iinst. A fault with a current less than the pickup
current is shown as the OC relay blinding zone, as illustrated in Figure 1.
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3. GMDH Neural Network

Machine learning (ML) techniques are able to solve many different tasks of complex
problems with a high accuracy. Therefore, different ML methods have been widely used in
power systems, especially in protection schemes, in order to achieve the fast and accurate
detection of faults or fault locations [27,28]. The use of ML techniques appears to be a
promising option for enhancing the ability for fault detection. Within this context, GMDH
networks are scrupulously utilized, as they present a reasonable mathematical model
between defined input values and output values. The GMDH method can be basically
represented as a feed-forward and multilayer neural network. This method is extensively
used to create optimal mathematical relations for the modeling of complex systems due
to it requiring minimized prior knowledge [29]. The GMDH technique provides the
possibility of creating a self-organizing network by changing the number of neurons,
neuron connections, and layers during the training stage to find the best solution. Hence,
the structure of the optimal model can be defined by sorting out possible combinations.
In addition, two data sets, including the primary training data set and control data set,
are utilized for the training stage. When the error rate measured through the control data
set is increased, the training stage is stopped to prevent overfitting [30]. The variables
of the training set are cross-recombined to create a pair of variables and are trained as a
neuron. The output of the trained neuron can be represented as a high-order polynomial
function. These functions in other ways, and the neurons are assessed by defined criteria.
The neurons with acceptable performances are preserved for the next layer. Hence, the
process is repeated to determine the optimal analytical model among the input and target
variables. The general structure of GMDH is illustrated in Figure 2 [31].
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In Figure 2, “x” indicates the input features and “y” is the output. It can be seen that
the output of the previous layer is taken as the input of the next layer. The created input
combinations are directly transferred to the first layer. If “n” is the number of neurons
in a layer, the candidate number of neurons for the next layer can be calculated as in
Equation (2). (

n
2

)
=

n(n − 1)
2

(2)
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White neurons are strong ones, which are transferred to the next layer. On the other
hand, green neurons can be represented as weak ones, which are eliminated after an
accuracy assessment. GMDH neural networks generally utilize least squares regression to
determine the optimal analytic relation between the input variables and target variables,
using a reference function that can be shown in Equation (3) [31].

y = a0 + ∑n
i=1 aixi + ∑n

i=1 ∑n
j=1 aijxixj + ∑n

i=1 ∑n
j=1 ∑n

k=1 aijkxixjxk + . . . (3)

where “y” indicates the output value, X =
(
xi, xj, xk, . . . , xn

)
represents the input vector,

and A =
(

a0, ai, aij, aijk, . . . , an

)
shows the polynomial coefficients.

When only the two input parameters are considered, the quadratic form of the equation
will be obtained as below.

y = a0 + a1xi + a2xj + a3xixj + a4x2
i + a5x2

j (4)

The coefficients of the polynomial equation are calculated by using the least square
method, as given in Equation (5). e =

N
∑

n=1
(yn − yn)

2

∂e
∂ak

= 0, k = 1, 2, 3, . . .
(5)

A flowchart that reflects the computational algorithm of the proposed scheme is
given in Figure 3. The data set to be processed is divided into two parts for the training
process. The data matrix is created by performing different case studies on the test system.
Different fault points and fault impedances are taken into consideration during the data set
preparation to increase the sensitivity and selectivity of the fault detection model. The test
system matrix Ga×b with a = 1200 rows, which show the number of performed cases, and
b = 2 columns, which depict the input features utilized in each case study. The output test
matrix Faxb with a = 1200 rows, which illustrate the target values, and b = 1, which gives
the fault detection. The overall data are divided randomly, in such a manner where 80%
of the data are used for the training stage, while 20% of the data are used for preventing
overfitting as the control data set. The control data set is employed to stop the training
process in order to prevent overfitting. In the training stage, the mean squared error is
calculated for each neuron by also applying it to the control data set. The operation behind
preventing overfitting stands on measuring the error rate with the control data. When the
error rate begins to increase, the algorithm will stop the training. The training process
continues to build the next layer if the MSE of the best neuron in the current layer, as
assessed using the control data, is less than the MSE of the best neuron in the layer before
and the maximum number of layers has not yet been reached. If not, the training process is
ended, as shown in Figure 3.

It should be noted that the training data are obtained through the distribution network
given in the DIGSILENT software (version 2022, DIgSILENT, Gomaringen, Germany) by
applying faults to several points with different fault impedances. Then, the algorithm
is trained by using Matlab software (MATLAB R2022a) and tested through the DIgSI-
LENT Power Factory (version 2022, DIgSILENT, Gomaringen, Germany).on a real active
distribution network.



Energies 2023, 16, 6867 6 of 16Energies 2023, 16, 6867 6 of 16 
 

 

 
Figure 3. Flowchart of GMDH network. 

4. Simulation Results 
This section is divided into three parts: (1) the case study, (2) the conventional distri-

bution network protection results, and (3) the proposed GMDH-based protection scheme 
results. The traditional protection device is considered as an OC protective relay in this 
study. 

4.1. Case Study 
The case study consists of the real distribution networks of 20 kV feeders with DG. 

Figure 4 depicts a single-line diagram (SLD) of the test system. As can be seen from the 
figure, there are two feeders, a main feeder that the DG is connected to and an adjacent 
feeder it can ring with. The DG consists of three combined heat and power (CHP) gener-
ators, each with a capacity of 2 MW, and it is connected to the distribution network at the 
PCC. The maximum currents of the main feeder and adjacent feeder are 95 A and 120 A, 
respectively. The high-voltage substation consists of two 132/20 kV transformers rated at 
30 MVA and the three-phase short-circuit current on the substation 20 kV bus is around 
14.08 kA. 

The candidate fault points in the test system include Point 1 (the middle of the main 
feeder as the inside zone) and Point 2 (the end of the adjacent feeder, where the feeders 
are in the ring condition, in which both feeders are fed by the main feeder). 

Figure 3. Flowchart of GMDH network.

4. Simulation Results

This section is divided into three parts: (1) the case study, (2) the conventional distri-
bution network protection results, and (3) the proposed GMDH-based protection scheme
results. The traditional protection device is considered as an OC protective relay in this study.

4.1. Case Study

The case study consists of the real distribution networks of 20 kV feeders with DG.
Figure 4 depicts a single-line diagram (SLD) of the test system. As can be seen from the
figure, there are two feeders, a main feeder that the DG is connected to and an adjacent
feeder it can ring with. The DG consists of three combined heat and power (CHP) generators,
each with a capacity of 2 MW, and it is connected to the distribution network at the PCC. The
maximum currents of the main feeder and adjacent feeder are 95 A and 120 A, respectively.
The high-voltage substation consists of two 132/20 kV transformers rated at 30 MVA and
the three-phase short-circuit current on the substation 20 kV bus is around 14.08 kA.

The candidate fault points in the test system include Point 1 (the middle of the main
feeder as the inside zone) and Point 2 (the end of the adjacent feeder, where the feeders are
in the ring condition, in which both feeders are fed by the main feeder).
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4.2. Overcurrent Protective Relay

In this section, the OC protective relay operations are investigated with different DG
capacities and HIFs. Table 2 illustrates the OC relay settings of the main feeder, PCC, and
one of the DGs.

Table 2. Protective relay settings.

OC Settings CT IP(A) Curve TMS Instantaneous Current

20 kV Feeder 400/1 1 × In N.I 0.1 10 × In
PCC-DG 200/1 1 × In N.I 0.1 6 × In

DG1 (2 MW) 100/1 0.7 × In N.I 0.12 10 × In

Table 3 introduces the operating times of the main feeder OC protective relay with
different DG capacities and HIFs for the fault that occurs at Point 1. The fault current
magnitude decreases by increasing the DG capacity and HIF. Therefore, the operating time
of the OC relay is increased. The operating times of OC relays linearly increase when
increasing the HIF and DG capacity. The feeder relay cannot detect a fault impedance of
more than 26 Ω with the presence of DGs. Indeed, the OC protective relay is in the blinding
zone. As a result, the operation time of the high-voltage substation feeder protective relay
increases with an increase in the DG capacity.

Figure 5 demonstrates a comparison of the OC protective relay characteristic curves
of the main feeder, PCC, and DG1 (with a 2 MW capacity) in the case of a 5 Ω impedance
fault at Point 1. As can be seen, the substation 20 kV feeders relay operates at 442 ms. On
the other hand, the OC protective relay of the PCC and DG1 cannot detect a fault of more
than 4 Ω.
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Table 3. Relay operation time of the main feeder with HIF—Point 1.

Fault Impedance (Ω) Without DG DG (2 MW) DGs (4 MW) DGs (6 MW)

Z = 0 Ω 0.135 s 0.135 s 0.135 s 0.135 s
Z = 5 Ω 0.423 s 0.429 s 0.435 s 0.442 s

Z = 10 Ω 0.661 s 0.678 s 0.696 s 0.715 s
Z = 15 Ω 1.023 s 1.067 s 1.114 s 1.164 s
Z = 20 Ω 1.700 s 1.829 s 1.974 s 2.138 s
Z = 23 Ω 2.518 s 2.812 s 3.172 s 3.621 s
Z = 25 Ω 3.536 s 4.146 s 4.984 s 6.191 s
Z = 26 Ω 4.368 s 5.340 s 6.818 s Not Trip
Z = 27 Ω 5.648 s Not Trip Not Trip Not Trip
Z = 28 Ω Not Trip Not Trip Not Trip Not Trip
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Figure 5. OC relay characteristic curves of substation 20 kV main feeder, PCC and DG1 with fault at
point 1.

Figure 6 shows the OC protective relay performance of the main feeder with a 6 MW
DG capacity for the fault that occurs at Point 1. The performance of the OC relay is shown
with different impedance faults. The relay becomes insensitive to detecting faults in the
case of fault impedance increments. It can be observed that, for impedance faults more than
26 Ω, the relay fails to detect these faults and remains insensitive by operating in non-trip
mode. Therefore, the result reveals the necessity of a robust method for detecting faults
with the presence of DGs and HIFs.

Figure 7 and Table 4 illustrate the feeder operating times of the OC protective relay
with different fault impedances and DG capacities at the ring situation in the case of a fault
occurring at Point 2. The relay cannot detect a fault with more than 15 Ω fault resistance
and 6 MW DGs.

Figure 8 shows the OC protective relay time operation of the main feeder, PCC, and
DG1 at the ring situation with a 6 MW DG presence without fault impedance. The OC relay
operation of the 20 kV feeder is 729 ms, whereas the DG relays cannot detect faults at the
end of the adjacent feeder. Therefore, conventional protection systems cannot effectively
protect distribution networks with the presence of DGs and HIFs.
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Table 4. Relay operation times of high-voltage substation 20 kV feeder with HIFs—fault at Point 2.

Fault Impedance (Ω) Without DG DG (2 MW) DGs (4 MW) DGs (6 MW)

Z = 0 Ω 0.639 s 0.689 s 0.709 s 0.729 s
Z = 5 Ω 0.922 s 0.997 s 1.042 s 1.088 s

Z = 10 Ω 1.432 s 1.587 s 1.705 s 1.834 s
Z = 15 Ω 2.596 s 3.083 s 3.571 s 4.197 s
Z = 17 Ω 3.627 s 4.614 s 5.803 s Not Trip
Z = 18 Ω 6.039 s Not Trip Not Trip Not Trip
Z = 19 Ω 6.139 s Not Trip Not Trip Not Trip
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4.3. GMDH-Based Protection Scheme

This section explains the performance of the differential protection scheme based on the
ML method, in order to detect faults with the presence of HIFs and DGs in an ADN. Several
performance parameters are considered while choosing the ML methods for the fault detection.
These parameters are the implementation complexity, computational burden, accuracy, detec-
tion speed, and sensitivity to disturbances. During the determination of the method, different
machine learning methods, such as linear regression, support vector machines (SVM), decision
trees (DT), and random forest (RF), are examined. Many analyses are performed with these
ML methods to find the best model in terms of performance parameters. However, linear
regression and SVM are eliminated due to their high sensitivity to disturbances. When high
fault impedance and noise situations are included in the data set, the accuracy of the model is
remarkably reduced. Although the DT and RF methods provide a high accuracy in the case of
disturbances in the data set, they fail in terms of the implementation complexity. However, the
GMDH network is capable of generating simple model equations. Its easy implementation and
high accuracy, independent of the DG capacities, load variations, disturbances, and impedance
faults, make this method more attractive.

The created GMDH network is structured by using two variable quadratic models.
The parameters for the GMDH network are determined, as given in Table 5.
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Table 5. Train parameters for GMDH network.

Parameters Values

Maximum network layer 20
Maximum polynomial order 16

Convergence tolerance 104
Control data 20%

The best polynomial model is obtained at the end of the training stage, as given in
Equation (6). N represents the neurons from N1 to N16. Each neuron also includes a
polynomial equation. Dg and F indicate the short-circuit current level of the PCC of the DG
and 20 kV feeder of the high-voltage substation, respectively.

fout = −0.032763 + 0.00063F + 0.311162N2 − 0.000731FN2 + 1.43932 × 10−8 × (F)2 + 0.878435(N2)
2 (6)

The transferred neuron equations are also given in Equation (7).

N(5) = 0.110693 − 0.001095DG + 0.000719F + 1.198253 × 10−7DGF + 0.000001(DG)2 − 1.122735 × 10−7(F)2

N(4) = −0.200433 + 0.001023DG + 2.424491N(5)− 0.000912DGN(5)− 1.920248 × 10−7(DG)2 − 1.194054N(5)2

N(2) = −0.120179 + 0.000986DG + 1.555664N(4)− 0.001139DGN(4) + 1.859033 × 10−7(DG)2 − 0.414087N(4)2

 (7)

The obtained transferred neuron equations and best polynomial equation given in
Equations (6) and (7) can be summarized, as shown in Table 6.

Table 6. Coefficients and parameters of the transferred neuron equations and best polynomial equation.

Parameters Coefficients

y xi xj a0 a1 a2 a3 a4 a5

N(5) DG F 0.110693 −0.001095 0.000719 1.198253 × 10−7 0.000001 −1.122735 × 10−7

N(4) DG N(5) −0.200433 0.001023 2.424491 −0.000912 −1.920248 × 10−7 −1.194054
N(2) DG N(4) −0.120179 0.000986 1.555664 −0.001139 1.859033 × 10−7 −0.414087
fout F N(2) −0.032763 0.00063 0.311162 −0.000731 1.43932 × 10−8 0.878435

To verify the performance of the developed model, some statistical performance
indices are utilized. When the accuracy of the developed GMDH-based fault detection
method is evaluated according to the mean absolute error (MAE), root mean squared error
(RMSE), coefficient of variation (R2), and mean absolute percentage error (MAPE), the
results show that the fault in the power network can be detected in a very short time, thanks
to the obtained mathematical model. The overall performance of the developed model is
provided in Table 7.

Table 7. Overall performance of the developed model for fault detection.

MAE RMSE R2 (%) MAPE (%)

GMDH 0.034 0.059 98.57 3.510

Figure 9 shows the current and voltage of the main feeder during the fault at Point 1
with a 4 MW DG capacity. The short-circuit current is around 1.95 kA with a 5 Ω impedance
fault, as shown in Figure 9a. All the faults are initiated at 0.8 s. The voltage level of
the busbar decreases by around 0.07 pu during the fault, as illustrated in Figure 9b. The
different load variations and the change in the operational mode (the ring connection of two
feeders) are considered as disturbances in order to reveal the performance of the proposed
fault detection method.
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Figure 9. Electrical characteristics of the main feeder with 4 MW DG capacity and 5 Ω impedance
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Figure 10 displays the performance of the proposed method during the fault induced
at Point 1 with a 4 MW DG capacity and 5 Ω impedance fault. In this case, the threshold
value is considered as 0.5 and the fault detection time is obtained around 20 ms. The
proposed method has a high-speed operation in comparison to conventional OC relays.
The operation time of the conventional OC relay is more than 435 ms with the same
short-circuit level, as shown in Table 3.
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Figure 10. GMDH fault detection method for the main feeder with 4 MW DG capacity and HIF—fault
at Point 1.

Figure 11 displays the current and voltage of the main feeder during the applied
fault at Point 1 with a 6 MW DG capacity. The fault current is around 0.448 kA with a
25 Ω impedance fault, as shown in Figure 11a. The voltage level of the busbar has some
fluctuations during the load variations, as depicted in Figure 11b. In fault conditions,
the voltage level fluctuates. It decreases initially and then it increases due to the high-
impedance fault.
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Figure 12 shows the performance of the proposed method with the fault at Point 1.
The threshold value is considered as 0.5, and the fault detection time is observed around
20 ms with a short-circuit current around 448 A under a 25 Ω impedance fault case. The
various load variations with the different DG capacities and the ring connection of two
feeders (as disturbances) are considered in order to conduct a performance evaluation of
the proposed ML fault detection method. The proposed method has a high-speed operation
in comparison to conventional OC relays. The operation time of the conventional OC relay
is more than 6 s with the same short-circuit level as that shown in Figure 6.
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Figure 13 displays the performance of the proposed method with a 5 Ω impedance
fault and a 6 MW DG capacity under the fault conditions at Point 2. The fault detection time
is determined around 20 ms with an 800 A short-circuit current level. The fault is initiated
at 0.8 s. The proposed method has a high-speed operation in comparison to conventional
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OC relays. The operation time of a conventional OC relay is more than 1 s with the same
short-circuit level as that given in Table 4.
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Figure 13. GMDH fault detection method for the main feeder with 6 MW DG capacity and HIF—fault
at Point 2.

Table 8 displays a comparative assessment of the proposed protection method and
other existing methods. As can be seen from the table, the proposed protection method
shows high-speed fault detection. Moreover, it does not require communication links. The
maximum detection time is based on the primary protection.

Table 8. Comparison of the proposed method with other methods.

Ref. Algorithm Signal Used Max. Detection
Time (s)

Communication
Required

Max. Fault
Resistance (Ω)

[32] OC Current <1 Yes 50
[33] DOC * Current 1.92 Yes 10
[34] ORCM * Current <2 Yes ---
[35] DOC-MEFOA * Current <0.8 No ---

Proposed method GMDH Current 0.02 No 30

* Directional overcurrent (DOC), Optimal Relay Coordination Method (ORCM), and Modified Electromagnetic
field optimization algorithm (MEFOA).

5. Conclusions

This paper presented an efficient GMDH-based protection method for the protection
of a real active distribution network. The main advantage of the developed method over
conventional protection schemes lies in achieving a high detection sensitivity, independent
of the DG capacity, load variations, disturbances, and different high-impedance faults. The
proposed non-pilot method’s performance validation was conducted by using the sample
data of real distribution networks of 20 kV feeders with DGs. Firstly, the case events created
by considering different fault impedances and DG capacities were utilized to analyze the
conventional protection system. The HIFs’ and DG capacity effects on the conventional OC
protective relays in the ADN were clearly demonstrated. As a result, it was observed that
the operating time of the OC relays gradually increased with an increase in the DG capacity.
The OC relay of the main feeder could not detect faults with more than 26 Ω and 15 Ω
impedance faults at Points 1 and 2 (with a 6 MW DG capacity), respectively. In this manner,
the results revealed the necessity of using a robust method to detect faults with the presence
of DGs and HIFs. The proposed GMDH-based protection technique has a high-speed
and high-accuracy fault detection ability for active distribution network protection. The
proposed fault detection method’s fault detection time was around 20 ms under different
disturbances and high-impedance faults. A mean absolute percentage error of 3.51% for the
GMDH network-based fault detection cases was accomplished thanks to formulation via
optimized algorithms, without applying any feature selection techniques. The performance
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analysis illustrated that the accuracy of the proposed method was independent of the DG
capacity and HIFs.
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