Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada
Abstract
:1. Introduction
- Incorporate observational data of q into a machine learning model (MLM) for expeditious and accurate forecasting. High efficiency is crucial for early warning during flood seasons, hazard preparedness, and evacuation activities.
- Modify the group method of data handling (GMDH) and demonstrate the applicability of the modified GMDH (MGMDH) to natural river sites.
- In the case of discontinued observations, MGMDH techniques allow one to digitally reactivate a ceased station, which is much less expensive than resuming its field operations. To the best of our knowledge, this cost-effective alternative is new.
2. Methods
2.1. River Discharge Forecast Model
2.2. Model Training
2.3. Model Testing
2.4. Model Validation (Data Comparison)
- The coefficient of determination, , given by
- The normalised root mean square error, , given by
- Mean absolute relative error, , given by
- Akaike information criteria (AIC), c, expressed as
- The term reliability determines whether or not the model in question achieves an acceptable level of performance [44]. It ascertains the model’s consistency and reproducibility of observations. Reliability is given by
- Dimitriadis et al. (2016) [45] introduced two benchmark solutions:
3. Results
3.1. Predictors for Discharge Forecast
3.2. Best Sole Predictor for Discharge Forecast
3.3. Adding Predictors for Improvement of Discharge Forecast
3.4. Applying the Best Model for at Other Leading Times
3.5. Validation of the Best Model Equations
3.5.1. Discontinued Observation of Discharge at CSD
3.5.2. Continuous Observation of Discharge at CSD
4. Discussion
5. Conclusions
- The MGMDH automatically determines the best forecast model. The 1st degree model is consistent with the principle of mass conservation (Equation (17)). Higher degree models reflect the conservation of momentum. The models are efficient and accurate.
- The MGMDH predicts a reliable forecast of river discharge at both active and ceased hydrometric CSs. The coefficient of determination, , is greater than 0.978 (Figure 7).
- Forecasting of discharge at a ceased CS for a lead time close to the advection time from upstream to the CS is the most reliable.
- The MGMDH developed for the Ottawa River is applicable to other rivers, as demonstrated in the successful application to the Boise River in Idaho, with (Figure 11).
- The MGMDH outperforms other MLMs, like the black-box NN, for river discharge predictions (Figure 12). Compared to traditional rating curves, the MGMDH allows for forecasting and can include other predictors, such as meteorological parameters.
- The automated selection of predictors is essential for river discharge forecasting. This improves model accuracy while minimising computing time, as discussed in Section 3.3.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lešcěšen, I.; Basarin, B.; Pavić, D.; Mudelsee, M.; Pekarova, P.; Mesaroš, M. Are extreme floods on the Danube River becoming more frequent? A case study of Bratislava station. J. Water Clim. Change 2024, 15, 1300–1312. [Google Scholar] [CrossRef]
- Paterson, D.L.; Wright, H.; Harris, P.N.A. Health Risks of Flood Disasters. Clin. Infect. Dis. 2018, 67, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.; Gaur, A.; Simonovic, S.P. Future Changes in Flood Hazards across Canada under a Changing Climate. Water 2018, 10, 1441. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Berghuijs, W.; Aalbers, E.; Larsen, J.; Trancoso, R.; Woods, R. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 2017, 12, 114035. [Google Scholar] [CrossRef]
- Alabbad, Y.; Yildirim, E.; Demir, I. Flood mitigation data analytics and decision support framework: Iowa Middle Cedar Watershed case study. Sci. Total Environ. 2022, 814, 152768. [Google Scholar] [CrossRef]
- Lins, H.F.; Slack, J.R. Seasonal and regional characteristics of U.S. streamflow trends in the United States from 1940 to 1999. Phys. Geogr. 2005, 26, 489–501. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Alifu, H.; Yamazaki, D.; Imada, Y.; Shiogama, H.; Kimura, Y. Anthropogenic climate change has changed frequency of past flood during 2010–2013. Prog. Earth Planet Sci. 2021, 8, 36. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Li, M.; Wang, Q.J.; Robertson, D.E.; Bennett, J.C. Improved error modelling for streamflow forecasting at hourly time steps by splitting hydrographs into rising and falling limbs. J. Hydrol. 2017, 555, 586–599. [Google Scholar] [CrossRef]
- Agarwal, S.; Roy, P.; Choudhury, P.; Debbarma, N. Comparative study on stream flow prediction using the GMNN and wavelet-based GMNN. J. Water Clim. Chang. 2022, 13, 3323–3337. [Google Scholar] [CrossRef]
- Khosravi, K.; Cooper, J.R.; Daggupati, P.; Thai Pham, B.; Tien Bui, D. Bedload transport rate prediction: Application of novel hybrid data mining techniques. J. Hydrol. 2020, 585, 124774. [Google Scholar] [CrossRef]
- Ekwueme, B.N. Deep neural network modeling of river discharge in a tropical humid watershed. Earth Sci. Inform. 2024, 17, 1161–1177. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Feng, W.; Huang, H. Short term real-time rolling forecast of urban river water levels based on LSTM: A case study in Fuzhou city, China. Int. J. Environ. Res. Public Health 2021, 18, 9287. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Negi, S.; Nagar, R.; Rao, S.; Seeja, K.R. Multivariate multi-step LSTM model for flood runoff prediction: A case study on the Godavari River Basin in India. J. Water Clim. Chang. 2023, 14, 3635–3647. [Google Scholar] [CrossRef]
- Haznedar, B.; Kilinc, H.C.; Ozkan, F.; Yurtsever, A. Streamflow forecasting using a hybrid LSTM-PSO approach: The case of Seyhan Basin. Nat. Hazards 2023, 117, 681–701. [Google Scholar] [CrossRef]
- Li, J.; Yuan, X.; Ji, P. Long-lead daily streamflow forecasting using Long Short-Term Memory model with different predictors. J. Hydrol. Reg. Stud. 2023, 48, 101471. [Google Scholar] [CrossRef]
- Tan, W.Y.; Lai, S.H.; Pavitra, K.; Teo, F.Y.; El-Shafie, A. Deep learning model on rates of change for multi-step ahead streamflow forecasting. J. Hydroinform. 2023, 25, 1667–1689. [Google Scholar] [CrossRef]
- Kao, I.F.; Zhou, Y.; Chang, L.C.; Chang, F.J. Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. J. Hydrol. 2020, 583, 124631. [Google Scholar] [CrossRef]
- Jhong, Y.-D.; Lin, H.P.; Chen, C.S.; Jhong, B.C. Real-time Neural-network-based Ensemble Typhoon Flood Forecasting Model with Self-organizing Map Cluster Analysis: A Case Study on the Wu River Basin in Taiwan. Water Resour. Manag. 2022, 36, 3221–3245. [Google Scholar] [CrossRef]
- Skoulikaris, C.; Nagkoulis, N. A genetic algorithm’s novel rainfall distribution method for optimized hydrological modeling at basin scales. J. Hydroinform. 2024, 26, 1295–1312. [Google Scholar] [CrossRef]
- Girihagama, L.; Naveed Khaliq, M.; Lamontagne, P.; Perdikaris, J.; Roy, R.; Sushama, L.; Elshorbagy, A. Streamflow modelling and forecasting for Canadian watersheds using LSTM networks with attention mechanism. Neural Comput. Appl. 2022, 34, 19995–20015. [Google Scholar] [CrossRef]
- Alizadeh, B.; Ghaderi Bafti, A.; Kamangir, H.; Zhang, Y.; Wright, D.B.; Franz, K.J. A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction. J. Hydrol. 2021, 601, 126526. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; Trajkovic, S.; Zounemat-Kermani, M.; Li, B.; Kisi, O. Daily streamflow prediction using optimally pruned extreme learning machine. J. Hydrol. 2019, 577, 123981. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.M.; Pain, C.C. Long lead-time daily and monthly streamflow forecasting using machine learning methods. J. Hydrol. 2020, 590, 125376. [Google Scholar] [CrossRef]
- Kheimi, M. Data-driven approaches for estimation of sediment discharge in rivers. Earth Sci. Inform. 2023, 17, 761–781. [Google Scholar] [CrossRef]
- MacKenzie, K.M.; Gharabaghi, B.; Binns, A.D.; Whiteley, H.R. Early detection model for the urban stream syndrome using specific stream power and regime theory. J. Hydrol. 2022, 604, 127167. [Google Scholar] [CrossRef]
- Mohanta, A.; Pradhan, A.; Mallick, M.; Patra, K.C. Assessment of Shear Stress Distribution in Meandering Compound Channels with Differential Roughness Through Various Artificial Intelligence Approach. Water Resour. Manag. 2021, 35, 4535–4559. [Google Scholar] [CrossRef]
- Letessier, C.; Cardi, J.; Dussel, A.; Ebtehaj, I.; Bonakdari, H. Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River. Hydrology 2023, 10, 164. [Google Scholar] [CrossRef]
- Yarahmadi, M.B.; Parsaie, A.; Shafai-Bejestan, M.; Heydari, M.; Badzanchin, M. Estimation of Manning Roughness Coefficient in Alluvial Rivers with Bed Forms Using Soft Computing Models. Water Resour. Manag. 2023, 37, 3563–3584. [Google Scholar] [CrossRef]
- Souza, D.P.M.; Martinho, A.D.; Rocha, C.C.; Christo, E.d.S.; Goliatt, L. Hybrid particle swarm optimization and group method of data handling for short-term prediction of natural daily streamflows. Model. Earth Syst. Environ. 2022, 8, 5743–5759. [Google Scholar] [CrossRef]
- Elkurdy, M.; Binns, A.D.; Bonakdari, H.; Gharabaghi, B.; McBean, E. Early detection of riverine flooding events using the group method of data handling for the Bow River, Alberta, Canada. Int. J. River Basin Manag. 2022, 20, 533–544. [Google Scholar] [CrossRef]
- Bruno, L.S.; Mattos, T.S.; Oliveira, P.T.S.; Almagro, A.; Rodrigues, D.B.B. Hydrological and Hydraulic Modeling Applied to Flash Flood Events in a Small Urban Stream. Hydrology 2022, 9, 223. [Google Scholar] [CrossRef]
- Erima, G.; Kabenge, I.; Gidudu, A.; Bamutaze, Y.; Egeru, A. Differentiated Spatial-Temporal Flood Vulnerability and Risk Assessment in Lowland Plains in Eastern Uganda. Hydrology 2022, 9, 201. [Google Scholar] [CrossRef]
- Mentzafou, A.; Dimitriou, E. Hydrological Modeling for Flood Adaptation under Climate Change: The Case of the Ancient Messene Archaeological Site in Greece. Hydrology 2022, 9, 19. [Google Scholar] [CrossRef]
- Filianoti, P.; Gurnari, L.; Zema, D.A.; Bombino, G.; Sinagra, M.; Tucciarelli, T. An evaluation matrix to compare computer hydrological models for flood predictions. Hydrology 2020, 7, 42. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; He, Y.; Luo, X.; Zhang, X. Comparison of daily and sub-daily SWAT models for daily streamflow simulation in the Upper Huai River Basin of China. Stoch. Environ. Res. Risk Assess. 2016, 30, 959–972. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Liu, J.; Lin, J.; Cui, Q. A Data Assimilation Approach to the Modeling of 3D Hydrodynamic Flow Velocity in River Reaches. Water 2022, 14, 3598. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial Theory of Complex Systems. IEEE Trans. Syst. Man. Cybern. 1971, 1, 364–378. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers. Eur. J. Eng. Educ. 1994, 19, 383. [Google Scholar] [CrossRef]
- Hipni, A.; El-shafie, A.; Najah, A.; Karim, O.A.; Hussain, A.; Mukhlisin, M. Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS). Water Resour. Manag. 2013, 27, 3803–3823. [Google Scholar] [CrossRef]
- Modaresi, F.; Araghinejad, S. A comparative assessment of support vector machines, probabilistic neural networks, and K-nearest neighbor algorithms for water quality classification. Water Resour. Manag. 2014, 28, 4095–4111. [Google Scholar] [CrossRef]
- Ebtehaj, I.; Bonakdari, H. A reliable hybrid outlier robust non-tuned rapid machine learning model for multi-step ahead flood forecasting in Quebec, Canada. J. Hydrol. 2022, 614, 128592. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D.; Tzouka, K. Predictability in dice motion: How does it differ from hydro-meteorological processes? Hydrol. Sci. J. 2016, 61, 1611–1622. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Le, X.H.; Anh, D.T.; Kim, S.H.; Bae, D.H. Hourly streamflow forecasting using a Bayesian additive regression tree model hybridized with a genetic algorithm. J. Hydrol. 2022, 606, 127445. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D.; Iliopoulou, T.; Papanicolaou, P. A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology 2021, 8, 59. [Google Scholar] [CrossRef]
- Poff, N.L.R.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef]
Predictor | Rank | |||
---|---|---|---|---|
1st Degree Polynomial | 2nd Degree Polynomial | 3rd Degree Polynomial | ||
0.002 a | 0.003 | 1.103 | 1 | |
0.039 | 0.002 a | 0.518 | 2 | |
0.134 a | 1.957 | 4.078 | 3 | |
0.500 a | 0.832 | 888.362 | 4 | |
1.290 | 1.352 | 1.176 a | 5 | |
1.183 a | 1.184 | 1.191 | 6 | |
1.200 a | 1.206 | 1.226 | 7 | |
1.284 | 1.290 | 1.252 a | 8 | |
T | 1.379 a | 1.502 | 1.599 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.A.; Li, S.S. Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada. Hydrology 2024, 11, 151. https://doi.org/10.3390/hydrology11090151
Ahmed MA, Li SS. Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada. Hydrology. 2024; 11(9):151. https://doi.org/10.3390/hydrology11090151
Chicago/Turabian StyleAhmed, M. Almetwally, and S. Samuel Li. 2024. "Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada" Hydrology 11, no. 9: 151. https://doi.org/10.3390/hydrology11090151
APA StyleAhmed, M. A., & Li, S. S. (2024). Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada. Hydrology, 11(9), 151. https://doi.org/10.3390/hydrology11090151