Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = ground-based MAX-DOAS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11251 KB  
Article
Analysis of Tropospheric NO2 Observation Using Pandora and MAX-DOAS Instrument in Xianghe, North China
by Chunjiao Wang, Ting Wang, Zhaonan Cai, Xiaoyi Zhao, Wannan Wang, Yi Liu and Pucai Wang
Remote Sens. 2025, 17(10), 1695; https://doi.org/10.3390/rs17101695 - 12 May 2025
Viewed by 835
Abstract
This work presents a comprehensive investigation of tropospheric NO2 measurements using a portable ground-based Pandora spectrometer, incorporating an independently designed and implemented calibration and retrieval process (P-CAR v1.0). We designed and optimized a region-specific algorithm for retrieving tropospheric NO2 column densities [...] Read more.
This work presents a comprehensive investigation of tropospheric NO2 measurements using a portable ground-based Pandora spectrometer, incorporating an independently designed and implemented calibration and retrieval process (P-CAR v1.0). We designed and optimized a region-specific algorithm for retrieving tropospheric NO2 column densities in China. The measurement process began with establishing a spectral calibration system for processing the Pandora’s raw observations, followed by enhancing the differential optical absorption spectroscopy (DOAS) algorithm to retrieve both the slant column densities (SCDs) and tropospheric vertical column densities (VCDs) of NO2. To validate our retrieval products, comparative analyses were conducted against co-located MAX-DOAS measurements. The results demonstrate excellent agreement between Pandora-retrieved tropospheric NO2 and MAX-DOAS observations, with correlation coefficients exceeding 0.96 for both hourly and daily mean VCDs and fitting slopes greater than 0.90. Furthermore, the validation extended to multi-satellite observations from the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI), exhibiting pronounced consistency, as evidenced by the correlation coefficients all surpassing 0.90 for the hourly mean values. These findings confirm the high accuracy and reliability of NO2 retrievals from the portable Pandora instrument, significantly boosting its potential for atmospheric monitoring and application. Full article
Show Figures

Graphical abstract

24 pages, 9651 KB  
Article
Three-Dimensional Localization Method of Underground Target Based on Miniaturized Single-Frequency Acoustically Actuated Antenna Array
by Chaowen Ju, Yixuan Liu, Jianle Liu, Tianxiang Nan, Xinger Cheng and Zhuo Zhang
Electronics 2025, 14(9), 1859; https://doi.org/10.3390/electronics14091859 - 2 May 2025
Viewed by 544
Abstract
The acoustically actuated antenna technology enables a significant reduction in antenna dimension, facilitating miniaturization of ground-penetrating radar systems in the very high-frequency (VHF) band. However, the current acoustically actuated antennas suffer from narrow bandwidth and low range resolution. To address this issue, this [...] Read more.
The acoustically actuated antenna technology enables a significant reduction in antenna dimension, facilitating miniaturization of ground-penetrating radar systems in the very high-frequency (VHF) band. However, the current acoustically actuated antennas suffer from narrow bandwidth and low range resolution. To address this issue, this paper proposed a three-dimensional (3D) localization method for underground targets, which combined two-dimensional (2D) array direction-of-arrival (DOA) estimation with continuous spatial sampling without relying on range resolution. By leveraging the small dimension of acoustically actuated antennas, a 2D uniform linear array was formed to obtain the target’s angle using DOA estimation. Based on the variation pattern of 2D angles in continuous spatial sampling, the genetic algorithm was employed to estimate the 3D coordinates of underground targets. The numerical simulation results indicated that the root mean square error (RMSE) of the proposed 3D localization method is 1.68 cm, which outperforms conventional methods that utilize wideband frequency-modulated pulse signals with hyperbolic vertex detection in theoretical localization accuracy, while also demonstrating good robustness. The gprMax electromagnetic simulation results further confirmed that this method can effectively localize multiple targets in ideal homogeneous underground media. Full article
Show Figures

Figure 1

28 pages, 4645 KB  
Article
Towards a New MAX-DOAS Measurement Site in the Po Valley: Aerosol Optical Depth and NO2 Tropospheric VCDs
by Elisa Castelli, Paolo Pettinari, Enzo Papandrea, Margherita Premuda, Andrè Achilli, Andreas Richter, Tim Bösch, Francois Hendrick, Caroline Fayt, Steffen Beirle, Martina M. Friedrich, Michel Van Roozendael, Thomas Wagner and Massimo Valeri
Remote Sens. 2025, 17(6), 1035; https://doi.org/10.3390/rs17061035 - 15 Mar 2025
Viewed by 872
Abstract
Pollutants information can be retrieved from visible (VIS) and ultraviolet (UV) diffuse solar spectra exploiting Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments. In May 2021, the Italian research institute CNR-ISAC acquired and deployed a MAX-DOAS system SkySpec-2D. It is located in the “Giorgio [...] Read more.
Pollutants information can be retrieved from visible (VIS) and ultraviolet (UV) diffuse solar spectra exploiting Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments. In May 2021, the Italian research institute CNR-ISAC acquired and deployed a MAX-DOAS system SkySpec-2D. It is located in the “Giorgio Fea” observatory in San Pietro Capofiume (SPC), in the middle of the Po Valley, where it has constantly acquired zenith and off-axis diffuse solar spectra since the 1st October 2021. This work presents the retrieved tropospheric NO2 and aerosol extinction profiles (and their columns) derived from the MAX-DOAS measurements using the newly developed DEAP retrieval code. The code has been validated both using synthetic differential Slant Column Densities (dSCDs) from the Fiducial Reference Measurements for Ground-Based DOAS Air-Quality Observations (FRM4DOAS) project and real measured data. For this purpose, DEAP results are compared with the ones obtained with three state-of-the-art retrieval codes. In addition, an inter-comparison with satellite products from Sentinel-5P TROPOMI, for the tropospheric NO2 Vertical Column Densities (VCDs), and MODIS-MAIAC for the tropospheric Aerosol Optical Depth (AOD), is performed. We find a bias of −0.6 × 1015 molec/cm2 with a standard deviation of 1.8 × 1015 molec/cm2 with respect to Sentinel-5P TROPOMI for NO2 tropospheric VCDs and of 0.04 ± 0.08 for AOD with respect to MODIS-MAIAC data. The retrieved data show that the SPC measurement site is representative of the background pollution conditions of the Po Valley. For this reason, it is a good candidate for satellite validation and scientific studies over the Po Valley. Full article
Show Figures

Figure 1

15 pages, 19055 KB  
Technical Note
Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity
by Yuanyuan Qian, Dan Wang, Zhiyan Li, Ge Yan, Minjie Zhao, Haijin Zhou, Fuqi Si and Yuhan Luo
Remote Sens. 2025, 17(4), 658; https://doi.org/10.3390/rs17040658 - 14 Feb 2025
Viewed by 733
Abstract
Diagnosing ozone (O3) formation sensitivity using tropospheric observations of O3 and its precursors is important for formulating O3 pollution control strategies. Photochemical reactions producing O3 occur at the earth’s surface and in the elevated layers, indicating the importance [...] Read more.
Diagnosing ozone (O3) formation sensitivity using tropospheric observations of O3 and its precursors is important for formulating O3 pollution control strategies. Photochemical reactions producing O3 occur at the earth’s surface and in the elevated layers, indicating the importance of diagnosing O3 formation sensitivity at different layers. Synchronous measurements of tropospheric O3 and its precursors nitrogen dioxide (NO2) and formaldehyde (HCHO) were performed in urban Hefei to diagnose O3 formation sensitivity at different atmospheric layers using multi-axis differential optical absorption spectroscopy observations. The retrieved surface NO2 and O3 were validated with in situ measurements (correlation coefficients (R) = 0.81 and 0.80), and the retrieved NO2 and HCHO vertical column densities (VCDs) were consistent with TROPOMI results (R = 0.81 and 0.77). The regime transitions of O3 formation sensitivity at different layers were derived using HCHO/NO2 ratios and O3 profiles, with contributions of VOC-limited, VOC-NOx-limited, and NOx-limited regimes of 74.19%, 7.33%, and 18.48%, respectively. In addition, the surface O3 formation sensitivity between HCHO/NO2 ratios and O3 (or increased O3, ΔO3) had similar regime transitions of 2.21–2.46 and 2.39–2.71, respectively. Moreover, the O3 formation sensitivity of the lower planetary boundary layer on polluted and non-polluted days was analyzed. On non-polluted days, the contributions of the VOC-limited regime were predominant in the lower planetary boundary layer, whereas those of the NOx-limited regime were predominant in the elevated layers during polluted days. These results will help us understand the evolution of O3 formation sensitivity and formulate O3 mitigation strategies in the Yangtze River Delta region. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

22 pages, 4709 KB  
Article
Monitoring and Comparative Analysis of NO2 and HCHO in Shanghai Using Dual-Azimuth Scanning MAX-DOAS and TROPOMI
by Hongmei Ren, Ang Li, Zhaokun Hu, Nannan Shao, Xinyan Yang, Hairong Zhang, Jiangman Xu and Jinji Ma
Remote Sens. 2025, 17(3), 355; https://doi.org/10.3390/rs17030355 - 22 Jan 2025
Viewed by 1016
Abstract
This study employed dual-azimuth scanning MAX-DOAS to monitor vertical column densities of NO2 and HCHO in Shanghai during the summer and winter of 2023, and compared the results with Sentinel-5P TROPOMI data. Dual-azimuth scanning revealed a generally consistent trend in gas concentrations [...] Read more.
This study employed dual-azimuth scanning MAX-DOAS to monitor vertical column densities of NO2 and HCHO in Shanghai during the summer and winter of 2023, and compared the results with Sentinel-5P TROPOMI data. Dual-azimuth scanning revealed a generally consistent trend in gas concentrations (r > 0.95), but concentrations at 90° were higher than those at 0°, especially near the surface. This suggests that averaging multiple azimuth angles is necessary to better represent regional pollution levels. During the observation period, diurnal patterns revealed that NO2 exhibited a “double peak” in the morning and evening, which was more pronounced in the summer, while HCHO peaked between 13:00 and 15:00. Comparisons with the TROPOMI data demonstrated overall good agreement. However, the probability of TROPOMI’s NO2 and HCHO measurements being lower than those of MAX-DOAS was 80% and 62.5%, respectively. Furthermore, TROPOMI tended to overestimate at high concentrations, with overestimation reaching 41.14% for NO2 when exceeding 9.54 × 1015 molecules/cm2 and 25.93% for HCHO when exceeding 1.26 × 1016 molecules/cm2. Sensitivity analysis of the sampling distance (0–40 km) between TROPOMI samples and the ground-based site, and the sampling time (±5 to ±60 min) relative to the TROPOMI overpass, revealed that using a sampling distance of 15–25 km for NO2 and 10–20 km for HCHO, along with appropriately shortening sampling times in the winter and extending them in the summer, can effectively enhance the consistency between satellite and ground-based observations. These findings not only reveal the spatiotemporal distribution characteristics of regional pollutants but optimize the sampling time and distance parameters for satellite–ground observation validation, providing data support for improving and enhancing the accuracy of satellite retrieval algorithms. Full article
Show Figures

Graphical abstract

38 pages, 8761 KB  
Article
Fiducial Reference Measurements for Air Quality Monitoring Using Ground-Based MAX-DOAS Instruments (FRM4DOAS)
by Michel Van Roozendael, Francois Hendrick, Martina M. Friedrich, Caroline Fayt, Alkis Bais, Steffen Beirle, Tim Bösch, Monica Navarro Comas, Udo Friess, Dimitris Karagkiozidis, Karin Kreher, Alexis Merlaud, Gaia Pinardi, Ankie Piters, Cristina Prados-Roman, Olga Puentedura, Lucas Reischmann, Andreas Richter, Jan-Lukas Tirpitz, Thomas Wagner, Margarita Yela and Steffen Ziegleradd Show full author list remove Hide full author list
Remote Sens. 2024, 16(23), 4523; https://doi.org/10.3390/rs16234523 - 2 Dec 2024
Cited by 7 | Viewed by 2124
Abstract
The UV–Visible Working Group of the Network for the Detection of Atmospheric Composition Changes (NDACC) focuses on the monitoring of air-quality-related stratospheric and tropospheric trace gases in support of trend analysis, satellite validation and model studies. Tropospheric measurements are based on MAX-DOAS-type instruments [...] Read more.
The UV–Visible Working Group of the Network for the Detection of Atmospheric Composition Changes (NDACC) focuses on the monitoring of air-quality-related stratospheric and tropospheric trace gases in support of trend analysis, satellite validation and model studies. Tropospheric measurements are based on MAX-DOAS-type instruments that progressively emerged in the years 2010 onward. In the interest of improving the overall consistency of the NDACC MAX-DOAS network and facilitating its further extension to the benefit of satellite validation, the ESA initiated, in late 2016, the FRM4DOAS project, which aimed to set up the first centralised data processing system for MAX-DOAS-type instruments. Developed by a consortium of European scientists with proven expertise in measurements, data extraction algorithms and software design specialities, the system has now reached pre-operational status and has demonstrated its ability to deliver a set of quality-controlled atmospheric composition data products with a latency of one day. The processing system has been designed using a highly modular approach, making it easy to integrate new tools or processing updates. It incorporates advanced algorithms selected by community consensus for the retrieval of total ozone, lower tropospheric and stratospheric NO2 vertical profiles and formaldehyde profiles. The ozone and NO2 products are currently generated from a total of 22 stations and delivered daily to the NDACC rapid delivery (RD) repository, with an additional mirroring to the ESA Validation Data Centre (EVDC). Although it is still operated in a pre-operational/demonstrational mode, FRM4DOAS was already used for several validation and science studies, and it was also deployed in support of field campaigns for the validation of the TROPOMI and GEMS satellite missions. It recently went through a CEOS-FRM self-assessment process aiming at assessing the level of maturity of the service in terms of instrumentation, operations, data sampling, metrology and verification. Based on this evaluation, it falls under class C, which is a good rating but also implies that further improvements are needed to reach full compliance with FRM standards, i.e., class A. Full article
Show Figures

Figure 1

18 pages, 5155 KB  
Article
Ground-Based MAX-DOAS Observations for Spatiotemporal Distribution and Transport of Atmospheric Water Vapor in Beijing
by Hongmei Ren, Ang Li, Zhaokun Hu, Hairong Zhang, Jiangman Xu and Shuai Wang
Atmosphere 2024, 15(10), 1253; https://doi.org/10.3390/atmos15101253 - 20 Oct 2024
Viewed by 1765
Abstract
Understanding the spatiotemporal distribution and transport of atmospheric water vapor in urban areas is crucial for improving mesoscale models and weather and climate predictions. This study employs Multi-Axis Differential Optical Absorption Spectroscopy to monitor the dynamic distribution and transport flux of water vapor [...] Read more.
Understanding the spatiotemporal distribution and transport of atmospheric water vapor in urban areas is crucial for improving mesoscale models and weather and climate predictions. This study employs Multi-Axis Differential Optical Absorption Spectroscopy to monitor the dynamic distribution and transport flux of water vapor in Beijing within the tropospheric layer (0–4 km) from June 2021 to May 2022. The seasonal peaks in precipitable water occur in August, reaching 39.13 mm, with noticeable declines in winter. Water vapor was primarily distributed below 2.0 km and generally decreases with increasing altitude. The largest water vapor transport flux occurs in the southeast–northwest direction, whereas the smallest occurs in the southwest–northeast direction. The maximum flux, observed at about 1.2 km in the southeast–northwest direction during summer, reaches 31.77 g/m2/s (transported towards the southeast). Before continuous rainfall events, water vapor transport, originating primarily from the southeast, concentrates below 1 km. Backward trajectory analysis indicates that during the rainy months, there was a higher proportion of southeasterly winds, especially at lower altitudes, with air masses from the southeast at 500 m accounting for 69.11%. This study shows the capabilities of MAX-DOAS for remote sensing water vapor and offers data support for enhancing weather forecasting and understanding urban climatic dynamics. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 18584 KB  
Article
Spatiotemporal Distribution, Sources, and Impact on Atmospheric Oxidation of Reactive Nitrogen Oxides in the North China Plain Agricultural Regions in Summer
by Shaocong Wei, Qianqian Hong, Wei Tan, Jian Chen, Tianhao Li, Xiaohan Wang, Jingkai Xue, Jiale Fang, Chao Liu, Aimon Tanvir, Chengzhi Xing and Cheng Liu
Remote Sens. 2024, 16(17), 3192; https://doi.org/10.3390/rs16173192 - 29 Aug 2024
Viewed by 1340
Abstract
The lack of vertical observation of reactive nitrogen oxides in agricultural areas has posed a significant challenge in fully understanding their sources and impacts on atmospheric oxidation. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations were conducted in the agricultural regions of the [...] Read more.
The lack of vertical observation of reactive nitrogen oxides in agricultural areas has posed a significant challenge in fully understanding their sources and impacts on atmospheric oxidation. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations were conducted in the agricultural regions of the North China Plain (NCP) during the summer of 2019 to measure the vertical distributions of aerosols, nitrogen dioxide (NO2), and nitrous acid (HONO). This study aimed at revealing the spatiotemporal distribution, sources, and environmental effects of reactive nitrogen oxides in the NCP agricultural areas. Our findings indicated that the vertical profiles of aerosols and NO2 exhibited a near-Gaussian distribution, with distinct peak times occurring between 8:00–10:00 and 16:00–18:00. HONO reached its maximum concentration near the surface around 8:00 in the morning and decreased exponentially with altitude. After sunrise, the concentration of HONO rapidly decreased due to photolysis. Additionally, the potential source contribution function (PSCF) was used to evaluate the potential sources of air pollutants. The results indicated that the main potential pollution sources of aerosols were located in the southern part of the Hebei, Shanxi, Shandong, and Jiangsu provinces, while the potential pollution sources of NO2 were concentrated in the Beijing–Tianjin–Hebei region. At altitudes exceeding 500 m, the heterogeneous reactions of NO2 on aerosol surfaces were identified as one of the important contributors to the formation of HONO. Furthermore, we discussed the production rate of hydroxyl radicals (OH) from HONO photolysis. It was found that the production rate of OH from HONO photolysis decreased with altitude, with peaks occurring in the morning and late afternoon. This pattern was consistent with the variations in HONO concentration, indicating that HONO was the main contributor to OH production in the agricultural regions of the NCP. This study provides a new perspective on the sources of active nitrogen in agricultural regions and their contribution to atmospheric oxidation capacity from a vertical perspective. Full article
Show Figures

Figure 1

17 pages, 2855 KB  
Article
Analysis of the Vertical Distribution and Driving Factors of Aerosol and Ozone Precursors in Huaniao Island, China, Based on Ground-Based MAX-DOAS
by Jinping Ou, Qihou Hu, Chengzhi Xing, Yizhi Zhu, Jiaxuan Feng, Xiangguang Ji, Mingzhu Zhang, Xinqi Wang, Liyuan Li, Ting Liu, Bowen Chang, Qihua Li, Hao Yin and Cheng Liu
Remote Sens. 2023, 15(21), 5103; https://doi.org/10.3390/rs15215103 - 25 Oct 2023
Cited by 4 | Viewed by 1866
Abstract
Urban air pollution has become a regional environmental problem. In order to explore whether island areas were affected by the urban development of surrounding areas, in this paper, we systematically study the vertical distribution characteristics of atmospheric components, meteorological drivers, potential pollution sources, [...] Read more.
Urban air pollution has become a regional environmental problem. In order to explore whether island areas were affected by the urban development of surrounding areas, in this paper, we systematically study the vertical distribution characteristics of atmospheric components, meteorological drivers, potential pollution sources, and the population health risks of fine particulate matter in island cities in China. The vertical profiles of three atmospheric pollutants (aerosols, NO2, and HCHO) in the lower troposphere of Huaniao Island in the East China Sea (ECS) were obtained using ground-based multi-axial differential optical absorption spectroscopy (MAX-DOAS). The results show that the aerosol extinction coefficients, NO2, and HCHO were primarily distributed at altitudes below 1 km, and the atmospheric pollutants in Zhoushan were obviously affected by high-altitude transfer. The main meteorological driving factors of aerosols, NO2, and HCHO were different at different altitudes. The key factor contributing to the high column concentrations of NO2 and HCHO in the upper air (greater than 400 m) was the transport of pollutants brought about by changes in wind speed. By exploring the main potential sources of atmospheric pollutants, it was found that the main sources of aerosols, NO2, and HCHO are coastal cities in the Yangtze River Delta, including southeast Zhejiang Province, southeast Fujian Province, Shanghai, ECS, and the Yellow Sea. Compared with aerosols and HCHO, local primary emissions are an important source of NO2, which are mainly related to industrial activities in Zhoushan Port. In addition, using the expose-response function model, the number of attributable cases of PM2.5 air pollution in Zhoushan City in 2019 accounted for 6.58% of the total population. This study enriches our understanding of the vertical distribution characteristics of atmospheric composition and health risk assessment on Chinese islands. Full article
Show Figures

Figure 1

22 pages, 5718 KB  
Article
Retrieval of Tropospheric NO2 Vertical Column Densities from Ground-Based MAX-DOAS Measurements in Lhasa, a City on the Tibetan Plateau
by Siyang Cheng, Guijuan Pu, Jianzhong Ma, Hyunkee Hong, Jun Du, Tseten Yudron and Thomas Wagner
Remote Sens. 2023, 15(19), 4689; https://doi.org/10.3390/rs15194689 - 25 Sep 2023
Cited by 9 | Viewed by 1977
Abstract
In order to investigate the abundance of and temporal variation in nitrogen dioxide (NO2) in the troposphere and validate the corresponding satellite products during a normal year and the lockdown period of coronavirus disease 2019 (COVID-19) in Lhasa, a city on [...] Read more.
In order to investigate the abundance of and temporal variation in nitrogen dioxide (NO2) in the troposphere and validate the corresponding satellite products during a normal year and the lockdown period of coronavirus disease 2019 (COVID-19) in Lhasa, a city on the Tibetan Plateau (TP), ground-based remote-sensing measurements captured by applying multi-axis differential optical absorption spectroscopy (MAX-DOAS) were recorded from August 2021 to March 2023 at the Lhasa site (91.14°E, 29.66°N; 3552.5 m altitude). The NO2 differential slant column densities (dSCDs) were retrieved from the spectra of scattered solar light at different elevation angles. Then, the tropospheric NO2 vertical column densities (VCDs) were calculated with the geometric approximation method. Based on the retrieved tropospheric NO2 VCDs, we found that the pattern of monthly variation in tropospheric NO2 VCDs in Lhasa presented two peaks, one in winter and one around May. According to the monthly means of tropospheric NO2 VCDs during the COVID-19 lockdown, the NO2 background level in Lhasa was estimated to be 0.53 × 1015 molecules·cm−2. For diurnal variations in tropospheric NO2 VCDs, the morning and evening peaks disappeared during the COVID-19 lockdown period. The east–west direction (i.e., along the river valley) was the main path of NO2 transport and dispersion in Lhasa, but the tropospheric NO2 VCDs were little dependent on the wind direction or wind speed during the COVID-19 lockdown. The correlation coefficient of tropospheric NO2 VCDs was R = 0.33 (R = 0.43), with the averaged relative deviation of −28% (99%) for the TROPOMI (GEMS) relative to ground-based MAX-DOAS. The monthly deviations of tropospheric NO2 VCDs between ground-based MAX-DOAS and the satellite showed a dependence on NO2 abundance, with the maxima of the monthly positive deviations during the COVID-19 lockdown period. The GEMS could not capture the strong and systematic diurnal variation in tropospheric NO2 VCDs in the “normal” year well. During the COVID-19 lockdown, the GEMS (>2 × 1015 molecules·cm−2) overestimated the hourly levels measured by ground-based MAX-DOAS (<1.6 × 1015 molecules·cm−2). As a whole, these results are beneficial to understanding the influences of anthropogenic activities on NO2 background levels in Lhasa and to learning the accuracy of satellite products over the TP, with its high altitude and complex terrain. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

17 pages, 5465 KB  
Article
Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China
by Fusheng Mou, Jing Luo, Qijin Zhang, Chuang Zhou, Song Wang, Fan Ye, Suwen Li and Youwen Sun
Atmosphere 2023, 14(4), 739; https://doi.org/10.3390/atmos14040739 - 19 Apr 2023
Cited by 3 | Viewed by 2050
Abstract
With the spread of the COVID-19 pandemic and the implementation of closure measures in 2020, population mobility and human activities have decreased, which has seriously impacted atmospheric quality. Huaibei City is an important coal and chemical production base in East China, which faces [...] Read more.
With the spread of the COVID-19 pandemic and the implementation of closure measures in 2020, population mobility and human activities have decreased, which has seriously impacted atmospheric quality. Huaibei City is an important coal and chemical production base in East China, which faces increasing environmental problems. The impact of anthropogenic activities on air quality in this area was investigated by comparing the COVID-19 lockdown in 2020 with the normal situation in 2021. Tropospheric NO2, HCHO and SO2 column densities were observed by ground-based multiple axis differential optical absorption spectroscopy (MAX-DOAS). In situ measurements for PM2.5, NO2, SO2 and O3 were also taken. The observation period was divided into four phases, the pre-lockdown period, phase 1 lockdown, phase 2 lockdown and the post-lockdown period. Ground-based MAX-DOAS results showed that tropospheric NO2, HCHO and SO2 column densities increased by 41, 14 and 14%, respectively, during phase 1 in 2021 vs. 2020. In situ results showed that NO2 and SO2 increased by 59 and 11%, respectively, during phase 1 in 2021 vs. 2020, but PM2.5 and O3 decreased by 15 and 17%, respectively. In the phase 2 period, due to the partial lifting of control measures, the concentration of pollutants did not significantly change. The weekly MAX-DOAS results showed that there was no obvious weekend effect of pollutants in the Huaibei area, and NO2, HCHO and SO2 had obvious diurnal variation characteristics. In addition, the relationship between the column densities and wind speed and direction in 2020 and 2021 was studied. The results showed that, in the absence of traffic control in 2021, elevated sources in the Eastern part of the city emitted large amounts of NO2. The observed ratios of HCHO to NO2 suggested that tropospheric ozone production involved NOX-limited scenarios. The correlation analysis between HCHO and different gases showed that HCHO mainly originated from primary emission sources related to SO2. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

19 pages, 4607 KB  
Article
Seasonal Investigation of MAX-DOAS and In Situ Measurements of Aerosols and Trace Gases over Suburban Site of Megacity Shanghai, China
by Aimon Tanvir, Muhammad Bilal, Sanbao Zhang, Osama Sandhu, Ruibin Xue, Md. Arfan Ali, Jian Zhu, Zhongfeng Qiu, Shanshan Wang and Bin Zhou
Remote Sens. 2022, 14(15), 3676; https://doi.org/10.3390/rs14153676 - 1 Aug 2022
Cited by 4 | Viewed by 3987
Abstract
Shanghai has gained much attention in terms of air quality research owing to its importance to economic capital and its huge population. This study utilizes ground-based remote sensing instrument observations, namely by Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), and in situ measurements [...] Read more.
Shanghai has gained much attention in terms of air quality research owing to its importance to economic capital and its huge population. This study utilizes ground-based remote sensing instrument observations, namely by Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), and in situ measurements from the national air quality monitoring platform for various atmospheric trace gases including Nitrogen dioxide (NO2), Sulfur dioxide (SO2), Ozone (O3), Formaldehyde (HCHO), and Particulate Matter (PM; PM10: diameter ≤ 10 µm, and PM2.5: diameter ≤ 2.5 µm) over Shanghai from June 2020 to May 2021. The results depict definite diurnal patterns and strong seasonality in HCHO, NO2, and SO2 concentrations with maximum concentrations during winter for NO2 and SO2 and in summer for HCHO. The impact of meteorology and biogenic emissions on pollutant concentrations was also studied. HCHO emissions are positively correlated with temperature, relative humidity, and the enhanced vegetation index (EVI), while both NO2 and SO2 depicted a negative correlation to all these parameters. The results from diurnal to seasonal cycles consistently suggest the mainly anthropogenic origin of NO2 and SO2, while the secondary formation from the photo-oxidation of volatile organic compounds (VOCs) and substantial contribution of biogenic emissions for HCHO. Further, the sensitivity of O3 formation to its precursor species (NOx and VOCs) was also determined by employing HCHO and NO2 as tracers. The sensitivity analysis depicted that O3 formation in Shanghai is predominantly VOC-limited except for summer, where a significant percentage of O3 formation lies in the transition regime. It is worth mentioning that seasonal variation of O3 is also categorized by maxima in summer. The interdependence of criteria pollutants (O3, SO2, NO2, and PM) was studied by employing the Pearson’s correlation coefficient, and the results suggested complex interdependence among the pollutant species in different seasons. Lastly, potential source contribution function (PSCF) analysis was performed to have an understanding of the contribution of different source areas towards atmospheric pollution. PSCF analysis indicated a strong contribution of local sources on Shanghai’s air quality compared to regional sources. This study will help policymakers and stakeholders understand the complex interactions among the atmospheric pollutants and provide a baseline for designing effective control strategies to combat air pollution in Shanghai. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosols and Gases in Cities II)
Show Figures

Figure 1

15 pages, 2213 KB  
Article
Temporal Variation of NO2 and HCHO Vertical Profiles Derived from MAX-DOAS Observation in Summer at a Rural Site of the North China Plain and Ozone Production in Relation to HCHO/NO2 Ratio
by Siyang Cheng, Junli Jin, Jianzhong Ma, Jinguang Lv, Shuyin Liu and Xiaobin Xu
Atmosphere 2022, 13(6), 860; https://doi.org/10.3390/atmos13060860 - 25 May 2022
Cited by 9 | Viewed by 3140
Abstract
We performed a comprehensive and intensive field experiment including ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurement at Raoyang (115°44′ E, 38°14′ N; 20 m altitude) in summer (13 June–20 August) 2014. The NO2 and HCHO profiles retrieved by MAX-DOAS take on [...] Read more.
We performed a comprehensive and intensive field experiment including ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurement at Raoyang (115°44′ E, 38°14′ N; 20 m altitude) in summer (13 June–20 August) 2014. The NO2 and HCHO profiles retrieved by MAX-DOAS take on different vertical distribution shapes, with the former declining with the increasing altitude and the latter having an elevated layer. The average levels of vertical column densities (VCDs) and near-surface volume mixing ratios (VMRs) were 1.02 ± 0.51 × 1016 molec·cm−2 and 3.23 ± 2.70 ppb for NO2 and 2.32 ± 0.56 × 1016 molec·cm−2 and 5.62 ± 2.11 ppb for HCHO, respectively. The NO2 and HCHO levels are closely connected with meteorological conditions, with the larger NO2 VCDs being associated with lower temperature, higher relative humidity (RH) and lower planetary boundary layer height (PBLH). With respect to the diurnal variations of vertical distribution, the NO2 in the residual layer gradually disappeared from 1.2 km height to the surface during the period of 7:00–11:00 Beijing time (BJ), and the near-surface NO2 had larger VMRs in the early morning and evening than in the later morning and afternoon. An elevated HCHO layer was observed to occur persistently with the lifted layer height rising from ~0.5 km to ~1.0 km before 10:00 BJ; the near-surface HCHO VMRs gradually increased and peaked around 10:00 BJ. The ratios of HCHO to NO2 (RHCHO-NO2) were generally larger than two in the boundary layer from 11:00 BJ until 19:00 BJ, the time period when ozone photochemistry was most active. Thus, ozone (O3) production was mainly in the NOx-limited regime during the observation campaign, which was closely related to relatively high temperatures and low RH. The O3 production regimes also changed with the wind’s direction. These results are significant to reveal the formation mechanism of O3 pollution and develop strategies for controlling the O3 photochemical pollution over the North China Plain. Full article
(This article belongs to the Special Issue Remote Sensing and Multiple Observations of Air Quality in China)
Show Figures

Figure 1

22 pages, 9069 KB  
Article
Air Quality in Two Northern Greek Cities Revealed by Their Tropospheric NO2 Levels
by Maria-Elissavet Koukouli, Andreas Pseftogkas, Dimitris Karagkiozidis, Ioanna Skoulidou, Theano Drosoglou, Dimitrios Balis, Alkiviadis Bais, Dimitrios Melas and Nikos Hatzianastassiou
Atmosphere 2022, 13(5), 840; https://doi.org/10.3390/atmos13050840 - 20 May 2022
Cited by 14 | Viewed by 3824
Abstract
In this article, we aim to show the capabilities, benefits, as well as restrictions, of three different air quality-related information sources, namely the Sentinel-5Precursor TROPOspheric Monitoring Instrument (TROPOMI) space-born observations, the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based measurements and the LOng Term [...] Read more.
In this article, we aim to show the capabilities, benefits, as well as restrictions, of three different air quality-related information sources, namely the Sentinel-5Precursor TROPOspheric Monitoring Instrument (TROPOMI) space-born observations, the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based measurements and the LOng Term Ozone Simulation-EURopean Operational Smog (LOTOS-EUROS) chemical transport modelling system simulations. The tropospheric NO2 concentrations between 2018 and 2021 are discussed as air quality indicators for the Greek cities of Thessaloniki and Ioannina. Each dataset was analysed in an autonomous manner and, without disregarding their differences, the common air quality picture that they provide is revealed. All three systems report a clear seasonal pattern, with high NO2 levels during wintertime and lower NO2 levels during summertime, reflecting the importance of photochemistry in the abatement of this air pollutant. The spatial patterns of the NO2 load, obtained by both space-born observations and model simulations, show the undeniable variability of the NO2 load within the urban agglomerations. Furthermore, a clear diurnal variability is clearly identified by the ground-based measurements, as well as a Sunday minimum NO2 load effect, alongside the rest of the sources of air quality information. Within their individual strengths and limitations, the space-borne observations, the ground-based measurements, and the chemical transport modelling simulations demonstrate unequivocally their ability to report on the air quality situation in urban locations. Full article
(This article belongs to the Special Issue Urban Climate and Air Quality in Mediterranean Cities)
Show Figures

Figure 1

15 pages, 6343 KB  
Article
Ground-Based MAX-DOAS Measurements of Tropospheric Aerosols, NO2, and HCHO Distributions in the Urban Environment of Shanghai, China
by Haoyue Wang, Wanlin Wei, Huizheng Che, Xiao Tang, Jianchun Bian, Ke Yu and Weiguo Wang
Remote Sens. 2022, 14(7), 1726; https://doi.org/10.3390/rs14071726 - 3 Apr 2022
Cited by 4 | Viewed by 3023
Abstract
Aerosol extinction profiles at 550 nm were retrieved by applying multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lookup table. Then the tropospheric NO2 and HCHO vertical column densities were retrieved using a two-step method from 28 July to 5 August of 2015 [...] Read more.
Aerosol extinction profiles at 550 nm were retrieved by applying multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lookup table. Then the tropospheric NO2 and HCHO vertical column densities were retrieved using a two-step method from 28 July to 5 August of 2015 in Shanghai. The retrieved results were compared with the satellite products, and then their diurnal variation was observed. A consistency check was performed before the inversion to obtain a correction factor. Based on the sensitivity of geometric angles to oxygen dimer air mass factor (O4 AMF, AMF is the ratio of the slanted column density to the vertical column density), the parameterization scheme of geometric angles in the lookup table is optimized. The results show that the aerosol increased significantly in the afternoon. The diurnal variation of tropospheric NO2 and HCHO vertical column densities (VCDs) are bimodal and unimodal patterns respectively, and their values are higher than those of GOME-2 and OMI satellite products. A process of aerosol reduction and recovery are related to ground particulates and meteorological elements. The chemical sensitivity of local ozone production also has a clear diurnal variation. Full article
Show Figures

Figure 1

Back to TopTop