Ground-Based MAX-DOAS Observations for Spatiotemporal Distribution and Transport of Atmospheric Water Vapor in Beijing
Abstract
:1. Introduction
2. Instruments and Methods
2.1. MAX-DOAS Measurement
2.2. Profile Retrieval
2.3. Transport Flux Calculation
2.4. MAX-DOAS Comparison Verification
2.4.1. Comparison with AERONET
2.4.2. Comparison with ECMWF ERA5
3. Results and Discussions
3.1. Precipitable Water Variation
3.2. Water Vapor Vertical Distribution and Transport Flux
3.3. Water Vapor Variation Before Precipitation
3.4. Backward Trajectory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, R.P. The role of water vapour in Earth’s energy flows. Surv. Geophys. 2012, 33, 557–564. [Google Scholar] [CrossRef]
- Salamalikis, V.; Vamvakas, I.; Gueymard, C.A.; Kazantzidis, A. Atmospheric water vapor radiative effects on shortwave radiation under clear skies: A global spatiotemporal analysis. Atmos. Res. 2021, 251, 105418. [Google Scholar] [CrossRef]
- Sun, L.; Shen, B.; Sui, B. A study on water vapor transport and budget of heavy rain in Northeast China. Adv. Atmos. Sci. 2010, 27, 1399–1414. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Jee, J.-B.; Lim, B. Investigating the Influence of Water Vapor on Heavy Rainfall Events in the Southern Korean Peninsula. Remote Sens. 2023, 15, 340. [Google Scholar] [CrossRef]
- Du, R.; Song, J.; Huang, X.; Wang, Q.; Zhang, C.; Brousse, O.; Chan, P.W. High-resolution regional modeling of urban moisture island: Mechanisms and implications on thermal comfort. Build. Environ. 2022, 207, 108542. [Google Scholar] [CrossRef]
- Huang, X.; Swain, D.L.; Hall, A.D. Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Sci. Adv. 2020, 6, eaba1323. [Google Scholar] [CrossRef]
- Ssenyunzi, R.C.; Oruru, B.; D’ujanga, F.M.; Realini, E.; Barindelli, S.; Tagliaferro, G.; von Engeln, A.; van de Giesen, N. Performance of ERA5 data in retrieving Precipitable Water Vapour over East African tropical region. Adv. Space Res. 2020, 65, 1877–1893. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, G.; Gao, H. Characteristics of Summer Hourly Extreme Precipitation Events and Its Local Environmental Influencing Factors in Beijing under Urbanization Background. Atmosphere 2021, 12, 632. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, H.; Li, Y.; Yu, Y.; Duan, Y.; Xu, X.; Chen, L. Locally opposite responses of the 2023 Beijing–Tianjin–Hebei extreme rainfall event to global anthropogenic warming. NPJ Clim. Atmos. Sci. 2024, 7, 38. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Tian, Y.; Xie, D.; Cao, Y.; Mei, Y.; Li, T.; Wang, G.; Zhong, D. On the moisture transport regimes for extreme precipitation over North China. Atmos. Res. 2024, 300, 107254. [Google Scholar] [CrossRef]
- Song, X.; Tang, Y.; Zhang, Y.; Ma, Y.; Han, D.; Bu, H.; Yang, L.; Liu, F. Using stable isotopes to study vapor transport of continuous precipitation in Beijing. Adv. Water Sci. 2017, 28, 488–495. [Google Scholar]
- Jiang, X.; Li, J.; Li, Z.; Xue, Y.; Li, J. Evaluation of Environmental Moisture from NWP Models with Measurements from Advanced Geostationary Satellite Imager—A Case Study. Remote Sens. 2020, 12, 670. [Google Scholar] [CrossRef]
- Trent, T.; Schroeder, M.; Remedios, J. GEWEX Water Vapor Assessment: Validation of AIRS Tropospheric Humidity Profiles With Characterized Radiosonde Soundings. J. Geophys. Res. Atmos. 2019, 124, 886–906. [Google Scholar] [CrossRef]
- Trent, T.; Siddans, R.; Kerridge, B.; Schroder, M.; Scott, N.A.; Remedios, J. Evaluation of tropospheric water vapour and temperature profiles retrieved from MetOp-A by the Infrared and Microwave Sounding scheme. Atmos. Meas. Tech. 2023, 16, 1503–1526. [Google Scholar] [CrossRef]
- Carroll, B.J.; Nehrir, A.R.; Kooi, S.A.; Collins, J.E.; Barton-Grimley, R.A.; Notari, A.; Harper, D.B.; Lee, J. Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): Retrieval framework and first results. Atmos. Meas. Tech. 2022, 15, 605–626. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Machado, L.A.T.; de Souza, E.M.; Campos, T.B. Global Positioning System precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteorol. Appl. 2019, 26, 49–63. [Google Scholar] [CrossRef]
- Dimitropoulou, E.; Hendrick, F.; Friedrich, M.M.; Tack, F.; Pinardi, G.; Merlaud, A.; Fayt, C.; Hermans, C.; Fierens, F.; Van Roozendael, M. Horizontal distribution of tropospheric NO2 and aerosols derived by dual-scan multi-wavelength multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Belgium. Atmos. Meas. Tech. 2022, 15, 4503–4529. [Google Scholar] [CrossRef]
- Qian, Y.; Luo, Y.; Dou, K.; Zhou, H.; Xi, L.; Yang, T.; Zhang, T.; Si, F. Retrieval of tropospheric ozone profiles using ground-based MAX-DOAS. Sci. Total Environ. 2023, 857, 159341. [Google Scholar] [CrossRef]
- Ryan, R.G.; Marais, E.A.; Gershenson-Smith, E.; Ramsay, R.; Muller, J.-P.; Tirpitz, J.-L.; Friess, U. Measurement report: MAX-DOAS measurements characterise Central London ozone pollution episodes during 2022 heatwaves. Atmos. Chem. Phys. 2023, 23, 7121–7139. [Google Scholar] [CrossRef]
- Lin, H.; Liu, C.; Xing, C.; Hu, Q.; Hong, Q.; Liu, H.; Li, Q.; Tan, W.; Ji, X.; Wang, Z.; et al. Validation of Water Vapor Vertical Distributions Retrieved from MAX-DOAS over Beijing, China. Remote Sens. 2020, 12, 3193. [Google Scholar] [CrossRef]
- Ren, H.; Li, A.; Xie, P.; Hu, Z.; Xu, J.; Huang, Y.; Li, X.; Zhong, H.; Tian, X.; Ren, B.; et al. Investigation of the Influence of Water Vapor on Heavy Pollution and Its Relationship With AOD Using MAX-DOAS on the Coast of the Yellow Sea. J. Geophys. Res. Atmos. 2021, 126, e2020JD034143. [Google Scholar] [CrossRef]
- Ren, H.; Li, A.; Xie, P.; Hu, Z.; Xu, J.; Huang, Y.; Li, X.; Zhong, H.; Tian, X.; Ren, B.; et al. Estimation of the Precipitable Water and Water Vapor Fluxes in the Coastal and Inland Cities of China Using MAX-DOAS. Remote Sens. 2021, 13, 1675. [Google Scholar] [CrossRef]
- Lampel, J.; Poehler, D.; Tschritter, J.; Friess, U.; Platt, U. On the relative absorption strengths of water vapour in the blue wavelength range. Atmos. Meas. Tech. 2015, 8, 4329–4346. [Google Scholar] [CrossRef]
- Wang, Y.; Apituley, A.; Bais, A.; Beirle, S.; Benavent, N.; Borovski, A.; Bruchkouski, I.; Chan, K.L.; Donner, S.; Drosoglou, T.; et al. Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign. Atmos. Meas. Tech. 2020, 13, 5087–5116. [Google Scholar] [CrossRef]
- Zhang, H.; Li, A.; Hu, Z.; Guo, J.; Yun, L.; Zhang, M.; Ren, H.; Zhong, H.; Xu, J. Evaluation and measurement of tropospheric glyoxal retrieved from MAX-DOAS in Shenzhen, China. Sci. Total Environ. 2023, 878, 162727. [Google Scholar] [CrossRef]
- Wang, Y.; Lampel, J.; Xie, P.; Beirle, S.; Li, A.; Wu, D.; Wagner, T. Ground-based MAX-DOAS observations of tropospheric aerosols, NO2, SO2 and HCHO in Wuxi, China, from 2011 to 2014. Atmos. Chem. Phys. 2017, 17, 2189–2215. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, S.; Huo, J.; Mu, X.; Wang, P.; Jia, S.; Fan, X.; Duan, M. Retrievals of precipitable water vapor and aerosol optical depth from direct sun measurements with EKO MS711 and MS712 spectroradiometers. Atmos. Meas. Tech. 2023, 16, 1539–1549. [Google Scholar] [CrossRef]
- Yan, Y.; Miao, Y.; Guo, J.; Liu, S.; Liu, H.; Lou, M.; Liu, L.; Chen, D.; Xue, W.; Zhai, P. Synoptic patterns and sounding-derived parameters associated with summertime heavy rainfall in Beijing. Int. J. Climatol. 2019, 39, 1476–1489. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, F.; Hewson, T.D. Object-Oriented Composite Analysis of Warm-Sector Rainfall in North China. Mon. Weather Rev. 2020, 148, 2719–2735. [Google Scholar] [CrossRef]
- Song, X.; Zou, X.; Mo, Y.; Zhang, J.; Zhang, C.; Tian, Y. Nonstationary bayesian modeling of precipitation extremes in the Beijing-Tianjin-Hebei Region, China. Atmos. Res. 2020, 242, 105006. [Google Scholar] [CrossRef]
- Ullah, W.; Karim, A.; Ullah, S.; Rehman, A.-U.; Bibi, T.; Wang, G.; Ullah, S.; Bhatti, A.S.; Ali, G.; Abbas, A.; et al. An increasing trend in daily monsoon precipitation extreme indices over Pakistan and its relationship with atmospheric circulations. Front. Environ. Sci. 2023, 11, 1228817. [Google Scholar] [CrossRef]
- Gong, S.; Hagan, D.F.; Wu, X.; Wang, G.J.I.J.o.R.S. Spatio-temporal analysis of precipitable water vapour over northwest china utilizing MERSI/FY-3A products. Int. J. Remote Sens. 2018, 39, 3094–3110. [Google Scholar] [CrossRef]
- Li, Z.; Abulikemu, A.; Zhu, K.; Mamtimin, A.; Zeng, Y.; Li, J.; Abulimiti, A.; Kadier, Z.; Abuduaini, A.; Li, C.; et al. Diurnal Variation Characteristics of Summer Precipitation and Related Statistical Analysis in the Ili Region, Xinjiang, Northwest China. Remote Sens. 2023, 15, 3954. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Smith, J.A.; Bou-Zeid, E. On the Climatology of Precipitable Water and Water Vapor Flux in the Mid-Atlantic Region of the United States. J. Hydrometeorol. 2015, 16, 70–87. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, J.; Liu, R.; Zhou, J.; Liu, W. The Characteristics of Water Vapor Transport and Its Linkage with Summer Precipitation over the Source Region of the Three Rivers. J. Hydrometeorol. 2022, 23, 441–455. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, P. Diurnal Characteristics in Summer Water Vapor Budget and Transport over the Tibetan Plateau. Atmosphere 2023, 14, 322. [Google Scholar] [CrossRef]
- Zhang, R.; Chu, Q.; Zuo, Z.; Qi, Y. Summertime Moisture Sources and Transportation Pathways for China and Associated Atmospheric Circulation Patterns. Front. Earth Sci. 2021, 9, 756943. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, H.; Zhang, X.; Wei, W.; Li, Q.; Wu, B.; Cai, X.; Song, Y.; Kang, L.; Zhu, T. Turbulence barrier effect during heavy haze pollution events. Sci. Total Environ. 2021, 753, 142286. [Google Scholar] [CrossRef]
- Lou, H.; Zhang, J.; Yang, S.; Cai, M.; Ren, X.; Luo, Y.; Li, C. Exploring the Relationships of Atmospheric Water Vapor Contents and Different Land Surfaces in a Complex Terrain Area by Using Doppler Radar. Atmosphere 2021, 12, 528. [Google Scholar] [CrossRef]
- Bedka, K.M.; Nehrir, A.R.; Kavaya, M.; Barton-Grimley, R.; Beaubien, M.; Carroll, B.; Collins, J.; Cooney, J.; Emmitt, G.D.; Greco, S.; et al. Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign. Atmos. Meas. Tech. 2021, 14, 4305–4334. [Google Scholar] [CrossRef]
- Oigawa, M.; Realini, E.; Tsuda, T. Study of Water Vapor Variations Associated with Meso-γ Scale Convection: Comparison between GNSS and Non-Hydrostatic Model Data. SOLA—Sci. Online Lett. Atmos. 2015, 11, 27–30. [Google Scholar] [CrossRef]
- Jin, M.S.; Li, Y.; Su, D. Urban-Induced Mechanisms for an Extreme Rainfall Event in Beijing China: A Satellite Perspective. Climate 2015, 3, 193–209. [Google Scholar] [CrossRef]
- Kebacho, L.L. Climatological characteristics and interannual variability of the leading mode of eastern African precipitation in January and February. Int. J. Climatol. 2024, 44, 1371–1390. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
Instrument elevation | 1°, 2°, 3°, 4°, 5°, 6°, 8°, 10°, 20°, 30°, 90° |
Instrument azimuth | 149° |
Asymmetric factor | 0.66 |
Prior profile covariance Matrix | 0.3 |
Single scattered albedo | 0.91 |
Maximum iterations | 10 |
Aerosol modeling wavelength | 360 nm |
Water vapor simulation wavelength | 442 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Li, A.; Hu, Z.; Zhang, H.; Xu, J.; Wang, S. Ground-Based MAX-DOAS Observations for Spatiotemporal Distribution and Transport of Atmospheric Water Vapor in Beijing. Atmosphere 2024, 15, 1253. https://doi.org/10.3390/atmos15101253
Ren H, Li A, Hu Z, Zhang H, Xu J, Wang S. Ground-Based MAX-DOAS Observations for Spatiotemporal Distribution and Transport of Atmospheric Water Vapor in Beijing. Atmosphere. 2024; 15(10):1253. https://doi.org/10.3390/atmos15101253
Chicago/Turabian StyleRen, Hongmei, Ang Li, Zhaokun Hu, Hairong Zhang, Jiangman Xu, and Shuai Wang. 2024. "Ground-Based MAX-DOAS Observations for Spatiotemporal Distribution and Transport of Atmospheric Water Vapor in Beijing" Atmosphere 15, no. 10: 1253. https://doi.org/10.3390/atmos15101253
APA StyleRen, H., Li, A., Hu, Z., Zhang, H., Xu, J., & Wang, S. (2024). Ground-Based MAX-DOAS Observations for Spatiotemporal Distribution and Transport of Atmospheric Water Vapor in Beijing. Atmosphere, 15(10), 1253. https://doi.org/10.3390/atmos15101253