Analysis of the Vertical Distribution and Driving Factors of Aerosol and Ozone Precursors in Huaniao Island, China, Based on Ground-Based MAX-DOAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation Site
2.2. Instrument and Vertical Profile Retrieval Method
2.3. Potential Source Analysis of Atmospheric Pollutants
2.4. Health Risk Assessment
2.5. Ancillary Data
3. Results
3.1. Data Verification
3.2. Vertical Distribution Characteristics of Pollutants
3.3. Vertical Distribution of Meteorological Factors
3.4. Effects of Air Pollution on Human Health
4. Discussion
4.1. Vertical Distribution of Meteorological Factors
4.2. Potential Sources of Aerosol, NO2, and HCHO
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadiktsis, I.; Galvao, M.F.O.; Mustafa, M.; Toublanc, M.; Endirlik, B.Ü.; Silvergren, S.; Johansson, C.; Dreij, K. A yearlong monitoring campaign of polycyclic aromatic compounds andother air pollutants at three sites in Sweden: Source identification, in vitrotoxicity and human health risk assessment. Chemosphere 2023, 332, 138862. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, X.; Feng, Z.; Zhang, Y.; Yu, M. Spatiotemporal Variations of Aerosol Optical Depth and the Spatial Heterogeneity Relationship of Potential Factors Based on the Multi-Scale Geographically Weighted Regression Model in Chinese National-Level Urban Agglomerations. Remote Sens. 2023, 15, 4613. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef]
- Xu, S.; Wang, S.; Xia, M.; Lin, H.; Xing, C.; Ji, X.; Su, W.; Tan, W.; Liu, C.; Hu, Q. Observations by Ground-Based MAX-DOAS of the Vertical Characters of Winter Pollution and the Influencing Factors of HONO Generation in Shanghai, China. Remote Sens. 2021, 13, 3518. [Google Scholar] [CrossRef]
- Li, N.; Zhang, H.R.; Zhu, S.H.; Liao, H.; Hu, J.L.; Tang, K.Q.; Feng, W.H.; Zhang, R.H.; Shi, C.; Xu, H.M.; et al. Secondary PM2.5 dominates aerosol pollution in the Yangtze River Delta region: Environmental and health effects of the Clean air Plan. Environ. Int. 2023, 171, 107725. [Google Scholar] [CrossRef]
- Tian, X.; Xie, P.H.; Xu, J.; Li, A.; Wang, Y.; Qin, M.; Hu, Z.K. Long-term observations of tropospheric NO2, SO2 and HCHO by MAX-DOAS in Yangtze River Delta area, China. J. Environ. Sci. 2018, 71, 207–221. [Google Scholar] [CrossRef]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Gehring, U.; Janssen, N.A.H. Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health. Eniron. Int. 2019, 129, 525–537. [Google Scholar] [CrossRef]
- Gignac, F.; Righi, V.; Toran, R.; Errandonea, L.P.; Ortiz, R.; Mijling, B.; Naranjo, A.; Nieuwenhuijsen, M.; Creus, J.; Basagaña, X. Short-term NO2 exposure and cognitive and mental health: A panel study based on a citizen science project in Barcelona, Spain. Environ. Int. 2022, 164, 107284. [Google Scholar] [CrossRef]
- Fan, J.C.; Wang, T.J.; Wang, Q.G.; Ma, D.Y.; Li, Y.S.; Zhou, M.Q.; Wang, T. Assessment of HCHO in Beijing during 2009 to 2020 using satellite observation and numerical model: Spatial characteristic and impact factor. Sci. Total Environ. 2023, 894, 165050. [Google Scholar] [CrossRef]
- Su, W.J.; Hu, Q.H.; Chen, Y.J.; Lin, J.N.; Zhang, C.X.; Liu, C. Inferring global surface HCHO concentrations from multisource hyperspectral satellites and their application to HCHO-related global cancer burden estimation. Environ. Int. 2022, 170, 107600. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, F.; Feng, S.Z.; Zheng, Y.H.; Cai, Z.; Lyu, X.P. Impact of weather and emission changes on NO2 concentrations in China during 2014–2019. Environ. Pollut. 2020, 269, 116163. [Google Scholar] [CrossRef] [PubMed]
- Notario, A.; Gutiérrez-Álvarez, I.; Adame, J.A. Atmospheric benzene measurements in the main metropolitan and industrial areas of Spain from 2014 to 2017. Atmos. Res. 2020, 238, 104896. [Google Scholar] [CrossRef]
- Xue, J.X.; Zhao, T.; Luo, Y.F.; Miao, C.K.; Su, P.J.; Liu, F.; Zhang, G.H.; Qin, S.D.; Song, Y.T.; Bu, N.S.; et al. Identification of ozone sensitivity for NO2 and secondary HCHO based on MAX-DOAS measurements in northeast China. Environ. Int. 2022, 160, 107048. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Gao, Y.G.; Li, Q.B.; He, J.; Liu, Y.; Duan, K.Q.; Xu, X.J.; Ji, D.S. Maritime and coastal observations of ambient PM2.5 and its elemental compositions in the Bohai Bay of China during spring and summer: Levels, spatial distribution and source apportionment. Atmos. Res. 2023, 293, 106897. [Google Scholar] [CrossRef]
- Feng, T.; Liu, L.; Zhao, S.Y. Impacts of haze and nitrogen oxide alleviation on summertime ozone formation: A modeling study over the Yangtze River Delta, China. Environ. Pollut. 2023, 335, 122347. [Google Scholar] [CrossRef]
- Gao, C.Y.; Xing, C.Z.; Tan, W.; Lin, H.; Bu, N.S.; Xue, J.X.; Liu, F.; Liu, W.Q. Vertical characteristics and potential sources of aerosols over northeast China using ground-based MAX-DOAS. Atmos. Pollut. Res. 2023, 14, 101691. [Google Scholar] [CrossRef]
- Requia, W.J.; Higgins, C.D.; Adams, M.D.; Mohamed, M.; Koutrakis, P. The health impacts of weekday traffic: A health risk assessment of PM2.5 emissions during congested periods. Environ. Int. 2018, 111, 164–176. [Google Scholar] [CrossRef]
- Sheng, L.; Qin, M.; Li, L.; Wang, C.; Gong, K.; Liu, T.; Li, J.; Hu, J. Impacts of emissions along the lower Yangtze River on air quality and public health in the Yangtze River delta, China. Atmos. Pollut. Res. 2022, 13, 101420. [Google Scholar] [CrossRef]
- Tan, W.; Zhao, S.H.; Liu, C.; Chan, K.L.; Xie, Z.Q.; Zhu, Y.; Su, W.J.; Zhang, C.X.; Liu, H.R.; Xing, C.Z.; et al. Estimation of winter time NOx emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations. Atmos. Environ. 2019, 200, 228–242. [Google Scholar] [CrossRef]
- Ou, J.P.; Hu, Q.H.; Liu, H.R.; Hong, Q.Q.; Wang, X.Q.; Xu, S.Q.; Wang, Z.; Liu, W.Q. Characteristic Analysis of Continuous New Particle Formation Events in Hefei: A Case Study of the May Day Holiday in China. Ecotox. Environ. Saf. 2021, 220, 112329. [Google Scholar] [CrossRef]
- Reddy, K.R.O.; Zhang, X.Y.; Bi, L. Seasonal aerosol variations over a coastal city, Zhoushan, China from CALIPSO observations. Atmos. Res. 2019, 218, 117–128. [Google Scholar] [CrossRef]
- Su, W.J.; Liu, C.; Hu, Q.H.; Zhao, S.F.; Sun, Y.W.; Wang, W.; Zhu, Y.Z.; Liu, J.G.; Kim, J. Primary and secondary sources of ambient formaldehyde in the Yangtze River Delta based on ozone mapping and profiler suite (OMPS) observations. Atmos. Chem. Phys. 2019, 19, 6717–6736. [Google Scholar] [CrossRef]
- Wang, F.J.; Chen, Y.; Meng, X.; Fu, J.P.; Wang, B. The contribution of anthropogenic sources to the aerosols over East China Sea. Atmos. Environ. 2016, 127, 22–33. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Zhou, S.Q.; Li, H.W.; Wang, F.H.; Yang, T.J. The influence of terrestrial transport on visibility and aerosol properties over the coastal East China Sea. Sci. Total Environ. 2019, 649, 652–660. [Google Scholar] [CrossRef]
- Xue, R.B.; Wang, S.S.; Li, D.R.; Zou, Z.; Chan, K.L.; Valks, P.; Saiz-Lopez, A.; Zhou, B. Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017. J. Clean. Prod. 2020, 258, 120563. [Google Scholar] [CrossRef]
- Wu, C.H.; Yuan, C.S.; Yen, P.H.; Yeh, M.J.; Soong, K.Y. Diurnal and seasonal variation, chemical characteristics, and source identification of marine fine particles at two remote islands in South China Sea: A superimposition effect of local emissions and long-range transport. Atmos. Environ. 2022, 270, 118889. [Google Scholar] [CrossRef]
- Hu, Q.H.; Liu, C.; Li, Q.H.; Liu, T.; Ji, X.G.; Zhu, Y.Z.; Xing, C.Z.; Liu, H.R.; Tan, W.; Gao, M. Vertical profiles of the transport fluxes of aerosol and its precursors between Beijing and its southwest cities. Environ. Pollut. 2022, 312, 119988. [Google Scholar] [CrossRef]
- Fan, J.; Han, B.; Varble, A.; Morrison, H.; North, K.; Kollias, P.; Chen, B.; Dong, X.; Giangrande, S.E.; Khain, A. Cloud-resolving Model Intercomparison of an MC3E Squall Line Case: Part I—Convective Updrafts. J. Geophys. Res.-Atmos. 2017, 122, 9351–9378. [Google Scholar] [CrossRef]
- Shan, Y.; Shi, H.; Fan, J.; Lin, L.; Gao, L.; He, C.; Gao, M.; Miao, L.; Zhang, L.; Xia, X. Revealing Bias of Cloud Radiative Effect in WRF Simulation: Bias Quantification and Source Attribution. J. Geophys. Res.-Atmos. 2022, 127, e2021JD036319. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; McTaggart-Cowan, R. Sedimentation-Induced Errors in Bulk Microphysics Schemes. J. Atmos. Sci. 2010, 67, 3931–3948. [Google Scholar] [CrossRef]
- Lin, L.; Fu, Q.; Liu, X.; Shan, Y.; Giangrande, S.E.; Elsaesser, G.S.; Yang, K.; Wang, D. Improved Convective Ice Microphysics Parameterization in the NCAR CAM Model. J. Geophys. Res.-Atmos. 2021, 126, e2020JD034157. [Google Scholar] [CrossRef]
- Lin, L.; Liu, X.; Fu, Q.; Shan, Y. Climate Impacts of Convective Cloud Microphysics in NCAR CAM5. J. Climate 2023, 36, 3183–3202. [Google Scholar] [CrossRef]
- Shan, Y.; Wilcox, E.M.; Gao, L.; Lin, L.; Mitchell, D.L.; Yin, Y.; Zhao, T.; Zhang, L.; Shi, H.; Gao, M. Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes. J. Atmos. Sci. 2020, 77, 513–529. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, X.; Lin, L.; Ke, Z.; Lu, Z.; Tilmes, S.; Gao, L.; Yu, P. The Role of In-Cloud Wet Removal in Simulating Aerosol Vertical Profiles and Cloud Radiative Forcing. J. Geophys. Res.-Atmos. 2023, 128, D038564. [Google Scholar] [CrossRef]
- Ghan, S.J.; Abdul-Razzak, H.; Nenes, A.; Ming, Y.; Liu, X.; Ovchinnikov, M.; Shipway, B.; Meskhidze, N.; Xu, J.; Shi, X. Droplet Nucleation: Physically-Based Parameterizations and Comparative Evaluation. J. Adv. Model. Earth Syst. 2011, 3. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Su, H.; Shan, Y.; Gao, R. The Characteristics of Atmospheric Ice Nuclei Measured at the Top of Huangshan (the Yellow Mountains) in Southeast China Using a Newly Built Static Vacuum Water Vapor Diffusion Chamber. Atmos. Res. 2015, 153, 200–208. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Wang, X.; Gao, R.; Yuan, L.; Chen, K.; Shan, Y. The Measurement and Parameterization of Ice Nucleating Particles in Different Backgrounds of China. Atmos. Res. 2016, 181, 72–80. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, Y.; Lin, Z.; Han, Y.; Hao, J.; Yuan, L.; Chen, K.; Chen, J.; Kong, S.; Shan, Y. Observation of Aerosol Number Size Distribution and New Particle Formation at a Mountainous Site in Southeast China. Sci. Total Environ. 2017, 575, 309–320. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, T.; Gong, S.; Kong, S.; Tang, L.; Liu, D.; Wang, Y.; Jin, L.; Shan, Y.; Tan, C. Updated Emission Inventories of Power Plants in Simulating Air Quality during Haze Periods over East China. Atmos. Chem. Phys. 2018, 18, 2065–2079. [Google Scholar] [CrossRef]
- Yu, P.; Froyd, K.D.; Portmann, R.W.; Toon, O.B.; Freitas, S.R.; Bardeen, C.G.; Brock, C.; Fan, T.; Gao, R.; Katich, J.M. Efficient In-Cloud Removal of Aerosols by Deep Convection. Geophys. Res. Lett. 2019, 46, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Liu, X.; Lin, L.; Ke, Z.; Lu, Z. An Improved Representation of Aerosol Wet Removal by Deep Convection and Impacts on Simulated Aerosol Vertical Profiles. J. Geophys. Res.-Atmos. 2021, 126, e2020JD034173. [Google Scholar] [CrossRef]
- Ke, Z.; Liu, X.; Wu, M.; Shan, Y.; Shi, Y. Improved Dust Representation and Impacts on Dust Transport and Radiative Effect in CAM5. J. Adv. Model Earth Syst. 2022, 14, e2021MS002845. [Google Scholar] [CrossRef]
- Lou, X.; Shi, Y.; Shan, Y. A Numerical Simulation of CCN Impacts on Weather Modification Efficiency. Front. Environ. Sci. 2023, 11, 1181207. [Google Scholar] [CrossRef]
- Schreier, S.F.; Richter, A.; Peters, E.; Ostendorf, M.; Schmalwieser, A.W.; Weihs, P.; Burrows, J.P. Dual ground-based MAX-DOAS observations in Vienna, Austria: Evaluation of horizontal and temporal NO2, HCHO, and CHOCHO distributions and comparison with independent data sets. Atmos. Environ. 2019, 5, 100059. [Google Scholar] [CrossRef]
- Liu, C.; Xing, C.Z.; Hu, Q.H.; Li, Q.H.; Liu, H.R.; Hong, Q.Q.; Tan, W.; Ji, X.G.; Lin, H.; Lu, C.; et al. Ground-based hyperspectral stereoscopic remote sensing network: A promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering 2022, 19, 71–83. [Google Scholar] [CrossRef]
- Javed, Z.; Liu, C.; Khokhar, M.F.; Xing, C.Z.; Tan, W.; Subhani, M.A.; Rehman, A.; Tanvir, A. Investigating the impact of Glyoxal retrieval from MAX-DOAS observations during haze and non-haze conditions in Beijing. J. Environ. Sci. 2019, 80, 296–305. [Google Scholar] [CrossRef]
- Shoaib, A.; Khokhar, M.F.; Sandhu, O. Investigating the temporal variation of formaldehyde using MAX-DOAS and satellite observations over Islamabad, Pakistan. Atmos. Pollut. Res. 2020, 11, 193–204. [Google Scholar] [CrossRef]
- Ji, X.G.; Liu, C.; Wang, Y.; Hu, Q.H.; Lin, H.; Zhao, F.; Xing, C.Z.; Tang, G.Q.; Zhang, J.Q.; Wagner, T. Ozone profiles without blind area retrieved from MAX-DOAS measurements and comprehensive validation with multi-platform observations. Remote Sens. Environ. 2023, 284, 113339. [Google Scholar] [CrossRef]
- Ren, B.; Xie, P.H.; Xu, J.; Li, A.; Tian, X.; Hu, Z.K.; Huang, Y.Y.; Li, X.M.; Zhang, Q.; Ren, H.M.; et al. Use of the PSCF method to analyze the variations of potential sources and transports of NO2, SO2, and HCHO observed by MAX-DOAS in Nanjing, China during 2019. Sci. Total Environ. 2021, 782, 146865. [Google Scholar] [CrossRef]
- Xing, C.Z.; Liu, C.; Hong, Q.Q.; Liu, H.R.; Wu, H.Y.; Lin, J.N.; Song, Y.H.; Chen, Y.J.; Liu, T.; Hu, Q.H.; et al. Vertical distributions and potential sources of wintertime atmospheric pollutants and the corresponding ozone production on the coast of Bohai Sea. J. Environ. Manag. 2022, 319, 115721. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.J.; Javed, Z.S.; Liu, C.; Tanvir, A.; Sandhu, O.; Liu, H.R.; Ji, X.G.; Xing, C.Z.; Lin, H.; Du, D.L. MAX-DOAS and in-situ measurements of aerosols and trace gases over Dongying, China: Insight into ozone formation sensitivity based on secondary HCHO. J. Environ. Sci. 2024, 135, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, H.; Yang, T.; Chen, Y.; Deng, C.; Gao, Y.; Chen, C.P.; Xu, J. Characteristics and sources of aerosol aminiums over the eastern coast of China: Insights from the integrated observations in a island city, adjacent island and the marginal seas. Atmos. Chem. Phys. 2019, 19, 10447–10467. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 obsorption cross section rom 42000 cm−1 to 10000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J. High spectral resolution ozone absorption cross-sections–Part 2: Temperature dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Thalman, R.; Volkamer, R. Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Phys. Chem. Chem. Phys. 2013, 15, 15371–15381. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M.; Burrows, J.P.; Orphal, J. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. A Chem. 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.P. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar] [CrossRef]
- Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys Res.-Biogeo 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Chance, K.V.; Spurr, R.J. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Appl. Opt. 1997, 36, 5224–5230. [Google Scholar] [CrossRef]
- Chance, K.; Kurucz, R.L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Pectrosc. Radiat. Transf. 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- Frieß, U.; Monks, P.S.; Remedios, J.J.; Rozanov, A.; Sinreich, R.; Wagner, T.; Platt, U. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies. J. Geophys. Res.-Atmos. 2006, 111, D14203. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Kurosu, T.; Burrows, J.P. Retrieval of atmospheric constituents in the UV-Visible: A new quasi-analytical approach for the calculation of weighting functions. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 277–299. [Google Scholar] [CrossRef]
- Ou, J.P.; Hu, Q.H.; Liu, H.R.; Hong, Q.Q.; Xing, C.Z.; Tan, W.; Lin, H.; Wang, X.Q.; Xu, H.; Zhu, P.C.; et al. Vertical Characterization and Potential Sources of Aerosols in Different Seasons over the Yangtze River Delta Using Ground-Based MAX-DOAS. Environ. Pollut. 2021, 279, 116898. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Kan, H.D.; Chen, B.H. Particulate air pollution in urban areas of Shanghai, China: Health based economic assessment. Sci. Total Environ. 2004, 322, 71–79. [Google Scholar] [CrossRef]
- Xu, X.M.; Zhang, H.F.; Chen, J.M.; Li, Q.; Wang, X.F.; Wang, W.X.; Zhang, Q.Z.; Xue, L.K.; Ding, A.J.; Mellouki, A. Six sources mainly contributing to the haze episodes and health risk assessment of PM2.5 at Beijing suburb in winter 2016. Ecotox. Environ. Saf. 2018, 166, 146–156. [Google Scholar] [CrossRef]
- Barrero, M.A.; Orza, J.A.G.; Cabello, M.; Canton, L. Categorisation of air quality monitoring stations by evaluation of PM10 variability. Sci. Total Environ. 2015, 524–525, 225–236. [Google Scholar] [CrossRef]
- Yin, H.; Liu, C.; Hu, Q.; Liu, T.; Wang, S.; Gao, M.; Xu, S.; Zhang, C.; Su, W. Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O3 in Wuhan, China. Environ. Pollut. 2021, 289, 117899. [Google Scholar] [CrossRef]
- Hong, Q.Q.; Liu, C.; Hu, Q.H.; Xing, C.Z.; Tan, W.; Liu, H.R.; Huang, Y.; Zhu, Y.; Zhang, J.S.; Geng, T.Z.; et al. Evolution of the vertical structure of air pollutants during winter heavy pollution episodes: The role of regional transport and potential sources. Atmos. Res. 2019, 228, 206–222. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, J.R.; Zhang, C.G.; Zhang, Y.; Yang, X.; Chen, J.M.; Xu, J.P.; Xue, R.P.; Zhou, B. Effects of cleaner ship fuels on air quality and implications for future policy: A case study of Chongming Ecological Island in China. J. Clean. Prod. 2020, 267, 122088. [Google Scholar] [CrossRef]
- Dasgupta, P.K.; Li, J.; Zhang, G.; Luke, W.T.; McClenny, W.A.; Stutz, J.; Fried, A. Summertime ambient formaldehyde in five US metropolitan areas: Nashville, Atlanta, Houston, Philadelphia, and Tampa. Environ. Sci. Technol. 2005, 39, 4767–4783. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Wang, X.H.; Zhu, L.X.; Liu, K.; Zong, C.X.; Wei, N.; Li, D. Enhanced impacts evaluation of Typhoon Sinlaku (2020) on atmospheric microplastics in South China Sea during the East Asian Summer Monsoon. Sci. Total Environ. 2022, 806, 150767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.F.; Wang, S.S.; Zhang, S.B.; Xue, R.B.; Zhu, J.; Zhou, B. MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass. J. Environ. Sci. 2022, 120, 63–73. [Google Scholar] [CrossRef]
- Sun, T.Z.; Che, H.Z.; Qi, B.; Wang, Y.Q.; Dong, Y.S.; Xia, X.G.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.J.; et al. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: Effect of the regional transport of different aerosol types over eastern China. Atmos. Chem. Phys. 2018, 18, 2949–2971. [Google Scholar] [CrossRef]
- Souri, A.H.; Kumar, R.; Chong, H.S.; Golbazi, M.Y.; Knowland, K.E.; Geddes, J.; Johnson, M.S. Decoupling in the vertical shape of HCHO during a sea breeze event: The effect on trace gas satellite retrievals and column-to-surface translation. Atmos. Environ. 2023, 309, 119929. [Google Scholar] [CrossRef]
- Wang, Y.; Ali, M.A.; Bilal, M.; Qiu, Z.F.; Mhawish, A.; Almazroui, M.; Shahid, S.; Islam, M.N.; Zhang, Y.Z.; Hague, M.N. Identification of NO2 and SO2 Pollution Hotspots and Sources in Jiangsu Province of China. Remote Sens. 2021, 13, 3742. [Google Scholar] [CrossRef]
- Chen, Q.L.; Ding, J.; Zhu, D.; Hu, H.W.; Delgado-Baquerizo, M.; Ma, Y.B.; He, J.Z.; Zhu, Y.G. Rare microbial taxa as the major drivers of ecosystem multi functionality in long-term fertilized soils. Soil Biol. Biochem. 2020, 141, 107686. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fu, S.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmos. Res. 2018, 203, 207–215. [Google Scholar] [CrossRef]
Parameter | Data Source | Fitting Interval (nm) | |
---|---|---|---|
O4/NO2 | HCHO | ||
Wavelength range | 338–370 | 322.5–358 | |
NO2 | 298 K, I0 correction (SCD of 1017 molecules cm−2) [54] | √ | √ |
NO2 | 220 K, I0 correction (SCD of 1017 molecules cm−2) [54] | √ | √ |
O3 | 223 K, I0 correction (SCD of 1020 molecules cm−2) [55] | √ | √ |
O3 | 243 K, I0 correction (SCD of 1020 molecules cm−2) [55] | √ | √ |
O4 | 293 K [56] | √ | √ |
BrO | 223 K [57] | √ | √ |
H2O | 296 K, HITEMP [58] | √ | × |
HCHO | 297 K [59] | √ | √ |
Ring | calculated with QDOAS [60] | √ | √ |
Wavelength calibration | A high-resolution solar reference spectrum (SAO2010 solar spectra) [61] | √ | √ |
Polynomial degree | Order 3 | Order 5 | |
Intensity offset | Constant | Constant |
Health Endpoints | Attributable Number of Cases |
---|---|
Long-term mortality (adult > 30 years) | 112 (68, 158) |
Chronic bronchitis | 151 (43, 258) |
Short-term mortality | 5 (2, 8) |
Respiratory hospital admission | 39 (3, 75) |
Cardiovascular hospital admission | 27 (14, 39) |
Outpatient visits—internal medicine | 2684 (1500, 3868) |
Outpatient visits—pediatrics | 283 (102, 465) |
Acute bronchitis | 5167 (1782, 8527) |
Asthma attack (children < 15 years) | 735 (452, 1034) |
Asthma attack (adults > 15 years) | 528 (258, 797) |
RADs (adults > 20 years) | 67,659 (56,950, 78,335) |
Sum | 77,390 (61,173, 93,564) |
Cluster | Ratio (%) | AE (km−1) | |
---|---|---|---|
Mean ± SD | |||
10 m | 1 | 28.28 | 0.27 ± 0.21 |
2 | 37.12 | 0.24 ± 0.10 | |
3 | 34.60 | 0.28 ± 0.13 | |
all | 100.00 | 0.25 ± 0.14 | |
400 m | 1 | 40.40 | 0.33 ± 0.52 |
2 | 26.01 | 0.53 ± 0.58 | |
3 | 33.59 | 0.37 ± 0.82 | |
all | 100.00 | 0.39 ± 0.63 | |
1000 m | 1 | 16.67 | 0.28 ± 0.21 |
2 | 30.56 | 0.35 ± 0.30 | |
3 | 32.32 | 0.27 ± 0.20 | |
4 | 20.45 | 0.32 ± 0.31 | |
all | 100.00 | 0.31 ± 0.26 |
Cluster | Ratio (%) | NO2 (ppb) | |
---|---|---|---|
Mean ± SD | |||
10 m | 1 | 48.99 | 1.42 ± 1.24 |
2 | 14.39 | 5.10 ± 3.87 | |
3 | 36.62 | 2.77 ± 2.08 | |
all | 100.00 | 2.34 ± 2.19 | |
400 m | 1 | 32.83 | 0.28 ± 0.26 |
2 | 12.63 | 0.35 ± 0.18 | |
3 | 37.37 | 0.45 ± 0.40 | |
4 | 17.17 | 0.84 ± 0.50 | |
all | 100.00 | 0.43 ± 0.39 | |
1000 m | 1 | 38.89 | 0.37 ± 0.31 |
2 | 21.21 | 0.43 ± 0.39 | |
3 | 25.00 | 0.32 ± 0.28 | |
4 | 14.90 | 0.43 ± 0.36 | |
all | 100.00 | 0.38 ± 0.33 |
Cluster | Ratio (%) | HCHO (ppb) | |
---|---|---|---|
Mean ± SD | |||
10 m | 1 | 48.99 | 2.10 ± 1.33 |
2 | 14.39 | 1.76 ± 0.77 | |
3 | 36.62 | 2.19 ± 1.65 | |
all | 100.00 | 2.12 ± 1.47 | |
400 m | 1 | 32.83 | 1.54 ± 1.05 |
2 | 12.63 | 1.30 ± 0.95 | |
3 | 37.37 | 2.21 ± 2.69 | |
4 | 17.17 | 1.91 ± 1.12 | |
all | 100.00 | 1.90 ± 2.10 | |
1000 m | 1 | 38.89 | 1.29 ± 0.83 |
2 | 21.21 | 1.32 ± 0.82 | |
3 | 25.00 | 1.61 ± 1.75 | |
4 | 14.90 | 1.94 ± 1.40 | |
all | 100.00 | 1.55 ± 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, J.; Hu, Q.; Xing, C.; Zhu, Y.; Feng, J.; Ji, X.; Zhang, M.; Wang, X.; Li, L.; Liu, T.; et al. Analysis of the Vertical Distribution and Driving Factors of Aerosol and Ozone Precursors in Huaniao Island, China, Based on Ground-Based MAX-DOAS. Remote Sens. 2023, 15, 5103. https://doi.org/10.3390/rs15215103
Ou J, Hu Q, Xing C, Zhu Y, Feng J, Ji X, Zhang M, Wang X, Li L, Liu T, et al. Analysis of the Vertical Distribution and Driving Factors of Aerosol and Ozone Precursors in Huaniao Island, China, Based on Ground-Based MAX-DOAS. Remote Sensing. 2023; 15(21):5103. https://doi.org/10.3390/rs15215103
Chicago/Turabian StyleOu, Jinping, Qihou Hu, Chengzhi Xing, Yizhi Zhu, Jiaxuan Feng, Xiangguang Ji, Mingzhu Zhang, Xinqi Wang, Liyuan Li, Ting Liu, and et al. 2023. "Analysis of the Vertical Distribution and Driving Factors of Aerosol and Ozone Precursors in Huaniao Island, China, Based on Ground-Based MAX-DOAS" Remote Sensing 15, no. 21: 5103. https://doi.org/10.3390/rs15215103
APA StyleOu, J., Hu, Q., Xing, C., Zhu, Y., Feng, J., Ji, X., Zhang, M., Wang, X., Li, L., Liu, T., Chang, B., Li, Q., Yin, H., & Liu, C. (2023). Analysis of the Vertical Distribution and Driving Factors of Aerosol and Ozone Precursors in Huaniao Island, China, Based on Ground-Based MAX-DOAS. Remote Sensing, 15(21), 5103. https://doi.org/10.3390/rs15215103