Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (599)

Search Parameters:
Keywords = ground reaction forces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1303 KiB  
Article
Spectral and Spatial Analysis of Plantar Force Distributions Across Foot-Strike Patterns During Treadmill Running
by Paul William Macdermid and Stephanie Julie Walker
Appl. Sci. 2025, 15(15), 8709; https://doi.org/10.3390/app15158709 (registering DOI) - 6 Aug 2025
Abstract
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces [...] Read more.
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces and to identify differences in impact kinetics through spectral analysis. Low- and high-frequency power components were analysed in heel, midfoot and forefoot strike patterns. No distinct impact peaks were identified in the force traces; however, significant spatial differences were found. Forefoot strikes exhibited lower peak impact force, average loading rate, and high-frequency power spectral density (PSD) components compared to heel and midfoot strikes, with heel also lower than midfoot. Strike pattern classification was derived from spatial force distribution, where >70% posterior and >50% anterior denote heel and forefoot strikes, while midfoot strikes demonstrate a more balanced distribution with >25% in the central zone. These findings support the integration of spatial, force-based classification with frequency-domain analysis to enhance the evaluation of impact attenuation in treadmill-based running interventions. Full article
Show Figures

Figure 1

24 pages, 2828 KiB  
Article
Determining the Ground Reaction Force Value and Location for Each Foot During Bipedal Stance Exercises from a Single Forceplate
by Adrián Schmedling, Erik Macho, Francisco J. Campa, Ruben Valenzuela, Mikel Diez, Javier Corral, Paul Diego, Saioa Herrero and Charles Pinto
Sensors 2025, 25(15), 4796; https://doi.org/10.3390/s25154796 - 4 Aug 2025
Viewed by 188
Abstract
In the study of biomechanical models, balance represents a complex problem due to the issue of indeterminate forces while standing. In order to solve this problem, it is essential to measure the ground reaction forces (GRFs) applied to each foot independently. The present [...] Read more.
In the study of biomechanical models, balance represents a complex problem due to the issue of indeterminate forces while standing. In order to solve this problem, it is essential to measure the ground reaction forces (GRFs) applied to each foot independently. The present work proposes a methodology for determining the independent GRF applied to each foot while standing when only one forceplate is available. For this purpose, an analytical method is proposed to determine the distribution of vertical GRFs and the position of the independent center of pressure (CoP) in each foot. Concurrently, several neural network (NN) models are trained to improve the results obtained. This hypothesis is experimentally validated by a self-developed device that allows one to simultaneously obtain the vertical GRF and CoP location of each foot at the same time that the GRF and the global CoP location are obtained from a single forceplate. The results obtained achieve a CoP position error of less than 8% and a vertical force error of 2%. The analytical hypothesis is demonstrated to offer a satisfactory level of precision, while the NN is shown to result in considerable improvement in some cases. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

21 pages, 4176 KiB  
Article
Anti-Overturning Performance of Prefabricated Foundations for Distribution Line Poles
by Liang Zhang, Chen Chen, Yan Yang, Kai Niu, Weihao Xu and Dehong Wang
Buildings 2025, 15(15), 2717; https://doi.org/10.3390/buildings15152717 - 1 Aug 2025
Viewed by 155
Abstract
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the [...] Read more.
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the influence of different factors—such as pole embedment depth, foundation locations, soil type, and soil parameters—on the anti-overturning performance of pole prefabricated foundations. The results indicate that under ultimate load conditions, the reaction force distribution at the base of the foundation approximates a triangular pattern, and the lateral earth pressure on the pole follows an approximately quadratic parabolic distribution along the depth. When the foundation size increases from 0.8 m to 0.9 m, the bearing capacity of the prefabricated foundation improves by 8%. Furthermore, when the load direction changes from 0° to 45°, the foundation’s bearing capacity increases by 14%. When the foundation is buried at a depth of 1.0 m, compared with the ground position, the ultimate overturning moment of the prefabricated foundation increases by 10%. Based on field test results, finite element simulation results, and limit equilibrium theory, a calculation method for the anti-overturning bearing capacity of prefabricated pole foundations is developed, which can provide a practical reference for the engineering design of distribution line poles and their prefabricated foundations. Full article
Show Figures

Figure 1

12 pages, 1677 KiB  
Article
Validating Capacitive Pressure Sensors for Mobile Gait Assessment
by John Carver Middleton, David Saucier, Samaneh Davarzani, Erin Parker, Tristen Sellers, James Chalmers, Reuben F. Burch, John E. Ball, Charles Edward Freeman, Brian Smith and Harish Chander
Biomechanics 2025, 5(3), 54; https://doi.org/10.3390/biomechanics5030054 - 1 Aug 2025
Viewed by 140
Abstract
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler [...] Read more.
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler force plates in collecting ground force reaction data. Methods: Nineteen participants performed walking trials while wearing the smart sock with and without shoes. Data was collected simultaneously with the sock and the force plates for each gait phase including foot-flat, heel-off, and midstance. The correlation between the smart sock and force plates was analyzed using Pearson’s correlation coefficient and R-squared values. Results: Overall, the strength of the relationship between the smart sock’s SRS data and the vertical ground reaction force (GRF) data from the force plates showed a strong correlation, with a Pearson’s correlation coefficient of 0.85 ± 0.1; 86% of the trials had a value higher than 0.75. The linear regression models also showed a strong correlation, with an R-squared value of 0.88 ± 0.12, which improved to 0.90 ± 0.07 when including a stretch-SRS for measuring ankle flexion. Conclusions: With these strong correlation results, there is potential for capacitive pressure sensors to be integrated into the proposed device and utilized in telehealth and sports performance applications. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

13 pages, 1454 KiB  
Article
Lower Limb Inter-Joint Coordination and End-Point Control During Gait in Adolescents with Early Treated Unilateral Developmental Dysplasia of the Hip
by Chu-Fen Chang, Tung-Wu Lu, Chia-Han Hu, Kuan-Wen Wu, Chien-Chung Kuo and Ting-Ming Wang
Bioengineering 2025, 12(8), 836; https://doi.org/10.3390/bioengineering12080836 (registering DOI) - 31 Jul 2025
Viewed by 276
Abstract
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This [...] Read more.
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This study investigated lower limb inter-joint coordination and swing foot control during level walking in adolescents with early-treated unilateral DDH. Methods: Eleven female adolescents treated early for DDH using Pemberton osteotomy were compared with 11 age-matched healthy controls. The joint angles and angular velocities of the hip, knee, and ankle were measured, and the corresponding phase angles and continuous relative phase (CRP) for hip–knee and knee–ankle coordination were obtained. The variability of inter-joint coordination was quantified using the deviation phase values obtained as the time-averaged standard deviations of the CRP curves over multiple trials. Results: The DDH group exhibited a flexed posture with increased variability in knee–ankle coordination of the affected limb throughout the gait cycle compared to the control group. In contrast, the unaffected limb compensated for the kinematic alterations of the affected limb with reduced peak angular velocities but increased knee–ankle CRP over double-limb support and trajectory variability over the swing phase. Conclusions: The identified changes in inter-joint coordination in adolescents with early treated DDH provide a plausible explanation for the previously reported increased GRF loading rates in the unaffected limb, a risk factor of premature OA. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

10 pages, 1114 KiB  
Article
Restoration of Joint Line Obliquity May Not Influence Lower Extremity Peak Frontal Plane Moments During Stair Negotiation
by Alexis K. Nelson-Tranum, Marcus C. Ford, Nuanqiu Hou, Douglas W. Powell, Christopher T. Holland and William M. Mihalko
Bioengineering 2025, 12(8), 803; https://doi.org/10.3390/bioengineering12080803 - 26 Jul 2025
Viewed by 310
Abstract
Approximately 15% of total knee arthroplasty (TKA) patients remain dissatisfied after surgery, with joint line obliquity (JLO) potentially affecting patient outcomes. This study investigated whether JLO restoration influenced lower extremity frontal plane joint moments during stair negotiation by TKA patients. Thirty unrestored and [...] Read more.
Approximately 15% of total knee arthroplasty (TKA) patients remain dissatisfied after surgery, with joint line obliquity (JLO) potentially affecting patient outcomes. This study investigated whether JLO restoration influenced lower extremity frontal plane joint moments during stair negotiation by TKA patients. Thirty unrestored and twenty-two restored JLO patients participated in this study and were asked to perform five trials on each limb for stair negotiation while three-dimensional kinematics and ground reaction forces were recorded. Frontal plane moments at the ankle, knee and hip were calculated using Visual 3D. The restoration of JLO did not alter frontal plane joint moments during stair negotiation. Both groups showed symmetrical moment profiles, indicating no significant biomechanical differences between the restored and unrestored JLO groups. Restoring JLO did not affect frontal plane joint moments during stair negotiation, suggesting it may not contribute to patient satisfaction disparities post-TKA. Further research should explore other factors, such as surgical technique and implant design, that might influence recovery. Full article
Show Figures

Figure 1

15 pages, 1395 KiB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 380
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

32 pages, 5087 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 138
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 2840 KiB  
Article
A Digital Twin System for the Sitting-to-Standing Motion of the Knee Joint
by Tian Liu, Liangzheng Sun, Chaoyue Sun, Zhijie Chen, Jian Li and Peng Su
Electronics 2025, 14(14), 2867; https://doi.org/10.3390/electronics14142867 - 18 Jul 2025
Viewed by 258
Abstract
(1) Background: A severe decline in knee joint function significantly affects the mobility of the elderly, making it a key concern in the field of geriatric health. To alleviate the pressure on the knee joints of the elderly during daily movements such as [...] Read more.
(1) Background: A severe decline in knee joint function significantly affects the mobility of the elderly, making it a key concern in the field of geriatric health. To alleviate the pressure on the knee joints of the elderly during daily movements such as sitting and standing, effective biomechanical solutions are required. (2) Methods: In this study, a biomechanical framework was established based on mechanical analysis to derive the transfer relationship between the ground reaction force and the knee joint moment. Experiments were designed to collect knee joint data on the elderly during the sit-to-stand process. Meanwhile, magnetic resonance imaging (MRI) images were processed through a medical imaging control system to construct a detailed digital 3D knee joint model. A finite element analysis was used to verify the model to ensure the accuracy of its structure and mechanical properties. An improved radial basis function was used to fit the pressure during the entire sit-to-stand conversion process to reduce the computational workload, with an error of less than 5%. In addition, a small-target human key point recognition network was developed to analyze the image sequences captured by the camera. The knee joint angle and the knee joint pressure distribution during the sit-to-stand conversion process were mapped to a three-dimensional interactive platform to form a digital twin system. (3) Results: The system can effectively capture the biomechanical behavior of the knee joint during movement and shows high accuracy in joint angle tracking and structure simulation. (4) Conclusions: This study provides an accurate and comprehensive method for analyzing the biomechanical characteristics of the knee joint during the movement of the elderly, laying a solid foundation for clinical rehabilitation research and the design of assistive devices in the field of rehabilitation medicine. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

28 pages, 3409 KiB  
Article
Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales
by Mahsa Barfi, Theodoros Deligiannis, Brian Schlattmann, Karl M. Newell and Madhur Mangalam
Sensors 2025, 25(14), 4454; https://doi.org/10.3390/s25144454 - 17 Jul 2025
Viewed by 248
Abstract
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination [...] Read more.
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination involving a wobble board, introducing mechanical instability mainly along the mediolateral (ML) axis and the Trail Making Task (TMT), which imposes precise visual demands primarily along the anteroposterior (AP) axis. Using Multiscale Regression Analysis (MRA), a novel analytical method rooted in Detrended Fluctuation Analysis (DFA), we scrutinized CoP-to-CoM and CoM-to-CoP effects across multiple timescales ranging from 100ms to 10s. CoP was computed from ground reaction forces recorded via a force plate, and CoM was derived from full-body 3D motion capture using a biomechanical model. We found that the wobble board attenuated CoM-to-CoP effects across timescales ranging from 100to400ms. Further analysis revealed nuanced changes: while there was an overall reduction, this encompassed an accentuation of CoM-to-CoP effects along the AP axis and a decrease along the ML axis. Importantly, these alterations in CoP’s responses to CoM movements outweighed any nonsignificant effects attributable to the TMT. CoM exhibited no sensitivity to CoP movements, regardless of the visual and mechanical task demands. In addition to identifying the characteristic timescales associated with bodily DoFs in facilitating upright posture, our findings underscore the critical significance of directionally challenging biomechanical constraints, particularly evident in the amplification of CoP-to-CoM effects along the AP axis in response to ML instability. These results underscore the potential of wobble board training to enhance the coordinative and compensatory responses of bodily DoFs to the shifting CoM by prompting appropriate adjustments in CoP, thereby suggesting their application for reinstating healthy CoM–CoP dynamics in clinical populations with postural deficits. Full article
Show Figures

Figure 1

27 pages, 7203 KiB  
Article
The Combined Role of Coronal and Toe Joint Compliance in Transtibial Prosthetic Gait: A Study in Non-Amputated Individuals
by Sergio Galindo-Leon, Hideki Kadone, Modar Hassan and Kenji Suzuki
Prosthesis 2025, 7(4), 82; https://doi.org/10.3390/prosthesis7040082 - 14 Jul 2025
Viewed by 375
Abstract
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, [...] Read more.
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, which play critical roles in gait stability and efficiency. This study aims to evaluate the combined effects of compliance in the coronal plane and a flexible toe joint on prosthetic gait using non-amputated participants as a model. Methods: We conducted gait trials on ten non-amputated individuals in the presence and absence of compliance in the coronal plane and toe compliance, using a previously developed three-degree-of-freedom (DOF) prosthetic foot with a prosthetic simulator. We recorded and analyzed sagittal and coronal kinematic data, ground reaction forces, and electromyographic signals from muscles involved in the control of gait. Results: The addition of compliance in the coronal plane and toe compliance had significant kinematic and muscular effects. Notably, this compliance combination reduced peak pelvis obliquity by 27%, preserved the swing stance/ratio, and decreased gluteus medius’ activation by 34% on the non-prosthetic side, compared to the laterally rigid version of the prosthesis without toe compliance. Conclusions: The results underscore the importance of integrating compliance in the coronal plane and toe compliance in prosthetic feet designs as they show potential in improving gait metrics related to mediolateral movements and balance, while also decreasing muscle activation. Still, these findings remain to be validated in people with transtibial amputations. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

10 pages, 478 KiB  
Article
Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction
by Manuel Angel Romero Padron, Alyx Jorgensen, David M. Werner, Matthew Alan Tao and Elizabeth Wellsandt
Appl. Sci. 2025, 15(14), 7780; https://doi.org/10.3390/app15147780 - 11 Jul 2025
Viewed by 283
Abstract
Asymmetries are common during squats following anterior cruciate ligament reconstruction (ACLR). This study examined interlimb loading differences between squat phases at 6 months post-ACLR. Thirty-five participants performed bodyweight squats at self-selected speed and were analyzed using 3D motion capture. Vertical ground reaction force [...] Read more.
Asymmetries are common during squats following anterior cruciate ligament reconstruction (ACLR). This study examined interlimb loading differences between squat phases at 6 months post-ACLR. Thirty-five participants performed bodyweight squats at self-selected speed and were analyzed using 3D motion capture. Vertical ground reaction force impulse (vGRFi), external knee flexion moment impulse (KFMi) and hip-to-knee flexion moment impulse ratio (HKRi) were calculated, along with interlimb ratios (ILR). Squat phase durations were also recorded. Paired t-tests and ANCOVA (controlling for time) were used to compare biomechanical variables across squat phases. Greater asymmetry was observed during ascent for vGRFi ILR (p = 0.045), KFMi ILR (p < 0.001) and HKRi ILR (p = 0.006). The ascent phase was faster than descent (p = 0.036). After adjusting for time, phase-related differences in ILRs were no longer significant. These findings suggest that greater limb and knee-specific loading asymmetries occur during the ascent phase of squats but may be influenced by movement speed. Importantly, significant knee-specific loading asymmetries persisted regardless of squat phase. At 6 months post-ACLR, addressing neuromuscular control and movement speed during rehabilitation may help reduce biomechanical imbalances during closed kinetic chain exercises. Full article
(This article belongs to the Special Issue Applied Biomechanics and Sports Sciences)
Show Figures

Figure 1

28 pages, 4733 KiB  
Article
The Margin of Stability During a Single-Turn Pirouette in Female Amateur Dancers: A Pilot Study
by Annalisa Dykstra, Ashley Kooistra, Nicole Merucci, David W. Zeitler and Gordon Alderink
Appl. Sci. 2025, 15(13), 7519; https://doi.org/10.3390/app15137519 - 4 Jul 2025
Viewed by 301
Abstract
Balance control in pirouettes has previously been characterized by constraint of the topple angle. However, there is a paucity of research using the margin of stability (MoS) as a dynamic measure of balance related to pirouettes. Therefore, this study aimed primarily to examine [...] Read more.
Balance control in pirouettes has previously been characterized by constraint of the topple angle. However, there is a paucity of research using the margin of stability (MoS) as a dynamic measure of balance related to pirouettes. Therefore, this study aimed primarily to examine the MoS as a metric of balance during a single-turn en dehors pirouette in healthy female amateur ballet dancers. Four participants performed pirouettes until five successful pirouettes were achieved without hopping or loss of balance. Three-dimensional motion capture was used to record the motion trajectories of anatomical markers based on the Plug-in-Gait and Oxford Foot models. Motion synchronized with ground reaction forces was used to calculate the center of pressure (CoP), base of support (BoS), center of the pivot foot, center of mass (CoM), and extrapolated center of mass (XCoM) throughout the turn phase, using laboratory (LCS) and virtual left foot (LFT) coordinate systems. In the LCS and LFT coordinate system, the excursions and patterns of motion of both the CoM and XCoM relative to the CoP were similar, suggesting a neurological relationship. Two different measures of the margin of stability (MoS) in the LFT coordinate system were tabulated: the distance between the (1) XCoM and CoP and (2) XCoM and BoS center. The magnitude of both versions of the MoS was greatest at turn initiation and toe-touch, which was associated with two foot contacts. The MoS values were at a minimum approximately 50% of the stance during the turn phase: close to zero along the anteroposterior (A/P) axis and approximately 50 mm along the mediolateral (M/L) axis. On average, MoS magnitudes were reduced (mean across participants: approximately 20 mm) along the A/P axis, and larger MoS magnitudes (mean across participants: approximately 50 mm) along the M/L axis throughout the turn phase. Although all turns analyzed were completed successfully, the larger MoS values along the M/L axis suggest a fall potential. The variability between trials within a dancer and across participants and trials was documented and showed moderate inter-trial (16% to 51%) and across-participant CV% (range: 10% to 28%), with generally larger variations along the A/P axis. Although our results are preliminary, they suggest that the MoS may be useful for detecting faults in the control of dynamic balance in dehors pirouette performance, as a part of training and rehabilitation following injury. Full article
Show Figures

Figure 1

23 pages, 3708 KiB  
Article
Natural Frequency Analysis of a Stepped Drill String in Vertical Oil Wells Subjected to Coupled Axial–Torsional–Lateral Vibrations
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(13), 3492; https://doi.org/10.3390/en18133492 - 2 Jul 2025
Viewed by 341
Abstract
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage [...] Read more.
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage to drill bits. To reduce unwanted oscillations, drilling vibration modeling is the first approach used to determine the behavior of the drill string under various conditions. Natural frequencies, one of the modal characteristics of a vibrating drill string, can be estimated by analytical or numerical models. However, as the field conditions become more complicated, analytical models become increasingly difficult to use, and alternative approaches must be adopted. The main objective of this paper is to investigate the natural frequencies of drill strings with real geometry under coupled vibration modes using both analytical and finite element methods. This study bridges the literature gap in modeling stepped drill string geometries, which are usually represented as uniform beams. This paper used analytical and finite element models to determine the drill string’s lateral, axial, and torsional natural frequencies under varying lengths of drill pipes and drill collars. To assess the reliability of finite element models under complex geometry, the drill string was approximated as a stepped beam rather than a uniform beam. Then, a comparison was made with analytical models. The results showed that the length of drill pipes has a pronounced effect on the natural frequencies of the overall drill string for the three vibrational modes, while drill collar length only has a notable impact on the torsional mode. These findings contribute to drilling systems’ reliability and efficiency in the oil and gas energy sector. Full article
Show Figures

Figure 1

15 pages, 1033 KiB  
Article
Detrended Fluctuation Analysis of Gait Cycles: A Study of Neuromuscular and Ground Force Dynamics
by Soumya Prakash Rana and Maitreyee Dey
Sensors 2025, 25(13), 4122; https://doi.org/10.3390/s25134122 - 2 Jul 2025
Viewed by 415
Abstract
Gait analysis provides crucial insights into neuromuscular coordination and postural control, especially in ageing populations and rehabilitation contexts. This study investigates the complexity of muscle activation and ground reaction force patterns during gait by applying detrended fluctuation analysis (DFA) to electromyography (EMG) and [...] Read more.
Gait analysis provides crucial insights into neuromuscular coordination and postural control, especially in ageing populations and rehabilitation contexts. This study investigates the complexity of muscle activation and ground reaction force patterns during gait by applying detrended fluctuation analysis (DFA) to electromyography (EMG) and force-sensitive resistor (FSR) signals. Data from a two-arm randomised clinical trial (RCT) supplemented with an observational control group were used in this study. Participants performed a single-task walking protocol, with EMG recorded from the tibialis anterior and lateral gastrocnemius muscles of both legs and FSR sensors placed under the feet. Gait cycles were segmented using heel-strike detection from the FSR signal, enabling analysis of individual strides. For each gait cycle, DFA was applied to quantify the long-range temporal correlations in the EMG and FSR time series. Results revealed consistent α-scaling exponents across cycles, with EMG signals exhibiting moderate persistence (α0.850.92) and FSR signals showing higher persistence (α1.5), which is indicative of stable and repeatable gait patterns. These findings support the utility of DFA as a nonlinear signal processing tool for characterising gait dynamics, offering potential markers for gait stability, motor control, and intervention effects in populations practising movement-based therapies such as Tai Chi. Future work will extend this analysis to dual-task conditions and comparative group studies. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

Back to TopTop